1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License in the LICENSE-APACHE file or at:
// https://www.apache.org/licenses/LICENSE-2.0
//! [`SizeRules`] type
use smallvec::SmallVec;
use std::iter::Sum;
use super::{Margins, Stretch};
use crate::cast::{Cast, CastFloat, Conv};
use crate::dir::Directional;
use crate::geom::Size;
// for doc use
#[allow(unused)]
use super::FrameRules;
#[allow(unused)]
use crate::theme::SizeMgr;
/// Widget sizing information
///
/// This is the return value of [`crate::Layout::size_rules`] and is used to
/// describe size and margin requirements for widgets. This type only concerns
/// size requirements along a *single* axis.
///
/// All units are in pixels. Sizes usually come directly from [`SizeMgr`]
/// or from a fixed quantity multiplied by [`SizeMgr::scale_factor`].
///
/// ### Sizes
///
/// The widget size model is simple: a rectangular box, plus a margin on each
/// side. The `SizeRules` type represents expectations along a single axis:
///
/// - The minimum acceptable size (almost always met)
/// - The ideal size (often the same size; this distinction is most useful for
/// scrollable regions which are *ideally* large enough not to require
/// scrolling, but can be much smaller)
/// - A [`Stretch`] priority, used to prioritize allocation of excess space
///
/// Note that `Stretch::None` does not *prevent* stretching, but simply states
/// that it is undesired (lowest priority). Actually preventing stretching
/// requires alignment.
///
/// ### Margins
///
/// Required margin sizes are handled separately for each side of a widget.
/// Since [`SizeRules`] concerns only one axis, it stores only two margin sizes:
/// "pre" (left/top) and "post" (right/bottom). These are stored as `u16` values
/// on the assumption that no margin need exceed 65536.
///
/// When widgets are placed next to each other, their margins may be combined;
/// e.g. if a widget with margin of 6px is followed by another with margin 2px,
/// the required margin between the two is the maximum, 6px.
///
/// Only the layout engine and parent widgets need consider margins (beyond
/// their specification). For these cases, one needs to be aware that due to
/// margin-merging behaviour, one cannot simply "add" two `SizeRules`. Instead,
/// when placing one widget next to another, use [`SizeRules::append`] or
/// [`SizeRules::appended`]; when placing a widget within a frame, use
/// [`FrameRules::surround`].
/// When calculating the size of a sequence of
/// widgets, one may use the [`Sum`] implementation (this assumes that the
/// sequence is in left-to-right or top-to-bottom order).
///
/// ### Alignment
///
/// `SizeRules` concerns calculations of size requirements, which the layout
/// engine uses to assign each widget a [`Rect`]; it is up to the widget itself
/// to either fill this rect or align itself within the given space.
/// See [`crate::Layout::set_rect`] for more information.
///
/// For widgets with a stretch priority of [`Stretch::None`], it is still
/// possible for layout code to assign a size larger than the preference. It is
/// up to the widget to align itself within this space: see
/// [`crate::Layout::set_rect`] and [`crate::layout::AlignHints`].
///
/// [`Rect`]: crate::geom::Rect
#[derive(Copy, Clone, Debug, Default, PartialEq, Eq)]
pub struct SizeRules {
// minimum good size
a: i32,
// ideal size; b >= a
b: i32,
// (pre, post) margins
m: (u16, u16),
stretch: Stretch,
}
impl SizeRules {
/// Empty (zero size) widget
///
/// Warning: appending another size to `EMPTY` *does* include margins
/// even though `EMPTY` itself has zero size. However, `EMPTY` itself has
/// zero-size margins, so this only affects appending an `EMPTY` with a
/// non-empty `SizeRules`.
pub const EMPTY: Self = SizeRules::empty(Stretch::None);
/// Empty space with the given stretch priority
///
/// See warning on [`SizeRules::EMPTY`].
#[inline]
pub const fn empty(stretch: Stretch) -> Self {
SizeRules {
a: 0,
b: 0,
m: (0, 0),
stretch,
}
}
/// A fixed size with given `(pre, post)` margins
#[inline]
pub fn fixed(size: i32, margins: (u16, u16)) -> Self {
debug_assert!(size >= 0);
SizeRules {
a: size,
b: size,
m: margins,
stretch: Stretch::None,
}
}
/// A fixed size with given (symmetric) `margin`
#[inline]
pub fn fixed_splat(size: i32, margin: u16) -> Self {
Self::fixed(size, (margin, margin))
}
/// A fixed size, scaled from virtual pixels
///
/// This is a shortcut to [`SizeRules::fixed`] using virtual-pixel sizes
/// and a scale factor. It also assumes both margins are equal.
#[inline]
pub fn fixed_scaled(size: f32, margins: f32, scale_factor: f32) -> Self {
debug_assert!(size >= 0.0 && margins >= 0.0);
let size = (scale_factor * size).cast_nearest();
let m = (scale_factor * margins).cast_nearest();
SizeRules::fixed(size, (m, m))
}
/// Construct rules from given data
#[inline]
pub fn extract<D: Directional>(dir: D, size: Size, margins: Margins, stretch: Stretch) -> Self {
let size = size.extract(dir);
let m = margins.extract(dir);
SizeRules::new(size, size, m, stretch)
}
/// Construct fixed-size rules from given data
#[inline]
pub fn extract_fixed<D: Directional>(dir: D, size: Size, margin: Margins) -> Self {
SizeRules::extract(dir, size, margin, Stretch::None)
}
/// Construct with custom rules
///
/// Region size should meet the given `min`-imum size and has a given
/// `ideal` size, plus a given `stretch` priority.
///
/// Expected: `ideal >= min` (if not, ideal is clamped to min).
#[inline]
pub fn new(min: i32, ideal: i32, margins: (u16, u16), stretch: Stretch) -> Self {
debug_assert!(0 <= min && 0 <= ideal);
SizeRules {
a: min,
b: ideal.max(min),
m: margins,
stretch,
}
}
/// Set stretch factor, inline
#[inline]
pub fn with_stretch(self, stretch: Stretch) -> Self {
Self::new(self.a, self.b, self.m, stretch)
}
/// Get the minimum size
#[inline]
pub fn min_size(self) -> i32 {
self.a
}
/// Get the ideal size
#[inline]
pub fn ideal_size(self) -> i32 {
self.b
}
/// Get the `(pre, post)` margin sizes
#[inline]
pub fn margins(self) -> (u16, u16) {
self.m
}
/// Get the `(pre, post)` margin sizes, cast to `i32`
#[inline]
pub fn margins_i32(self) -> (i32, i32) {
(self.m.0.into(), self.m.1.into())
}
/// Get the stretch priority
#[inline]
pub fn stretch(self) -> Stretch {
self.stretch
}
/// Set the stretch priority
#[inline]
pub fn set_stretch(&mut self, stretch: Stretch) {
self.stretch = stretch;
}
/// Set margins
#[inline]
pub fn set_margins(&mut self, margins: (u16, u16)) {
self.m = margins;
}
/// Set margins to max of own margins and given margins
pub fn include_margins(&mut self, margins: (u16, u16)) {
self.m.0 = self.m.0.max(margins.0);
self.m.1 = self.m.1.max(margins.1);
}
/// Use the maximum size of `self` and `rhs`.
#[inline]
#[must_use = "method does not modify self but returns a new value"]
pub fn max(self, rhs: Self) -> SizeRules {
SizeRules {
a: self.a.max(rhs.a),
b: self.b.max(rhs.b),
m: (self.m.0.max(rhs.m.0), self.m.1.max(rhs.m.1)),
stretch: self.stretch.max(rhs.stretch),
}
}
/// Set `self = self.max(rhs);`
#[inline]
pub fn max_with(&mut self, rhs: Self) {
*self = self.max(rhs);
}
/// Multiply the `(min, ideal)` size, including internal margins
///
/// E.g. given `margin = margins.0 + margins.1` and factors `(2, 5)`, the
/// minimum size is set to `min * 2 + margin` and the ideal to
/// `ideal * 5 + 4 * margin`.
///
/// Panics if either factor is 0.
pub fn multiply_with_margin(&mut self, min_factor: i32, ideal_factor: i32) {
let margin = i32::from(self.m.0).max(i32::from(self.m.1));
assert!(min_factor > 0);
assert!(ideal_factor > 0);
self.a = min_factor * self.a + (min_factor - 1) * margin;
self.b = ideal_factor * self.b + (ideal_factor - 1) * margin;
}
/// Append the rules for `rhs` to self
///
/// This implies that `rhs` rules concern an element to the right of or
/// below self. Note that order matters since margins may be combined.
///
/// Note also that appending [`SizeRules::EMPTY`] does include interior
/// margins (those between `EMPTY` and the other rules) within the result.
pub fn append(&mut self, rhs: SizeRules) {
let c: i32 = self.m.1.max(rhs.m.0).into();
self.a += rhs.a + c;
self.b += rhs.b + c;
self.m.1 = rhs.m.1;
self.stretch = self.stretch.max(rhs.stretch);
}
/// Return the rules for self appended by `rhs`
///
///
/// This implies that `rhs` rules concern an element to the right of or
/// below self. Note that order matters since margins may be combined.
///
/// Note also that appending [`SizeRules::EMPTY`] does include interior
/// margins (those between `EMPTY` and the other rules) within the result.
#[inline]
#[must_use = "method does not modify self but returns a new value"]
pub fn appended(self, rhs: SizeRules) -> Self {
let c: i32 = self.m.1.max(rhs.m.0).into();
SizeRules {
a: self.a + rhs.a + c,
b: self.b + rhs.b + c,
m: (self.m.0, rhs.m.1),
stretch: self.stretch.max(rhs.stretch),
}
}
/// Return the result of appending all given ranges
pub fn sum(range: &[SizeRules]) -> SizeRules {
range.iter().sum()
}
/// Return the result of appending all given ranges (min only)
///
/// This is a specialised version of sum: only the minimum is calculated
pub fn min_sum(range: &[SizeRules]) -> SizeRules {
if range.is_empty() {
return SizeRules::EMPTY;
}
let mut rules = range[0];
for r in &range[1..] {
rules.a += i32::from(rules.m.1.max(r.m.0)) + r.a;
}
rules.b = rules.a;
rules.m.1 = range[range.len() - 1].m.1;
rules
}
/// Set self to `self - x + y`, clamped to 0 or greater
///
/// This is a specialised operation to join two spans, subtracing the
/// common overlap (`x`), thus margins are `self.m.0` and `y.m.1`.
pub fn sub_add(&mut self, x: Self, y: Self) {
self.a = (self.a - x.a + y.a).max(0);
self.b = (self.b - x.b + y.b).max(0);
self.m.1 = y.m.1;
self.stretch = self.stretch.max(y.stretch);
}
/// Reduce the minimum size
///
/// If `min` is greater than the current minimum size, this has no effect.
#[inline]
pub fn reduce_min_to(&mut self, min: i32) {
self.a = self.a.min(min);
}
/// Solve a sequence of rules
///
/// Given a sequence of width (or height) `rules` from children and a
/// `target` size, find an appropriate size for each child.
/// The method attempts to ensure that:
///
/// - All widths are at least their minimum size requirement
/// - The sum of widths plus margins between items equals `target`, if
/// all minimum sizes are met
/// - All widths are at least their ideal size requirement, if this can be
/// met without decreasing any widths
/// - Excess space is divided evenly among members with the highest
/// stretch priority
///
/// Input requirements: `rules.len() == out.len()`.
///
/// This method is idempotent: given satisfactory input widths, these will
/// be preserved. Moreover, this method attempts to ensure that if target
/// is increased, then decreased back to the previous value, this will
/// revert to the previous solution. (The reverse may not hold if widths
/// had previously been affected by a different agent.)
#[cfg_attr(not(feature = "internal_doc"), doc(hidden))]
#[cfg_attr(doc_cfg, doc(cfg(internal_doc)))]
pub fn solve_seq(out: &mut [i32], rules: &[Self], target: i32) {
let total = SizeRules::sum(rules);
Self::solve_seq_total(out, rules, total, target);
}
/// Solve a sequence of rules
///
/// This is the same as [`SizeRules::solve_seq`] except that the rules' sum
/// is passed explicitly.
#[cfg_attr(not(feature = "internal_doc"), doc(hidden))]
#[cfg_attr(doc_cfg, doc(cfg(internal_doc)))]
#[allow(
clippy::comparison_chain,
clippy::needless_range_loop,
clippy::needless_return
)]
#[inline]
pub fn solve_seq_total(out: &mut [i32], rules: &[Self], total: Self, target: i32) {
type Targets = SmallVec<[i32; 16]>;
#[allow(non_snake_case)]
let N = out.len();
assert_eq!(rules.len(), N);
if N == 0 {
return;
}
#[cfg(debug_assertions)]
{
assert!(out.iter().all(|w| *w >= 0));
let mut sum = SizeRules::sum(rules);
sum.m = total.m; // external margins are unimportant here
assert_eq!(sum, total);
}
if target > total.a {
// All minimum sizes can be met.
out[0] = out[0].max(rules[0].a);
let mut margin_sum = 0;
let mut sum = out[0];
let mut dist_under_b = (rules[0].b - out[0]).max(0);
let mut dist_over_b = (out[0] - rules[0].b).max(0);
for i in 1..N {
out[i] = out[i].max(rules[i].a);
margin_sum += i32::from((rules[i - 1].m.1).max(rules[i].m.0));
sum += out[i];
dist_under_b += (rules[i].b - out[i]).max(0);
dist_over_b += (out[i] - rules[i].b).max(0);
}
let target = target - margin_sum;
if sum == target {
return;
} else if sum < target {
fn increase_targets<F: Fn(usize) -> i32>(
out: &mut [i32],
targets: &mut Targets,
base: F,
mut avail: i32,
) {
if targets.is_empty() {
return;
}
// Calculate ceiling above which sizes will not be increased
let mut any_removed = true;
while any_removed {
any_removed = false;
let count = i32::conv(targets.len());
let ceil = (avail + count - 1) / count; // round up
let mut t = 0;
while t < targets.len() {
let i = usize::conv(targets[t]);
if out[i] >= base(i) + ceil {
avail -= out[i] - base(i);
targets.remove(t);
any_removed = true;
continue;
}
t += 1;
}
if targets.is_empty() {
return;
}
}
// Since no more are removed by a ceiling, all remaining
// targets will be (approx) equal. Arbitrarily distribute
// rounding errors to the first ones.
let count = i32::conv(targets.len());
let per_elt = avail / count;
let extra = usize::conv(avail - per_elt * count);
assert!(extra < targets.len());
for t in 0..extra {
let i = usize::conv(targets[t]);
out[i] = base(i) + per_elt + 1;
}
for t in extra..targets.len() {
let i = usize::conv(targets[t]);
out[i] = base(i) + per_elt;
}
}
if target - sum >= dist_under_b {
// We can increase all sizes to their ideal. Since this may
// not be enough, we also count the number with highest
// stretch factor and how far these are over their ideal.
// If highest stretch is None, do not expand beyond ideal.
sum = 0;
let highest_stretch = total.stretch;
let mut targets = Targets::new();
let mut over = 0;
for i in 0..N {
out[i] = out[i].max(rules[i].b);
sum += out[i];
if rules[i].stretch == highest_stretch {
over += out[i] - rules[i].b;
targets.push(i.cast());
}
}
let avail = target - sum + over;
increase_targets(out, &mut targets, |i| rules[i].b, avail);
debug_assert!(target >= (0..N).fold(0, |x, i| x + out[i]));
} else {
// We cannot increase sizes as far as their ideal: instead
// increase over minimum size and under ideal
let mut targets = Targets::new();
let mut over = 0;
for i in 0..N {
if out[i] < rules[i].b {
over += out[i] - rules[i].a;
targets.push(i.cast());
}
}
let avail = target - sum + over;
increase_targets(out, &mut targets, |i| rules[i].a, avail);
debug_assert_eq!(target, (0..N).fold(0, |x, i| x + out[i]));
}
} else {
// sum > target: we need to decrease some sizes
fn reduce_targets<F: Fn(usize) -> i32>(
out: &mut [i32],
targets: &mut Targets,
base: F,
mut avail: i32,
) {
// We can ignore everything below the floor
let mut any_removed = true;
while any_removed {
any_removed = false;
let floor = avail / i32::conv(targets.len());
let mut t = 0;
while t < targets.len() {
let i = usize::conv(targets[t]);
if out[i] <= base(i) + floor {
avail -= out[i] - base(i);
targets.remove(t);
any_removed = true;
continue;
}
t += 1;
}
}
// All targets remaining must be reduced to floor, bar rounding errors
let floor = avail / i32::conv(targets.len());
let extra = usize::conv(avail) - usize::conv(floor) * targets.len();
assert!(extra < targets.len());
for t in 0..extra {
let i = usize::conv(targets[t]);
out[i] = base(i) + floor + 1;
}
for t in extra..targets.len() {
let i = usize::conv(targets[t]);
out[i] = base(i) + floor;
}
}
if dist_over_b > sum - target {
// we do not go below ideal, and will keep at least one above
// calculate distance over for each stretch priority
const MAX_STRETCH: usize = Stretch::Maximize as usize + 1;
let mut dists = [0; MAX_STRETCH];
for i in 0..N {
dists[rules[i].stretch as usize] += (out[i] - rules[i].b).max(0);
}
let mut accum = 0;
let mut highest_affected = 0;
for i in 0..MAX_STRETCH {
highest_affected = i;
dists[i] += accum;
accum = dists[i];
if accum >= sum - target {
break;
}
}
let mut avail = 0;
let mut targets = Targets::new();
for i in 0..N {
let stretch = rules[i].stretch as usize;
if out[i] > rules[i].b {
if stretch < highest_affected {
sum -= out[i] - rules[i].b;
out[i] = rules[i].b;
} else if stretch == highest_affected {
avail += out[i] - rules[i].b;
targets.push(i.cast());
}
}
}
if sum > target {
avail = avail + target - sum;
reduce_targets(out, &mut targets, |i| rules[i].b, avail);
}
debug_assert_eq!(target, (0..N).fold(0, |x, i| x + out[i]));
} else {
// No size can exceed the ideal
// First, ensure nothing exceeds the ideal:
let mut targets = Targets::new();
sum = 0;
for i in 0..N {
out[i] = out[i].min(rules[i].b);
sum += out[i];
if out[i] > rules[i].a {
targets.push(i.cast());
}
}
if sum > target {
let avail = target + margin_sum - total.a;
reduce_targets(out, &mut targets, |i| rules[i].a, avail);
}
debug_assert_eq!(target, (0..N).fold(0, |x, i| x + out[i]));
}
}
} else {
// Below minimum size: ignore target and use minimum sizes.
for n in 0..N {
out[n] = rules[n].a;
}
}
}
/// Ensure at least one of `rules` has stretch priority at least as high as self
///
/// The stretch policies are increased according to the heighest `scores`.
/// Required: `rules.len() == scores.len()`.
pub(crate) fn distribute_stretch_over_by(self, rules: &mut [Self], scores: &[u32]) {
assert_eq!(rules.len(), scores.len());
if rules.iter().any(|r| r.stretch >= self.stretch) {
return;
}
let highest = scores.iter().cloned().max().unwrap_or(0);
for i in 0..rules.len() {
if scores[i] == highest {
rules[i].stretch = self.stretch;
}
}
}
/// Adjust a sequence of `rules` to ensure that the total is at least `self`
///
/// This is used by grids to ensure that cell spans are sufficiently large.
pub fn distribute_span_over(self, rules: &mut [Self]) {
let len = rules.len();
assert!(len > 0);
let len1 = len - 1;
let sum: SizeRules = rules.iter().sum();
rules[0].m.0 = rules[0].m.0.max(self.m.0);
rules[len1].m.1 = rules[len1].m.1.max(self.m.1);
let excess_a = (self.a - sum.a).max(0);
let excess_b = (self.b - sum.b).max(0);
if excess_a == 0 && excess_b == 0 {
return;
}
let highest_stretch = sum.stretch;
let count = i32::conv(
(0..len)
.filter(|i| rules[*i].stretch == highest_stretch)
.count(),
);
let a_per_elt = excess_a / count;
let b_per_elt = excess_b / count;
let mut extra_a = excess_a - count * a_per_elt;
let mut extra_b = excess_b - count * b_per_elt;
for rules in rules.iter_mut() {
if rules.stretch == highest_stretch {
rules.a += a_per_elt;
rules.b += b_per_elt;
if extra_a > 0 {
rules.a += 1;
extra_a -= 1;
}
if extra_b > 0 {
rules.b += 1;
extra_b -= 1;
}
if highest_stretch < self.stretch {
rules.stretch = self.stretch;
}
}
}
}
}
/// Return the sum over a sequence of rules, assuming these are ordered
///
/// Uses [`SizeRules::appended`] on all rules in sequence.
impl Sum for SizeRules {
fn sum<I: Iterator<Item = Self>>(mut iter: I) -> Self {
if let Some(first) = iter.next() {
iter.fold(first, |x, y| x.appended(y))
} else {
SizeRules::EMPTY
}
}
}
/// Return the sum over a sequence of rules, assuming these are ordered
///
/// Uses [`SizeRules::appended`] on all rules in sequence.
impl<'a> Sum<&'a Self> for SizeRules {
fn sum<I: Iterator<Item = &'a Self>>(mut iter: I) -> Self {
if let Some(first) = iter.next() {
iter.fold(*first, |x, y| x.appended(*y))
} else {
SizeRules::EMPTY
}
}
}