kas_core/layout/size_rules.rs
1// Licensed under the Apache License, Version 2.0 (the "License");
2// you may not use this file except in compliance with the License.
3// You may obtain a copy of the License in the LICENSE-APACHE file or at:
4// https://www.apache.org/licenses/LICENSE-2.0
5
6//! [`SizeRules`] type
7
8use smallvec::SmallVec;
9use std::iter::Sum;
10
11use super::Stretch;
12use crate::cast::{Cast, Conv};
13
14// for doc use
15#[allow(unused)] use super::FrameRules;
16#[allow(unused)] use crate::theme::SizeCx;
17
18/// Widget sizing information
19///
20/// This is the return value of [`crate::Layout::size_rules`] and is used to
21/// describe size and margin requirements for widgets. This type only concerns
22/// size requirements along a *single* axis.
23///
24/// All units are in pixels. Sizes usually come directly from [`SizeCx`]
25/// or from a fixed quantity multiplied by [`SizeCx::scale_factor`].
26///
27/// ### Sizes
28///
29/// The widget size model is simple: a rectangular box, plus a margin on each
30/// side. The `SizeRules` type represents expectations along a single axis:
31///
32/// - The minimum acceptable size (almost always met)
33/// - The ideal size (often the same size; this distinction is most useful for
34/// scrollable regions which are *ideally* large enough not to require
35/// scrolling, but can be much smaller)
36/// - A [`Stretch`] priority, used to prioritize allocation of excess space
37///
38/// Note that `Stretch::None` does not *prevent* stretching, but simply states
39/// that it is undesired (lowest priority). Actually preventing stretching
40/// requires alignment.
41///
42/// ### Margins
43///
44/// Required margin sizes are handled separately for each side of a widget.
45/// Since [`SizeRules`] concerns only one axis, it stores only two margin sizes:
46/// "pre" (left/top) and "post" (right/bottom). These are stored as `u16` values
47/// on the assumption that no margin need exceed 65536.
48///
49/// When widgets are placed next to each other, their margins may be combined;
50/// e.g. if a widget with margin of 6px is followed by another with margin 2px,
51/// the required margin between the two is the maximum, 6px.
52///
53/// Only the layout engine and parent widgets need consider margins (beyond
54/// their specification). For these cases, one needs to be aware that due to
55/// margin-merging behaviour, one cannot simply "add" two `SizeRules`. Instead,
56/// when placing one widget next to another, use [`SizeRules::append`] or
57/// [`SizeRules::appended`]; when placing a widget within a frame, use
58/// [`FrameRules::surround`].
59/// When calculating the size of a sequence of
60/// widgets, one may use the [`Sum`] implementation (this assumes that the
61/// sequence is in left-to-right or top-to-bottom order).
62///
63/// ### Alignment
64///
65/// `SizeRules` concerns calculations of size requirements, which the layout
66/// engine uses to assign each widget a [`Rect`]; it is up to the widget itself
67/// to either fill this rect or align itself within the given space.
68/// See [`crate::Layout::set_rect`] for more information.
69///
70/// For widgets with a stretch priority of [`Stretch::None`], it is still
71/// possible for layout code to assign a size larger than the preference. It is
72/// up to the widget to align itself within this space: see
73/// [`crate::Layout::set_rect`] and [`crate::layout::AlignHints`].
74///
75/// [`Rect`]: crate::geom::Rect
76#[derive(Copy, Clone, Debug, Default, PartialEq, Eq)]
77pub struct SizeRules {
78 // minimum good size
79 a: i32,
80 // ideal size; b >= a
81 b: i32,
82 // (pre, post) margins
83 m: (u16, u16),
84 stretch: Stretch,
85}
86
87impl SizeRules {
88 /// Empty (zero size) widget
89 ///
90 /// Warning: appending another size to `EMPTY` *does* include margins
91 /// even though `EMPTY` itself has zero size. However, `EMPTY` itself has
92 /// zero-size margins, so this only affects appending an `EMPTY` with a
93 /// non-empty `SizeRules`.
94 pub const EMPTY: Self = SizeRules::empty(Stretch::None);
95
96 /// Empty space with the given stretch priority
97 ///
98 /// See warning on [`SizeRules::EMPTY`].
99 #[inline]
100 pub const fn empty(stretch: Stretch) -> Self {
101 SizeRules {
102 a: 0,
103 b: 0,
104 m: (0, 0),
105 stretch,
106 }
107 }
108
109 /// Construct for a fixed size
110 ///
111 /// Margins are zero-sized by default; use [`Self::with_margin`] or
112 /// [`Self::with_margins`] to set.
113 #[inline]
114 pub fn fixed(size: i32) -> Self {
115 debug_assert!(size >= 0);
116 SizeRules {
117 a: size,
118 b: size,
119 m: (0, 0),
120 stretch: Stretch::None,
121 }
122 }
123
124 /// Construct with custom rules
125 ///
126 /// Region size should meet the given `min`-imum size and has a given
127 /// `ideal` size, plus a given `stretch` priority.
128 ///
129 /// Expected: `ideal >= min` (if not, ideal is clamped to min).
130 ///
131 /// Margins are zero-sized by default; use [`Self::with_margin`] or
132 /// [`Self::with_margins`] to set.
133 #[inline]
134 pub fn new(min: i32, ideal: i32, stretch: Stretch) -> Self {
135 debug_assert!(0 <= min && 0 <= ideal);
136 SizeRules {
137 a: min,
138 b: ideal.max(min),
139 m: (0, 0),
140 stretch,
141 }
142 }
143
144 /// Set both margins (symmetric)
145 ///
146 /// Both margins are set to the same value. By default these are 0.
147 #[inline]
148 pub fn with_margin(mut self, margin: u16) -> Self {
149 self.m = (margin, margin);
150 self
151 }
152
153 /// Set both margins (top/left, bottom/right)
154 ///
155 /// By default these are 0.
156 #[inline]
157 pub fn with_margins(mut self, (first, second): (u16, u16)) -> Self {
158 self.m = (first, second);
159 self
160 }
161
162 /// Set stretch factor, inline
163 #[inline]
164 pub fn with_stretch(mut self, stretch: Stretch) -> Self {
165 self.stretch = stretch;
166 self
167 }
168
169 /// Get the minimum size
170 #[inline]
171 pub fn min_size(self) -> i32 {
172 self.a
173 }
174
175 /// Get the ideal size
176 #[inline]
177 pub fn ideal_size(self) -> i32 {
178 self.b
179 }
180
181 /// Get the `(pre, post)` margin sizes
182 #[inline]
183 pub fn margins(self) -> (u16, u16) {
184 self.m
185 }
186
187 /// Get the `(pre, post)` margin sizes, cast to `i32`
188 #[inline]
189 pub fn margins_i32(self) -> (i32, i32) {
190 (self.m.0.into(), self.m.1.into())
191 }
192
193 /// Get the stretch priority
194 #[inline]
195 pub fn stretch(self) -> Stretch {
196 self.stretch
197 }
198
199 /// Set the stretch priority
200 #[inline]
201 pub fn set_stretch(&mut self, stretch: Stretch) {
202 self.stretch = stretch;
203 }
204
205 /// Set margins
206 #[inline]
207 pub fn set_margins(&mut self, margins: (u16, u16)) {
208 self.m = margins;
209 }
210
211 /// Use the maximum size of `self` and `rhs`.
212 #[must_use = "method does not modify self but returns a new value"]
213 pub fn max(self, rhs: Self) -> SizeRules {
214 SizeRules {
215 a: self.a.max(rhs.a),
216 b: self.b.max(rhs.b),
217 m: (self.m.0.max(rhs.m.0), self.m.1.max(rhs.m.1)),
218 stretch: self.stretch.max(rhs.stretch),
219 }
220 }
221
222 /// Set `self = self.max(rhs);`
223 #[inline]
224 pub fn max_with(&mut self, rhs: Self) {
225 *self = self.max(rhs);
226 }
227
228 /// Multiply the `(min, ideal)` size, including internal margins
229 ///
230 /// E.g. given `margin = margins.0 + margins.1` and factors `(2, 5)`, the
231 /// minimum size is set to `min * 2 + margin` and the ideal to
232 /// `ideal * 5 + 4 * margin`.
233 ///
234 /// Panics if either factor is 0.
235 pub fn multiply_with_margin(&mut self, min_factor: i32, ideal_factor: i32) {
236 let margin = i32::from(self.m.0).max(i32::from(self.m.1));
237 assert!(min_factor > 0);
238 assert!(ideal_factor > 0);
239 self.a = min_factor * self.a + (min_factor - 1) * margin;
240 self.b = ideal_factor * self.b + (ideal_factor - 1) * margin;
241 }
242
243 /// Append the rules for `rhs` to self
244 ///
245 /// This implies that `rhs` rules concern an element to the right of or
246 /// below self. Note that order matters since margins may be combined.
247 ///
248 /// Note also that appending [`SizeRules::EMPTY`] does include interior
249 /// margins (those between `EMPTY` and the other rules) within the result.
250 pub fn append(&mut self, rhs: SizeRules) {
251 let c: i32 = self.m.1.max(rhs.m.0).into();
252 self.a += rhs.a + c;
253 self.b += rhs.b + c;
254 self.m.1 = rhs.m.1;
255 self.stretch = self.stretch.max(rhs.stretch);
256 }
257
258 /// Return the rules for self appended by `rhs`
259 ///
260 ///
261 /// This implies that `rhs` rules concern an element to the right of or
262 /// below self. Note that order matters since margins may be combined.
263 ///
264 /// Note also that appending [`SizeRules::EMPTY`] does include interior
265 /// margins (those between `EMPTY` and the other rules) within the result.
266 #[must_use = "method does not modify self but returns a new value"]
267 pub fn appended(self, rhs: SizeRules) -> Self {
268 let c: i32 = self.m.1.max(rhs.m.0).into();
269 SizeRules {
270 a: self.a + rhs.a + c,
271 b: self.b + rhs.b + c,
272 m: (self.m.0, rhs.m.1),
273 stretch: self.stretch.max(rhs.stretch),
274 }
275 }
276
277 /// Return the result of appending all given ranges
278 pub fn sum(range: &[SizeRules]) -> SizeRules {
279 range.iter().sum()
280 }
281
282 /// Return the result of appending all given ranges (min only)
283 ///
284 /// This is a specialised version of sum: only the minimum is calculated
285 pub fn min_sum(range: &[SizeRules]) -> SizeRules {
286 if range.is_empty() {
287 return SizeRules::EMPTY;
288 }
289
290 let mut rules = range[0];
291 for r in &range[1..] {
292 rules.a += i32::from(rules.m.1.max(r.m.0)) + r.a;
293 }
294 rules.b = rules.a;
295 rules.m.1 = range[range.len() - 1].m.1;
296 rules
297 }
298
299 /// Set self to `self - x + y`, clamped to 0 or greater
300 ///
301 /// This is a specialised operation to join two spans, subtracing the
302 /// common overlap (`x`), thus margins are `self.m.0` and `y.m.1`.
303 pub fn sub_add(&mut self, x: Self, y: Self) {
304 self.a = (self.a - x.a + y.a).max(0);
305 self.b = (self.b - x.b + y.b).max(0);
306 self.m.1 = y.m.1;
307 self.stretch = self.stretch.max(y.stretch);
308 }
309
310 /// Reduce the minimum size
311 ///
312 /// If `min` is greater than the current minimum size, this has no effect.
313 #[inline]
314 pub fn reduce_min_to(&mut self, min: i32) {
315 self.a = self.a.min(min);
316 }
317
318 /// Solve a sequence of rules with even distribution
319 ///
320 /// Given a sequence of width (or height) `rules` from children and a
321 /// `target` size, find an appropriate size for each child.
322 /// The method attempts to ensure the following, in order of priority:
323 ///
324 /// 1. All widths are at least their minimum size requirement
325 /// 2. The sum of widths plus margins between items equals `target`
326 /// 3. No width exceeds its ideal size while other widths are below their
327 /// own ideal size
328 /// 4. No item with a [`Stretch`] priority less than the highest in `rules`
329 /// exceeds its ideal size
330 /// 5. When extra space is available and some widgets are below their ideal
331 /// size, extra space is divided evenly between these widgets until they
332 /// have reached their ideal size
333 /// 6. If all rules use `Stretch::None`, then widths are not increased over
334 /// their ideal size.
335 /// 7. Extra space (after all widths are at least their ideal size) is
336 /// shared equally between all widgets with the highest stretch priority
337 ///
338 /// Input requirements: `rules.len() == widths.len()`.
339 ///
340 /// This method is idempotent: if input widths already match the above
341 /// requirements then they will not be modified.
342 /// Moreover, this method attempts to ensure that if `target`
343 /// is increased, then decreased back to the previous value, this will
344 /// revert to the previous solution. (The reverse may not hold if widths
345 /// had previously been affected by a different agent.)
346 #[inline]
347 pub fn solve_widths(widths: &mut [i32], rules: &[Self], target: i32) {
348 let total = SizeRules::sum(rules);
349 Self::solve_widths_with_total(widths, rules, total, target);
350 }
351
352 /// Solve a sequence of rules
353 ///
354 /// This is the same as [`SizeRules::solve_widths`] except that the rules' sum
355 /// is passed explicitly.
356 ///
357 /// Input requirements:
358 /// - `rules.len() == widths.len()`
359 /// - `SizeRules::sum(rules) == total`
360 pub fn solve_widths_with_total(widths: &mut [i32], rules: &[Self], total: Self, target: i32) {
361 Self::solve_widths_impl(widths, rules, total, target, Even)
362 }
363
364 /// Solve a sequence of rules with priority distribution
365 ///
366 /// Given a sequence of width (or height) `rules` from children and a
367 /// `target` size, find an appropriate size for each child.
368 /// The method attempts to ensure that:
369 ///
370 /// 1. All widths are at least their minimum size requirement
371 /// 2. The sum of widths plus margins between items equals `target`
372 /// 3. No width exceeds its ideal size while other widths are below their
373 /// own ideal size
374 /// 4. No item with a [`Stretch`] priority less than the highest in `rules`
375 /// exceeds its ideal size
376 /// 5. When extra space is available and some widgets are below their ideal
377 /// size, extra space is divided evenly between these widgets until they
378 /// have reached their ideal size
379 /// 6. If all rules use `Stretch::None`, then widths are not increased over
380 /// their ideal size.
381 /// 7. Extra space (after all widths are at least their ideal size) is
382 /// allocated to the first (or `last`) item with the highest stretch
383 /// priority
384 ///
385 /// Input requirements: `rules.len() == widths.len()`.
386 ///
387 /// This method is idempotent: given satisfactory input widths, these will
388 /// be preserved. Moreover, this method attempts to ensure that if target
389 /// is increased, then decreased back to the previous value, this will
390 /// revert to the previous solution. (The reverse may not hold if widths
391 /// had previously been affected by a different agent.)
392 #[allow(clippy::collapsible_if, clippy::needless_return)]
393 pub fn solve_widths_with_priority(widths: &mut [i32], rules: &[Self], target: i32, last: bool) {
394 let total = SizeRules::sum(rules);
395 Self::solve_widths_impl(widths, rules, total, target, Prioritize { last })
396 }
397
398 #[allow(
399 clippy::comparison_chain,
400 clippy::needless_range_loop,
401 clippy::needless_return
402 )]
403 #[inline(always)]
404 fn solve_widths_impl(
405 out: &mut [i32],
406 rules: &[Self],
407 total: Self,
408 target: i32,
409 pri: impl SolvePriority,
410 ) {
411 #[allow(non_snake_case)]
412 let N = out.len();
413 assert_eq!(rules.len(), N);
414 if N == 0 {
415 return;
416 }
417 #[cfg(debug_assertions)]
418 {
419 assert!(out.iter().all(|w| *w >= 0));
420 let mut sum = SizeRules::sum(rules);
421 sum.m = total.m; // external margins are unimportant here
422 assert_eq!(sum, total);
423 }
424
425 if target <= total.a {
426 // Below minimum size: ignore target and use minimum sizes.
427 for n in 0..N {
428 out[n] = rules[n].a;
429 }
430 return;
431 }
432 let highest_stretch = total.stretch;
433
434 // All minimum sizes can be met.
435 out[0] = out[0].max(rules[0].a);
436 let mut margin_sum = 0;
437 let mut sum = out[0];
438 let mut dist_under_b = (rules[0].b - out[0]).max(0);
439 let mut dist_over_b = (out[0] - rules[0].b).max(0);
440 let mut dist_over_b_lower_stretch = 0;
441 if rules[0].stretch < highest_stretch {
442 dist_over_b_lower_stretch = dist_over_b;
443 }
444 for i in 1..N {
445 out[i] = out[i].max(rules[i].a);
446 margin_sum += i32::from((rules[i - 1].m.1).max(rules[i].m.0));
447 sum += out[i];
448 dist_under_b += (rules[i].b - out[i]).max(0);
449 let over = (out[i] - rules[i].b).max(0);
450 dist_over_b += over;
451 if rules[i].stretch < highest_stretch {
452 dist_over_b_lower_stretch += over;
453 }
454 }
455 let target = target - margin_sum;
456
457 // Shrink: sum - target
458 // + dist_under_b because this lets us increase targets under b
459 let mut to_shrink = sum + dist_under_b - target;
460 if dist_over_b <= to_shrink {
461 // Ensure nothing exceeds the ideal and consider shrinking anything over min:
462 let mut targets = Targets::new();
463 sum = 0;
464 for i in 0..N {
465 out[i] = out[i].min(rules[i].b);
466 sum += out[i];
467 if out[i] > rules[i].a {
468 targets.push(i.cast());
469 }
470 }
471
472 if sum > target {
473 let avail = target + margin_sum - total.a;
474 reduce_targets(out, &mut targets, |i| rules[i].a, avail);
475 debug_assert_eq!(target, (0..N).fold(0, |x, i| x + out[i]));
476 return;
477 }
478 } else if dist_over_b_lower_stretch >= to_shrink {
479 // Ensure only highest-stretch-priority items exceed the ideal:
480 sum = 0;
481 for i in 0..N {
482 if rules[i].stretch < highest_stretch {
483 out[i] = out[i].min(rules[i].b);
484 }
485 sum += out[i];
486 }
487 } else if to_shrink > 0 {
488 // we do not go below ideal, and will keep at least one above
489 if let Some(prioritize_last) = pri.priority() {
490 if !prioritize_last {
491 for i in 0..N {
492 if out[i] > rules[i].b {
493 let decr = to_shrink.min((out[i] - rules[i].b).max(0));
494 to_shrink -= decr;
495 out[i] -= decr;
496 }
497 }
498 } else {
499 for i in (0..N).rev() {
500 if out[i] > rules[i].b {
501 let decr = to_shrink.min((out[i] - rules[i].b).max(0));
502 to_shrink -= decr;
503 out[i] -= decr;
504 }
505 }
506 }
507 debug_assert_eq!(to_shrink, 0);
508 } else {
509 // calculate distance over for each stretch priority
510 const MAX_STRETCH: usize = Stretch::Maximize as usize + 1;
511 let mut dists = [0; MAX_STRETCH];
512 for i in 0..N {
513 dists[rules[i].stretch as usize] += (out[i] - rules[i].b).max(0);
514 }
515 let mut accum = 0;
516 let mut highest_affected = 0;
517 for i in 0..MAX_STRETCH {
518 highest_affected = i;
519 dists[i] += accum;
520 accum = dists[i];
521 if accum >= to_shrink {
522 break;
523 }
524 }
525
526 sum = 0;
527 let mut avail = 0;
528 let mut targets = Targets::new();
529 for i in 0..N {
530 let stretch = rules[i].stretch as usize;
531 if out[i] > rules[i].b {
532 let over = (out[i] - rules[i].b).max(0);
533 if stretch < highest_affected {
534 out[i] = rules[i].b;
535 } else if stretch == highest_affected {
536 avail += over;
537 targets.push(i.cast());
538 }
539 }
540 sum += out[i];
541 }
542 let to_shrink = sum + dist_under_b - target;
543 if 0 < to_shrink && to_shrink <= avail {
544 avail -= to_shrink;
545 reduce_targets(out, &mut targets, |i| rules[i].b, avail);
546 sum -= to_shrink;
547 }
548 }
549 }
550
551 if sum < target {
552 if target - sum >= dist_under_b {
553 // We can increase all sizes to their ideal. Since this may
554 // not be enough, we also count the number with highest
555 // stretch factor and how far these are over their ideal.
556 // If highest stretch is None, do not expand beyond ideal.
557 sum = 0;
558 if let Some(prioritize_last) = pri.priority() {
559 let mut pick = None;
560 for i in 0..N {
561 out[i] = out[i].max(rules[i].b);
562 sum += out[i];
563 if highest_stretch > Stretch::None && rules[i].stretch == highest_stretch {
564 if prioritize_last || pick.is_none() {
565 pick = Some(i);
566 }
567 }
568 }
569
570 if let Some(i) = pick {
571 out[i] += target - sum;
572 }
573 } else {
574 let mut targets = Targets::new();
575 let mut over = 0;
576 for i in 0..N {
577 out[i] = out[i].max(rules[i].b);
578 sum += out[i];
579 if highest_stretch > Stretch::None && rules[i].stretch == highest_stretch {
580 over += out[i] - rules[i].b;
581 targets.push(i.cast());
582 }
583 }
584
585 let avail = target - sum + over;
586 increase_targets(out, &mut targets, |i| rules[i].b, avail);
587 }
588
589 debug_assert!(target >= (0..N).fold(0, |x, i| x + out[i]));
590 return;
591 } else {
592 // We cannot increase sizes as far as their ideal: instead
593 // increase over minimum size and under ideal
594 let mut targets = Targets::new();
595 let mut over = 0;
596 for i in 0..N {
597 if out[i] < rules[i].b {
598 over += out[i] - rules[i].a;
599 targets.push(i.cast());
600 }
601 }
602
603 let avail = target - sum + over;
604 increase_targets(out, &mut targets, |i| rules[i].a, avail);
605 }
606 }
607
608 debug_assert_eq!(
609 target,
610 (0..N).fold(0, |x, i| x + out[i]),
611 "widths {out:?} not equal to target {target}"
612 );
613 }
614
615 /// Ensure at least one of `rules` has stretch priority at least as high as self
616 ///
617 /// The stretch policies are increased according to the highest `scores`.
618 /// Required: `rules.len() == scores.len()`.
619 pub(crate) fn distribute_stretch_over_by(self, rules: &mut [Self], scores: &[u32]) {
620 assert_eq!(rules.len(), scores.len());
621 if rules.iter().any(|r| r.stretch >= self.stretch) {
622 return;
623 }
624
625 let highest = scores.iter().cloned().max().unwrap_or(0);
626 for i in 0..rules.len() {
627 if scores[i] == highest {
628 rules[i].stretch = self.stretch;
629 }
630 }
631 }
632
633 /// Adjust a sequence of `rules` to ensure that the total is at least `self`
634 ///
635 /// This is a cheap hack used by grids to ensure that cell spans are sufficiently large.
636 pub(crate) fn distribute_span_over(self, rules: &mut [Self]) {
637 let len = rules.len();
638 assert!(len > 0);
639 let len1 = len - 1;
640 let sum: SizeRules = rules.iter().sum();
641
642 rules[0].m.0 = rules[0].m.0.max(self.m.0);
643 rules[len1].m.1 = rules[len1].m.1.max(self.m.1);
644
645 let excess_a = (self.a - sum.a).max(0);
646 let excess_b = (self.b - sum.b).max(0);
647 if excess_a == 0 && excess_b == 0 {
648 return;
649 }
650
651 let highest_stretch = sum.stretch;
652 let count = i32::conv(
653 (0..len)
654 .filter(|i| rules[*i].stretch == highest_stretch)
655 .count(),
656 );
657 let a_per_elt = excess_a / count;
658 let b_per_elt = excess_b / count;
659 let mut extra_a = excess_a - count * a_per_elt;
660 let mut extra_b = excess_b - count * b_per_elt;
661 for rules in rules.iter_mut() {
662 if rules.stretch == highest_stretch {
663 rules.a += a_per_elt;
664 rules.b += b_per_elt;
665 if extra_a > 0 {
666 rules.a += 1;
667 extra_a -= 1;
668 }
669 if extra_b > 0 {
670 rules.b += 1;
671 extra_b -= 1;
672 }
673 if highest_stretch < self.stretch {
674 rules.stretch = self.stretch;
675 }
676 }
677 }
678 }
679}
680
681trait SolvePriority: std::fmt::Debug {
682 /// Are we giving priority to some widget when increasing/decreasing size?
683 ///
684 /// - `None` means even distribution
685 /// - `Some(true)` means give priority to the *last* item
686 /// - `Some(false)` means give priority to the *first* item
687 fn priority(&self) -> Option<bool>;
688}
689
690#[derive(Debug)]
691struct Even;
692impl SolvePriority for Even {
693 #[inline]
694 fn priority(&self) -> Option<bool> {
695 None
696 }
697}
698
699#[derive(Debug)]
700struct Prioritize {
701 last: bool,
702}
703impl SolvePriority for Prioritize {
704 #[inline]
705 fn priority(&self) -> Option<bool> {
706 Some(self.last)
707 }
708}
709
710/// Return the sum over a sequence of rules, assuming these are ordered
711///
712/// Uses [`SizeRules::appended`] on all rules in sequence.
713impl Sum for SizeRules {
714 fn sum<I: Iterator<Item = Self>>(mut iter: I) -> Self {
715 if let Some(first) = iter.next() {
716 iter.fold(first, |x, y| x.appended(y))
717 } else {
718 SizeRules::EMPTY
719 }
720 }
721}
722
723/// Return the sum over a sequence of rules, assuming these are ordered
724///
725/// Uses [`SizeRules::appended`] on all rules in sequence.
726impl<'a> Sum<&'a Self> for SizeRules {
727 fn sum<I: Iterator<Item = &'a Self>>(mut iter: I) -> Self {
728 if let Some(first) = iter.next() {
729 iter.fold(*first, |x, y| x.appended(*y))
730 } else {
731 SizeRules::EMPTY
732 }
733 }
734}
735
736type Targets = SmallVec<[i32; 16]>;
737
738fn increase_targets(
739 out: &mut [i32],
740 targets: &mut Targets,
741 base: impl Fn(usize) -> i32,
742 mut avail: i32,
743) {
744 if targets.is_empty() {
745 return;
746 }
747
748 // Calculate ceiling above which sizes will not be increased
749 let mut any_removed = true;
750 while any_removed {
751 any_removed = false;
752 let count = i32::conv(targets.len());
753 let ceil = (avail + count - 1) / count; // round up
754 let mut t = 0;
755 while t < targets.len() {
756 let i = usize::conv(targets[t]);
757 if out[i] >= base(i) + ceil {
758 avail -= out[i] - base(i);
759 targets.remove(t);
760 any_removed = true;
761 continue;
762 }
763 t += 1;
764 }
765 if targets.is_empty() {
766 return;
767 }
768 }
769
770 // Since no more are removed by a ceiling, all remaining
771 // targets will be (approx) equal. Arbitrarily distribute
772 // rounding errors to the first ones.
773 let count = i32::conv(targets.len());
774 let per_elt = avail / count;
775 let extra = usize::conv(avail - per_elt * count);
776 assert!(extra < targets.len());
777 for t in 0..extra {
778 let i = usize::conv(targets[t]);
779 out[i] = base(i) + per_elt + 1;
780 }
781 for t in extra..targets.len() {
782 let i = usize::conv(targets[t]);
783 out[i] = base(i) + per_elt;
784 }
785}
786
787/// Reduce targets such that the sum over `i in targets` of `out[i] + base(i)` is `avail`.
788///
789/// Assumption: for `i in targets`, each `out[i] >= base(i)`.
790fn reduce_targets<F: Fn(usize) -> i32>(
791 out: &mut [i32],
792 targets: &mut Targets,
793 base: F,
794 mut avail: i32,
795) {
796 debug_assert!(avail >= 0);
797 // We can ignore everything below the floor
798 let mut any_removed = true;
799 while any_removed {
800 any_removed = false;
801 let floor = avail / i32::conv(targets.len());
802 let mut t = 0;
803 while t < targets.len() {
804 let i = usize::conv(targets[t]);
805 let base = base(i);
806 debug_assert!(out[i] >= base);
807 if out[i] <= base + floor {
808 avail -= out[i] - base;
809 targets.remove(t);
810 any_removed = true;
811 continue;
812 }
813 t += 1;
814 }
815 }
816
817 // All targets remaining must be reduced to floor, bar rounding errors
818 let floor = avail / i32::conv(targets.len());
819 let extra = usize::conv(avail) - usize::conv(floor) * targets.len();
820 assert!(extra < targets.len());
821 for t in 0..extra {
822 let i = usize::conv(targets[t]);
823 out[i] = base(i) + floor + 1;
824 }
825 for t in extra..targets.len() {
826 let i = usize::conv(targets[t]);
827 out[i] = base(i) + floor;
828 }
829}