1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489
use std::{
cell::UnsafeCell,
hint::spin_loop,
marker::PhantomData,
ops::{Deref, DerefMut},
ptr::addr_of,
sync::atomic::{AtomicU32, Ordering},
};
use atomic_wait::wake_one;
use crate::poison::{self, LockResult, TryLockError, TryLockResult};
const UNLOCKED: u32 = 0;
const LOCKED: u32 = 1;
const CONTENDED: u32 = 2;
const EXTRA_CONTENDED: u32 = 3;
/// A mutual exclusion primitive useful for protecting shared data
///
/// This mutex will block threads waiting for the lock to become available. The
/// mutex can be created via a [`new`] constructor. Each mutex has a type parameter
/// which represents the data that it is protecting. The data can only be accessed
/// through the RAII guards returned from [`lock`] and [`try_lock`], which
/// guarantees that the data is only ever accessed when the mutex is locked.
///
/// # Difference from `std::sync::Mutex`
/// This mutex is optimized for brief critical sections. It has short spin cycles
/// to prevent overwork, and it aggressively wakes multiple waiters per unlock.
///
/// If there is concern about possible panic in a critical section, `std::sync::Mutex`
/// is the appropriate choice.
///
/// If critical sections are more than a few nanoseconds long, `std::sync::Mutex`
/// may be better. As always, profiling and measuring is important.
///
/// Much of this mutex implementation and its documentation is adapted with humble
/// gratitude from the venerable `std::sync::Mutex`.
///
/// # Poisoning
///
/// The mutex in this module uses the poisoning strategy from `std::sync::Mutex`.
///
/// [`new`]: Self::new
/// [`lock`]: Self::lock
/// [`try_lock`]: Self::try_lock
///
/// # Examples
///
/// ```
/// use std::sync::Arc;
/// use std::thread;
/// use std::sync::mpsc::channel;
/// use k_lock::Mutex;
///
/// const N: usize = 10;
///
/// // Spawn a few threads to increment a shared variable (non-atomically), and
/// // let the main thread know once all increments are done.
/// //
/// // Here we're using an Arc to share memory among threads, and the data inside
/// // the Arc is protected with a mutex.
/// let data = Arc::new(Mutex::new(0));
///
/// let (tx, rx) = channel();
/// for _ in 0..N {
/// let (data, tx) = (Arc::clone(&data), tx.clone());
/// thread::spawn(move || {
/// // The shared state can only be accessed once the lock is held.
/// // Our non-atomic increment is safe because we're the only thread
/// // which can access the shared state when the lock is held.
/// //
/// // We unwrap() the return value to assert that we are not expecting
/// // threads to ever fail while holding the lock.
/// let mut data = data.lock().unwrap();
/// *data += 1;
/// if *data == N {
/// tx.send(()).unwrap();
/// }
/// // the lock is unlocked here when `data` goes out of scope.
/// });
/// }
///
/// rx.recv().unwrap();
/// ```
///
/// To unlock a mutex guard sooner than the end of the enclosing scope,
/// either create an inner scope or drop the guard manually.
///
/// ```
/// use std::sync::Arc;
/// use std::thread;
/// use k_lock::Mutex;
///
/// const N: usize = 3;
///
/// let data_mutex = Arc::new(Mutex::new(vec![1, 2, 3, 4]));
/// let res_mutex = Arc::new(Mutex::new(0));
///
/// let mut threads = Vec::with_capacity(N);
/// (0..N).for_each(|_| {
/// let data_mutex_clone = Arc::clone(&data_mutex);
/// let res_mutex_clone = Arc::clone(&res_mutex);
///
/// threads.push(thread::spawn(move || {
/// // Here we use a block to limit the lifetime of the lock guard.
/// let result = {
/// let mut data = data_mutex_clone.lock().unwrap();
/// // This is the result of some important and long-ish work.
/// let result = data.iter().fold(0, |acc, x| acc + x * 2);
/// data.push(result);
/// result
/// // The mutex guard gets dropped here, together with any other values
/// // created in the critical section.
/// };
/// // The guard created here is a temporary dropped at the end of the statement, i.e.
/// // the lock would not remain being held even if the thread did some additional work.
/// *res_mutex_clone.lock().unwrap() += result;
/// }));
/// });
///
/// let mut data = data_mutex.lock().unwrap();
/// // This is the result of some important and long-ish work.
/// let result = data.iter().fold(0, |acc, x| acc + x * 2);
/// data.push(result);
/// // We drop the `data` explicitly because it's not necessary anymore and the
/// // thread still has work to do. This allow other threads to start working on
/// // the data immediately, without waiting for the rest of the unrelated work
/// // to be done here.
/// //
/// // It's even more important here than in the threads because we `.join` the
/// // threads after that. If we had not dropped the mutex guard, a thread could
/// // be waiting forever for it, causing a deadlock.
/// // As in the threads, a block could have been used instead of calling the
/// // `drop` function.
/// drop(data);
/// // Here the mutex guard is not assigned to a variable and so, even if the
/// // scope does not end after this line, the mutex is still released: there is
/// // no deadlock.
/// *res_mutex.lock().unwrap() += result;
///
/// threads.into_iter().for_each(|thread| {
/// thread
/// .join()
/// .expect("The thread creating or execution failed !")
/// });
///
/// assert_eq!(*res_mutex.lock().unwrap(), 800);
/// ```
pub struct Mutex<T: ?Sized> {
futex: AtomicU32,
lock_epoch: AtomicU32,
poison: poison::Flag,
data: UnsafeCell<T>,
}
impl<T: ?Sized> Mutex<T> {
/// Acquires a mutex, blocking the current thread until it is able to do so.
///
/// This function will block the local thread until it is available to acquire
/// the mutex. Upon returning, the thread is the only thread with the lock
/// held. An RAII guard is returned to allow scoped unlock of the lock. When
/// the guard goes out of scope, the mutex will be unlocked.
///
/// The exact behavior on locking a mutex in the thread which already holds
/// the lock is left unspecified. However, this function will not return on
/// the second call (it might panic or deadlock, for example).
///
/// # Errors
///
/// If another user of this mutex panicked while holding the mutex, then
/// this call will return an error once the mutex is acquired.
///
/// # Panics
///
/// This function might panic when called if the lock is already held by
/// the current thread. It also might not. Don't try it!
///
/// # Examples
///
/// ```
/// use std::sync::Arc;
/// use std::thread;
/// use k_lock::Mutex;
///
/// let mutex = Arc::new(Mutex::new(0));
/// let c_mutex = Arc::clone(&mutex);
///
/// thread::spawn(move || {
/// *c_mutex.lock().unwrap() = 10;
/// }).join().expect("thread::spawn failed");
/// assert_eq!(*mutex.lock().unwrap(), 10);
/// ```
#[inline]
pub fn lock(&self) -> LockResult<MutexGuard<T>> {
if self
.futex
.compare_exchange(UNLOCKED, LOCKED, Ordering::Acquire, Ordering::Relaxed)
.is_ok()
{
self.lock_epoch.fetch_add(1, Ordering::Relaxed);
return MutexGuard::new(self);
}
self.lock_contended()
}
/// Move this out so it does not bloat asm and reduce the likelihood of lock() being inlined.
#[cold]
#[allow(clippy::comparison_chain)] // I prefer it this way in this case because of the semantic meaning
fn lock_contended(&self) -> LockResult<MutexGuard<T>> {
loop {
let state = self.spin();
// when locking under contention you have to stay contended or you may leak wakes
let expect = if state < CONTENDED {
if self.futex.swap(CONTENDED, Ordering::Acquire) == UNLOCKED {
self.lock_epoch.fetch_add(1, Ordering::Relaxed);
return MutexGuard::new(self);
}
CONTENDED
} else if state == CONTENDED {
if self.futex.swap(EXTRA_CONTENDED, Ordering::Acquire) == UNLOCKED {
self.lock_epoch.fetch_add(1, Ordering::Relaxed);
return MutexGuard::new(self);
}
EXTRA_CONTENDED
} else {
// we've already promoted to extra contended. We're... extra contended.
EXTRA_CONTENDED
};
atomic_wait::wait(&self.futex, expect);
}
}
/// Move this out so it does not bloat asm.
#[cold]
fn spin(&self) -> u32 {
let mut spin = 100;
let mut epoch = 0;
loop {
let v = self.futex.load(Ordering::Relaxed);
if v != LOCKED || spin == 0 {
break v;
}
let now = self.lock_epoch.load(Ordering::Relaxed);
if now != epoch {
// Refresh the spin because this lock is making timely progress.
epoch = now;
spin = 100;
// This might be too aggressive - it drops latency for small critical sections
// by keeping this thread out of futex, but yield_now is not free either.
// Adding a yield to the spin refresh dropped contended latency by over 25%,
// but there may be other heuristics that outperform this.
std::thread::yield_now();
}
spin_loop();
spin -= 1;
}
}
/// Attempts to acquire this lock.
///
/// If the lock could not be acquired at this time, then [`Err`] is returned.
/// Otherwise, an RAII guard is returned. The lock will be unlocked when the
/// guard is dropped.
///
/// This function does not block.
///
/// # Errors
///
/// If the mutex could not be acquired because it is already locked, then
/// this call will return the [`WouldBlock`] error.
///
/// [`WouldBlock`]: TryLockError::WouldBlock
///
/// # Examples
///
/// ```
/// use std::sync::Arc;
/// use std::thread;
/// use k_lock::Mutex;
///
/// let mutex = Arc::new(Mutex::new(0));
/// let c_mutex = Arc::clone(&mutex);
///
/// thread::spawn(move || {
/// let mut lock = c_mutex.try_lock();
/// if let Ok(ref mut mutex) = lock {
/// **mutex = 10;
/// } else {
/// println!("try_lock failed");
/// }
/// }).join().expect("thread::spawn failed");
/// assert_eq!(*mutex.lock().unwrap(), 10);
/// ```
#[inline]
pub fn try_lock(&self) -> TryLockResult<MutexGuard<'_, T>> {
match self
.futex
.compare_exchange(UNLOCKED, LOCKED, Ordering::Acquire, Ordering::Relaxed)
{
Ok(_) => Ok(MutexGuard::new(self)?),
Err(_) => Err(TryLockError::WouldBlock),
}
}
/// Returns a mutable reference to the underlying data.
///
/// Since this call borrows the `Mutex` mutably, no actual locking needs to
/// take place -- the mutable borrow statically guarantees no locks exist.
///
/// # Errors
///
/// PoisonError if a thread has previously paniced while holding this mutex.
///
/// # Examples
///
/// ```
/// use k_lock::Mutex;
///
/// let mut mutex = Mutex::new(0);
/// *mutex.get_mut().unwrap() = 10;
/// assert_eq!(*mutex.lock().unwrap(), 10);
/// ```
pub fn get_mut(&mut self) -> LockResult<&mut T> {
let data = self.data.get_mut();
poison::map_result(self.poison.borrow(), |()| data)
}
}
impl<T> Mutex<T> {
/// Creates a new mutex in an unlocked state ready for use.
///
/// # Examples
///
/// ```
/// use k_lock::Mutex;
///
/// let mutex = Mutex::new(0);
/// ```
#[inline]
pub const fn new(data: T) -> Self {
Self {
data: UnsafeCell::new(data),
lock_epoch: AtomicU32::new(0),
poison: poison::Flag::new(),
futex: AtomicU32::new(UNLOCKED),
}
}
}
impl<T> From<T> for Mutex<T> {
/// Creates a new mutex in an unlocked state ready for use.
/// This is equivalent to [`Mutex::new`].
fn from(t: T) -> Self {
Mutex::new(t)
}
}
impl<T: ?Sized + Default> Default for Mutex<T> {
/// Creates a `Mutex<T>`, with the `Default` value for T.
fn default() -> Mutex<T> {
Mutex::new(Default::default())
}
}
impl<T: ?Sized + std::fmt::Debug> std::fmt::Debug for Mutex<T> {
fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
let mut d = f.debug_struct("Mutex");
match self.try_lock() {
Ok(guard) => {
d.field("data", &&*guard);
}
Err(TryLockError::Poisoned(err)) => {
d.field("data", &&**err.get_ref());
}
Err(TryLockError::WouldBlock) => {
d.field("data", &format_args!("<locked>"));
}
}
d.field("poisoned", &self.poison.get());
d.finish_non_exhaustive()
}
}
// these are the only places where `T: Send` matters; all other
// functionality works fine on a single thread.
unsafe impl<T: ?Sized + Send> Send for Mutex<T> {}
unsafe impl<T: ?Sized + Send> Sync for Mutex<T> {}
// negative impls are not stable yet...
// impl<T: ?Sized> !Send for MutexGuard<'_, T> {}
unsafe impl<T: ?Sized + Sync> Sync for MutexGuard<'_, T> {}
/// An RAII implementation of a "scoped lock" of a mutex. When this structure is
/// dropped (falls out of scope), the lock will be unlocked.
///
/// The data protected by the mutex can be accessed through this guard via its
/// [`Deref`] and [`DerefMut`] implementations.
///
/// This structure is created by the [`lock`] and [`try_lock`] methods on
/// [`Mutex`].
///
/// [`lock`]: Mutex::lock
/// [`try_lock`]: Mutex::try_lock
#[must_use = "if unused the Mutex will immediately unlock"]
#[clippy::has_significant_drop]
pub struct MutexGuard<'a, T: ?Sized + 'a> {
lock: &'a Mutex<T>,
poison: poison::Guard,
_phantom: PhantomUnsend,
}
impl<'a, T: ?Sized> MutexGuard<'a, T> {
fn new(lock: &'a Mutex<T>) -> LockResult<Self> {
poison::map_result(lock.poison.guard(), |guard| Self {
lock,
poison: guard,
_phantom: PhantomData,
})
}
}
pub type PhantomUnsend = PhantomData<std::sync::MutexGuard<'static, ()>>;
impl<T: ?Sized> Deref for MutexGuard<'_, T> {
type Target = T;
#[inline]
fn deref(&self) -> &T {
unsafe { &*self.lock.data.get() }
}
}
impl<T: ?Sized> DerefMut for MutexGuard<'_, T> {
#[inline]
fn deref_mut(&mut self) -> &mut T {
unsafe { &mut *self.lock.data.get() }
}
}
impl<T: ?Sized> Drop for MutexGuard<'_, T> {
#[inline]
fn drop(&mut self) {
self.lock.poison.done(&self.poison);
let released = self.lock.futex.swap(UNLOCKED, Ordering::Release);
if released == CONTENDED {
wake_one(addr_of!(self.lock.futex));
} else if released == EXTRA_CONTENDED {
wake_one(addr_of!(self.lock.futex));
wake_one(addr_of!(self.lock.futex));
}
}
}
impl<T: ?Sized + std::fmt::Debug> std::fmt::Debug for MutexGuard<'_, T> {
fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
std::fmt::Debug::fmt(&**self, f)
}
}
impl<T: ?Sized + std::fmt::Display> std::fmt::Display for MutexGuard<'_, T> {
fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
(**self).fmt(f)
}
}
#[cfg(test)]
mod test {
use std::sync::Arc;
use crate::Mutex;
#[test]
fn poisoned() {
let m = Arc::new(Mutex::new(()));
let mt = m.clone();
let _ = std::thread::spawn(move || {
let _g = mt.lock().expect("lock must succeed");
panic!("bail while locked");
})
.join();
match m.lock() {
Ok(_) => panic!("must not lock"),
Err(_poison) => {
// it is poisoned
}
};
}
}