1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
use std::{
    cell::UnsafeCell,
    hint::spin_loop,
    marker::PhantomData,
    ops::{Deref, DerefMut},
    ptr::addr_of,
    sync::atomic::{AtomicU32, Ordering},
};

use atomic_wait::wake_one;

use crate::poison::{self, LockResult, TryLockError, TryLockResult};

const UNLOCKED: u32 = 0;
const LOCKED: u32 = 1;
const CONTENDED: u32 = 2;
const EXTRA_CONTENDED: u32 = 3;

/// A mutual exclusion primitive useful for protecting shared data
///
/// This mutex will block threads waiting for the lock to become available. The
/// mutex can be created via a [`new`] constructor. Each mutex has a type parameter
/// which represents the data that it is protecting. The data can only be accessed
/// through the RAII guards returned from [`lock`] and [`try_lock`], which
/// guarantees that the data is only ever accessed when the mutex is locked.
///
/// # Difference from `std::sync::Mutex`
/// This mutex is optimized for brief critical sections. It has short spin cycles
/// to prevent overwork, and it aggressively wakes multiple waiters per unlock.
///
/// If there is concern about possible panic in a critical section, `std::sync::Mutex`
/// is the appropriate choice.
///
/// If critical sections are more than a few nanoseconds long, `std::sync::Mutex`
/// may be better. As always, profiling and measuring is important.
///
/// Much of this mutex implementation and its documentation is adapted with humble
/// gratitude from the venerable `std::sync::Mutex`.
///
/// # Poisoning
///
/// The mutex in this module uses the poisoning strategy from `std::sync::Mutex`.
///
/// [`new`]: Self::new
/// [`lock`]: Self::lock
/// [`try_lock`]: Self::try_lock
///
/// # Examples
///
/// ```
/// use std::sync::Arc;
/// use std::thread;
/// use std::sync::mpsc::channel;
/// use k_lock::Mutex;
///
/// const N: usize = 10;
///
/// // Spawn a few threads to increment a shared variable (non-atomically), and
/// // let the main thread know once all increments are done.
/// //
/// // Here we're using an Arc to share memory among threads, and the data inside
/// // the Arc is protected with a mutex.
/// let data = Arc::new(Mutex::new(0));
///
/// let (tx, rx) = channel();
/// for _ in 0..N {
///     let (data, tx) = (Arc::clone(&data), tx.clone());
///     thread::spawn(move || {
///         // The shared state can only be accessed once the lock is held.
///         // Our non-atomic increment is safe because we're the only thread
///         // which can access the shared state when the lock is held.
///         //
///         // We unwrap() the return value to assert that we are not expecting
///         // threads to ever fail while holding the lock.
///         let mut data = data.lock().unwrap();
///         *data += 1;
///         if *data == N {
///             tx.send(()).unwrap();
///         }
///         // the lock is unlocked here when `data` goes out of scope.
///     });
/// }
///
/// rx.recv().unwrap();
/// ```
///
/// To unlock a mutex guard sooner than the end of the enclosing scope,
/// either create an inner scope or drop the guard manually.
///
/// ```
/// use std::sync::Arc;
/// use std::thread;
/// use k_lock::Mutex;
///
/// const N: usize = 3;
///
/// let data_mutex = Arc::new(Mutex::new(vec![1, 2, 3, 4]));
/// let res_mutex = Arc::new(Mutex::new(0));
///
/// let mut threads = Vec::with_capacity(N);
/// (0..N).for_each(|_| {
///     let data_mutex_clone = Arc::clone(&data_mutex);
///     let res_mutex_clone = Arc::clone(&res_mutex);
///
///     threads.push(thread::spawn(move || {
///         // Here we use a block to limit the lifetime of the lock guard.
///         let result = {
///             let mut data = data_mutex_clone.lock().unwrap();
///             // This is the result of some important and long-ish work.
///             let result = data.iter().fold(0, |acc, x| acc + x * 2);
///             data.push(result);
///             result
///             // The mutex guard gets dropped here, together with any other values
///             // created in the critical section.
///         };
///         // The guard created here is a temporary dropped at the end of the statement, i.e.
///         // the lock would not remain being held even if the thread did some additional work.
///         *res_mutex_clone.lock().unwrap() += result;
///     }));
/// });
///
/// let mut data = data_mutex.lock().unwrap();
/// // This is the result of some important and long-ish work.
/// let result = data.iter().fold(0, |acc, x| acc + x * 2);
/// data.push(result);
/// // We drop the `data` explicitly because it's not necessary anymore and the
/// // thread still has work to do. This allow other threads to start working on
/// // the data immediately, without waiting for the rest of the unrelated work
/// // to be done here.
/// //
/// // It's even more important here than in the threads because we `.join` the
/// // threads after that. If we had not dropped the mutex guard, a thread could
/// // be waiting forever for it, causing a deadlock.
/// // As in the threads, a block could have been used instead of calling the
/// // `drop` function.
/// drop(data);
/// // Here the mutex guard is not assigned to a variable and so, even if the
/// // scope does not end after this line, the mutex is still released: there is
/// // no deadlock.
/// *res_mutex.lock().unwrap() += result;
///
/// threads.into_iter().for_each(|thread| {
///     thread
///         .join()
///         .expect("The thread creating or execution failed !")
/// });
///
/// assert_eq!(*res_mutex.lock().unwrap(), 800);
/// ```
pub struct Mutex<T: ?Sized> {
    futex: AtomicU32,
    lock_epoch: AtomicU32,
    poison: poison::Flag,
    data: UnsafeCell<T>,
}

impl<T: ?Sized> Mutex<T> {
    /// Acquires a mutex, blocking the current thread until it is able to do so.
    ///
    /// This function will block the local thread until it is available to acquire
    /// the mutex. Upon returning, the thread is the only thread with the lock
    /// held. An RAII guard is returned to allow scoped unlock of the lock. When
    /// the guard goes out of scope, the mutex will be unlocked.
    ///
    /// The exact behavior on locking a mutex in the thread which already holds
    /// the lock is left unspecified. However, this function will not return on
    /// the second call (it might panic or deadlock, for example).
    ///
    /// # Errors
    ///
    /// If another user of this mutex panicked while holding the mutex, then
    /// this call will return an error once the mutex is acquired.
    ///
    /// # Panics
    ///
    /// This function might panic when called if the lock is already held by
    /// the current thread. It also might not. Don't try it!
    ///
    /// # Examples
    ///
    /// ```
    /// use std::sync::Arc;
    /// use std::thread;
    /// use k_lock::Mutex;
    ///
    /// let mutex = Arc::new(Mutex::new(0));
    /// let c_mutex = Arc::clone(&mutex);
    ///
    /// thread::spawn(move || {
    ///     *c_mutex.lock().unwrap() = 10;
    /// }).join().expect("thread::spawn failed");
    /// assert_eq!(*mutex.lock().unwrap(), 10);
    /// ```
    #[inline]
    pub fn lock(&self) -> LockResult<MutexGuard<T>> {
        if self
            .futex
            .compare_exchange(UNLOCKED, LOCKED, Ordering::Acquire, Ordering::Relaxed)
            .is_ok()
        {
            self.lock_epoch.fetch_add(1, Ordering::Relaxed);
            return MutexGuard::new(self);
        }
        self.lock_contended()
    }

    /// Move this out so it does not bloat asm and reduce the likelihood of lock() being inlined.
    #[cold]
    #[allow(clippy::comparison_chain)] // I prefer it this way in this case because of the semantic meaning
    fn lock_contended(&self) -> LockResult<MutexGuard<T>> {
        loop {
            let state = self.spin();
            // when locking under contention you have to stay contended or you may leak wakes
            let expect = if state < CONTENDED {
                if self.futex.swap(CONTENDED, Ordering::Acquire) == UNLOCKED {
                    self.lock_epoch.fetch_add(1, Ordering::Relaxed);
                    return MutexGuard::new(self);
                }
                CONTENDED
            } else if state == CONTENDED {
                if self.futex.swap(EXTRA_CONTENDED, Ordering::Acquire) == UNLOCKED {
                    self.lock_epoch.fetch_add(1, Ordering::Relaxed);
                    return MutexGuard::new(self);
                }
                EXTRA_CONTENDED
            } else {
                // we've already promoted to extra contended. We're... extra contended.
                EXTRA_CONTENDED
            };
            atomic_wait::wait(&self.futex, expect);
        }
    }

    /// Move this out so it does not bloat asm.
    #[cold]
    fn spin(&self) -> u32 {
        let mut spin = 100;
        let mut epoch = 0;
        loop {
            let v = self.futex.load(Ordering::Relaxed);
            if v != LOCKED || spin == 0 {
                break v;
            }
            let now = self.lock_epoch.load(Ordering::Relaxed);
            if now != epoch {
                // Refresh the spin because this lock is making timely progress.
                epoch = now;
                spin = 100;
                // This might be too aggressive - it drops latency for small critical sections
                // by keeping this thread out of futex, but yield_now is not free either.
                // Adding a yield to the spin refresh dropped contended latency by over 25%,
                // but there may be other heuristics that outperform this.
                std::thread::yield_now();
            }
            spin_loop();
            spin -= 1;
        }
    }

    /// Attempts to acquire this lock.
    ///
    /// If the lock could not be acquired at this time, then [`Err`] is returned.
    /// Otherwise, an RAII guard is returned. The lock will be unlocked when the
    /// guard is dropped.
    ///
    /// This function does not block.
    ///
    /// # Errors
    ///
    /// If the mutex could not be acquired because it is already locked, then
    /// this call will return the [`WouldBlock`] error.
    ///
    /// [`WouldBlock`]: TryLockError::WouldBlock
    ///
    /// # Examples
    ///
    /// ```
    /// use std::sync::Arc;
    /// use std::thread;
    /// use k_lock::Mutex;
    ///
    /// let mutex = Arc::new(Mutex::new(0));
    /// let c_mutex = Arc::clone(&mutex);
    ///
    /// thread::spawn(move || {
    ///     let mut lock = c_mutex.try_lock();
    ///     if let Ok(ref mut mutex) = lock {
    ///         **mutex = 10;
    ///     } else {
    ///         println!("try_lock failed");
    ///     }
    /// }).join().expect("thread::spawn failed");
    /// assert_eq!(*mutex.lock().unwrap(), 10);
    /// ```
    #[inline]
    pub fn try_lock(&self) -> TryLockResult<MutexGuard<'_, T>> {
        match self
            .futex
            .compare_exchange(UNLOCKED, LOCKED, Ordering::Acquire, Ordering::Relaxed)
        {
            Ok(_) => Ok(MutexGuard::new(self)?),
            Err(_) => Err(TryLockError::WouldBlock),
        }
    }

    /// Returns a mutable reference to the underlying data.
    ///
    /// Since this call borrows the `Mutex` mutably, no actual locking needs to
    /// take place -- the mutable borrow statically guarantees no locks exist.
    ///
    /// # Errors
    ///
    /// PoisonError if a thread has previously paniced while holding this mutex.
    ///
    /// # Examples
    ///
    /// ```
    /// use k_lock::Mutex;
    ///
    /// let mut mutex = Mutex::new(0);
    /// *mutex.get_mut().unwrap() = 10;
    /// assert_eq!(*mutex.lock().unwrap(), 10);
    /// ```
    pub fn get_mut(&mut self) -> LockResult<&mut T> {
        let data = self.data.get_mut();
        poison::map_result(self.poison.borrow(), |()| data)
    }
}

impl<T> Mutex<T> {
    /// Creates a new mutex in an unlocked state ready for use.
    ///
    /// # Examples
    ///
    /// ```
    /// use k_lock::Mutex;
    ///
    /// let mutex = Mutex::new(0);
    /// ```
    #[inline]
    pub const fn new(data: T) -> Self {
        Self {
            data: UnsafeCell::new(data),
            lock_epoch: AtomicU32::new(0),
            poison: poison::Flag::new(),
            futex: AtomicU32::new(UNLOCKED),
        }
    }
}

impl<T> From<T> for Mutex<T> {
    /// Creates a new mutex in an unlocked state ready for use.
    /// This is equivalent to [`Mutex::new`].
    fn from(t: T) -> Self {
        Mutex::new(t)
    }
}

impl<T: ?Sized + Default> Default for Mutex<T> {
    /// Creates a `Mutex<T>`, with the `Default` value for T.
    fn default() -> Mutex<T> {
        Mutex::new(Default::default())
    }
}

impl<T: ?Sized + std::fmt::Debug> std::fmt::Debug for Mutex<T> {
    fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
        let mut d = f.debug_struct("Mutex");
        match self.try_lock() {
            Ok(guard) => {
                d.field("data", &&*guard);
            }
            Err(TryLockError::Poisoned(err)) => {
                d.field("data", &&**err.get_ref());
            }
            Err(TryLockError::WouldBlock) => {
                d.field("data", &format_args!("<locked>"));
            }
        }
        d.field("poisoned", &self.poison.get());
        d.finish_non_exhaustive()
    }
}

// these are the only places where `T: Send` matters; all other
// functionality works fine on a single thread.
unsafe impl<T: ?Sized + Send> Send for Mutex<T> {}
unsafe impl<T: ?Sized + Send> Sync for Mutex<T> {}

// negative impls are not stable yet...
// impl<T: ?Sized> !Send for MutexGuard<'_, T> {}
unsafe impl<T: ?Sized + Sync> Sync for MutexGuard<'_, T> {}

/// An RAII implementation of a "scoped lock" of a mutex. When this structure is
/// dropped (falls out of scope), the lock will be unlocked.
///
/// The data protected by the mutex can be accessed through this guard via its
/// [`Deref`] and [`DerefMut`] implementations.
///
/// This structure is created by the [`lock`] and [`try_lock`] methods on
/// [`Mutex`].
///
/// [`lock`]: Mutex::lock
/// [`try_lock`]: Mutex::try_lock
#[must_use = "if unused the Mutex will immediately unlock"]
#[clippy::has_significant_drop]
pub struct MutexGuard<'a, T: ?Sized + 'a> {
    lock: &'a Mutex<T>,
    poison: poison::Guard,
    _phantom: PhantomUnsend,
}

impl<'a, T: ?Sized> MutexGuard<'a, T> {
    fn new(lock: &'a Mutex<T>) -> LockResult<Self> {
        poison::map_result(lock.poison.guard(), |guard| Self {
            lock,
            poison: guard,
            _phantom: PhantomData,
        })
    }
}

pub type PhantomUnsend = PhantomData<std::sync::MutexGuard<'static, ()>>;

impl<T: ?Sized> Deref for MutexGuard<'_, T> {
    type Target = T;

    #[inline]
    fn deref(&self) -> &T {
        unsafe { &*self.lock.data.get() }
    }
}

impl<T: ?Sized> DerefMut for MutexGuard<'_, T> {
    #[inline]
    fn deref_mut(&mut self) -> &mut T {
        unsafe { &mut *self.lock.data.get() }
    }
}

impl<T: ?Sized> Drop for MutexGuard<'_, T> {
    #[inline]
    fn drop(&mut self) {
        self.lock.poison.done(&self.poison);
        let released = self.lock.futex.swap(UNLOCKED, Ordering::Release);
        if released == CONTENDED {
            wake_one(addr_of!(self.lock.futex));
        } else if released == EXTRA_CONTENDED {
            wake_one(addr_of!(self.lock.futex));
            wake_one(addr_of!(self.lock.futex));
        }
    }
}

impl<T: ?Sized + std::fmt::Debug> std::fmt::Debug for MutexGuard<'_, T> {
    fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
        std::fmt::Debug::fmt(&**self, f)
    }
}

impl<T: ?Sized + std::fmt::Display> std::fmt::Display for MutexGuard<'_, T> {
    fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
        (**self).fmt(f)
    }
}

#[cfg(test)]
mod test {
    use std::sync::Arc;

    use crate::Mutex;

    #[test]
    fn poisoned() {
        let m = Arc::new(Mutex::new(()));
        let mt = m.clone();
        let _ = std::thread::spawn(move || {
            let _g = mt.lock().expect("lock must succeed");
            panic!("bail while locked");
        })
        .join();
        match m.lock() {
            Ok(_) => panic!("must not lock"),
            Err(_poison) => {
                // it is poisoned
            }
        };
    }
}