kalosm_language_model/openai/
embedding.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
use super::{NoOpenAIAPIKeyError, OpenAICompatibleClient};
use crate::{Embedder, Embedding, ModelBuilder};
use kalosm_model_types::ModelLoadingProgress;
use serde::Deserialize;
use std::future::Future;
use thiserror::Error;

/// An embedder that uses OpenAI's API for the a remote embedding model.
#[derive(Debug)]
pub struct OpenAICompatibleEmbeddingModel {
    model: String,
    client: OpenAICompatibleClient,
}

impl OpenAICompatibleEmbeddingModel {
    /// Create a new builder for [`OpenAICompatibleEmbeddingModel`]
    pub fn builder() -> OpenAICompatibleEmbeddingModelBuilder<false> {
        OpenAICompatibleEmbeddingModelBuilder::new()
    }
}

/// A builder for an openai compatible embedding model.
#[derive(Debug, Default)]
pub struct OpenAICompatibleEmbeddingModelBuilder<const WITH_NAME: bool> {
    model: Option<String>,
    client: OpenAICompatibleClient,
}

impl OpenAICompatibleEmbeddingModelBuilder<false> {
    /// Creates a new builder
    pub fn new() -> Self {
        Self {
            model: None,
            client: Default::default(),
        }
    }
}

impl<const WITH_NAME: bool> OpenAICompatibleEmbeddingModelBuilder<WITH_NAME> {
    /// Set the name of the model to use.
    pub fn with_model(self, model: impl ToString) -> OpenAICompatibleEmbeddingModelBuilder<true> {
        OpenAICompatibleEmbeddingModelBuilder {
            model: Some(model.to_string()),
            client: self.client,
        }
    }

    /// Set the model to text-embedding-3-small. This is the smallest model available with a score of 62.3% on mteb and a max sequence length of 8191
    pub fn with_text_embedding_3_small(self) -> OpenAICompatibleEmbeddingModelBuilder<true> {
        self.with_model("text-embedding-3-small")
    }

    /// Set the model to text-embedding-3-large. This is the smallest model available with a score of 64.6% on mteb and a max sequence length of 8191
    pub fn with_text_embedding_3_large(self) -> OpenAICompatibleEmbeddingModelBuilder<true> {
        self.with_model("text-embedding-3-large")
    }

    /// Set the client used to make requests to the OpenAI API.
    pub fn with_client(mut self, client: OpenAICompatibleClient) -> Self {
        self.client = client;
        self
    }
}

impl OpenAICompatibleEmbeddingModelBuilder<true> {
    /// Build the model.
    pub fn build(self) -> OpenAICompatibleEmbeddingModel {
        OpenAICompatibleEmbeddingModel {
            model: self.model.unwrap(),
            client: self.client,
        }
    }
}

impl ModelBuilder for OpenAICompatibleEmbeddingModelBuilder<true> {
    type Model = OpenAICompatibleEmbeddingModel;
    type Error = std::convert::Infallible;

    async fn start_with_loading_handler(
        self,
        _: impl FnMut(ModelLoadingProgress) + Send + Sync + 'static,
    ) -> Result<Self::Model, Self::Error> {
        Ok(self.build())
    }

    fn requires_download(&self) -> bool {
        false
    }
}

#[derive(Deserialize)]
struct CreateEmbeddingResponse {
    data: Vec<EmbeddingData>,
}

#[derive(Deserialize)]
struct EmbeddingData {
    index: usize,
    embedding: Vec<f32>,
}

/// An error that can occur when running an [`OpenAICompatibleEmbeddingModel`].
#[derive(Error, Debug)]
pub enum OpenAICompatibleEmbeddingModelError {
    /// The API key was not set or was not valid.
    #[error("Error resolving API key: {0}")]
    APIKeyError(#[from] NoOpenAIAPIKeyError),
    /// An error occurred while making a request to the OpenAI API.
    #[error("Error making request: {0}")]
    ReqwestError(#[from] reqwest::Error),
    /// The response from the OpenAI API was not in the format kalosm expected.
    #[error("Invalid response from OpenAI API. The response returned did not contain embeddings for all input strings.")]
    InvalidResponse,
}

impl Embedder for OpenAICompatibleEmbeddingModel {
    type Error = OpenAICompatibleEmbeddingModelError;

    fn embed_for(
        &self,
        input: crate::EmbeddingInput,
    ) -> impl Future<Output = Result<Embedding, Self::Error>> + Send {
        self.embed_string(input.text)
    }

    fn embed_vec_for(
        &self,
        inputs: Vec<crate::EmbeddingInput>,
    ) -> impl Future<Output = Result<Vec<Embedding>, Self::Error>> + Send {
        let inputs = inputs
            .into_iter()
            .map(|input| input.text)
            .collect::<Vec<_>>();
        self.embed_vec(inputs)
    }

    /// Embed a single string.
    async fn embed_string(&self, input: String) -> Result<Embedding, Self::Error> {
        let api_key = self.client.resolve_api_key()?;
        let request = self
            .client
            .reqwest_client
            .post(format!("{}/embeddings", self.client.base_url()))
            .header("Content-Type", "application/json")
            .header("Authorization", format!("Bearer {}", api_key))
            .json(&serde_json::json!({
                "input": input,
                "model": self.model
            }))
            .send()
            .await?;
        let response = request.json::<CreateEmbeddingResponse>().await?;

        let embedding = Embedding::from(response.data[0].embedding.iter().copied());

        Ok(embedding)
    }

    /// Embed a single string.
    async fn embed_vec(&self, input: Vec<String>) -> Result<Vec<Embedding>, Self::Error> {
        let api_key = self.client.resolve_api_key()?;
        let request = self
            .client
            .reqwest_client
            .post(format!("{}/embeddings", self.client.base_url()))
            .header("Content-Type", "application/json")
            .header("Authorization", format!("Bearer {}", api_key))
            .json(&serde_json::json!({
                "input": input,
                "model": self.model
            }))
            .send()
            .await?;
        let mut response = request.json::<CreateEmbeddingResponse>().await?;

        // Verify that the response is valid
        response.data.sort_by_key(|data| data.index);
        #[cfg(debug_assertions)]
        {
            for (i, data) in response.data.iter().enumerate() {
                if data.index != i {
                    return Err(OpenAICompatibleEmbeddingModelError::InvalidResponse);
                }
            }
        }

        let embeddings = response
            .data
            .into_iter()
            .map(|data| Embedding::from(data.embedding))
            .collect();

        Ok(embeddings)
    }
}

#[cfg(test)]
mod tests {
    use crate::{Embedder, EmbedderExt, OpenAICompatibleEmbeddingModelBuilder};

    #[tokio::test]
    async fn test_small_embedding_model() {
        let model = OpenAICompatibleEmbeddingModelBuilder::new()
            .with_text_embedding_3_small()
            .build();

        let embeddings = model
            .embed_vec(vec!["Hello, world!".to_string()])
            .await
            .unwrap();
        assert_eq!(embeddings.len(), 1);
        assert!(!embeddings[0].vector().is_empty());

        let embeddings = model.embed("Hello, world!").await.unwrap();
        assert!(!embeddings.vector().is_empty());
    }

    #[tokio::test]
    async fn test_large_embedding_model() {
        let model = OpenAICompatibleEmbeddingModelBuilder::new()
            .with_text_embedding_3_large()
            .build();

        let embeddings = model
            .embed_vec(vec!["Hello, world!".to_string()])
            .await
            .unwrap();
        assert_eq!(embeddings.len(), 1);
        assert!(!embeddings[0].vector().is_empty());

        let embeddings = model.embed("Hello, world!").await.unwrap();
        assert!(!embeddings.vector().is_empty());
    }
}