1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
//! [Julia set] boundary computation and rendering.
//!
//! # Theory
//!
//! Informally, the Julia set for a complex-valued function `f` (in Rust terms,
//! `fn(Complex32) -> Complex32`) is a set of complex points for which an infinitely small
//! perturbation can lead to drastic changes in the sequence of iterated function applications
//! (that is, `f(z)`, `f(f(z))`, `f(f(f(z)))` and so on).
//!
//! For many functions `f`, the iterated sequence may tend to infinity. Hence, the
//! commonly used computational way to render the Julia set boundary is as follows:
//!
//! 1. For each complex value `z` within a rectangular area, perform steps 2-3.
//! 2. Compute the minimum iteration `0 < i <= MAX_I` such that `|f(f(f(...(z)))| > R`.
//!   Here, `f` is applied `i` times; `R` is a positive real-valued constant
//!   (the *infinity distance*); `MAX_I` is a positive integer constant (maximum iteration count).
//! 3. Associate `z` with a color depending on `i`. For example, `i == 1` may be rendered as black,
//!   `i == MAX_I` as white, and values between it may get the corresponding shades of gray.
//! 4. Render the rectangular area as a (two-dimensional) image, with each pixel corresponding
//!   to a separate value of `z`.
//!
//! This is exactly the way Julia set rendering is implemented in this crate.
//!
//! [Julia set]: https://en.wikipedia.org/wiki/Julia_set
//!
//! # Backends
//!
//! The crate supports several computational [`Backend`]s.
//!
//! | Backend | Crate feature | Hardware | Crate dep(s) |
//! |---------|---------------|----------|------------|
//! | [`OpenCl`] | `opencl_backend` | GPU, CPU | [`ocl`] |
//! | [`Vulkan`] | `vulkan_backend` | GPU | [`vulkano`], [`shaderc`] |
//! | [`Cpu`] | `cpu_backend` | CPU | [`rayon`] |
//! | [`Cpu`] | `dyn_cpu_backend` | CPU | [`rayon`] |
//!
//! None of the backends are on by default. A backend can be enabled by switching
//! on the corresponding crate feature. `dyn_cpu_backend` requires `cpu_backend` internally.
//!
//! All backends except for `cpu_backend` require parsing the complex-valued [`Function`] from
//! a string presentation, e.g., `"z * z - 0.4i"`. The [`arithmetic-parser`] crate is used for this
//! purpose. For `cpu_backend`, the function is defined directly in Rust.
//!
//! For efficiency and modularity, a [`Backend`] creates a *program* for each function.
//! (In case of OpenCL, a program is a kernel, and in Vulkan a program is a compute shader.)
//! The program can then be [`Render`]ed with various [`Params`].
//!
//! Backends targeting GPUs (i.e., `OpenCl` and `Vulkan`) should be much faster than CPU-based
//! backends. Indeed, the rendering task is [embarrassingly parallel] (could be performed
//! independently for each point).
//!
//! [`ocl`]: https://crates.io/crates/ocl
//! [`vulkano`]: https://crates.io/crates/vulkano
//! [`shaderc`]: https://crates.io/crates/shaderc
//! [`rayon`]: https://crates.io/crates/rayon
//! [`arithmetic-parser`]: https://crates.io/crates/arithmetic-parser
//! [embarrassingly parallel]: https://en.wikipedia.org/wiki/Embarrassingly_parallel
//!
//! # Examples
//!
//! Using Rust function definition with `cpu_backend`:
//!
//! ```
//! use julia_set::{Backend, Cpu, Params, Render};
//! use num_complex::Complex32;
//!
//! # fn main() -> anyhow::Result<()> {
//! let program = Cpu.create_program(|z: Complex32| z * z + Complex32::new(-0.4, 0.5))?;
//! let render_params = Params::new([50, 50], 4.0).with_infinity_distance(5.0);
//! let image = program.render(&render_params)?;
//! // Do something with the image...
//! # Ok(())
//! # }
//! ```
//!
//! Using interpreted function definition with `dyn_cpu_backend`:
//!
//! ```
//! use julia_set::{Backend, Cpu, Function, Params, Render};
//! use num_complex::Complex32;
//!
//! # fn main() -> anyhow::Result<()> {
//! let function: Function = "z * z - 0.4 + 0.5i".parse()?;
//! let program = Cpu.create_program(&function)?;
//! let render_params = Params::new([50, 50], 4.0).with_infinity_distance(5.0);
//! let image = program.render(&render_params)?;
//! // Do something with the image...
//! # Ok(())
//! # }
//! ```

#![cfg_attr(docsrs, feature(doc_cfg))]
#![doc(html_root_url = "https://docs.rs/julia-set/0.1.0")]
#![warn(missing_docs, missing_debug_implementations, bare_trait_objects)]
#![warn(clippy::all, clippy::pedantic)]
#![allow(
    clippy::missing_errors_doc,
    clippy::must_use_candidate,
    clippy::module_name_repetitions,
    clippy::doc_markdown
)]

use std::fmt;

#[cfg(feature = "cpu_backend")]
pub use crate::cpu::{ComputePoint, Cpu, CpuProgram};
#[cfg(feature = "arithmetic-parser")]
pub use crate::function::{FnError, Function};
#[cfg(feature = "opencl_backend")]
pub use crate::opencl::{OpenCl, OpenClProgram};
#[cfg(feature = "vulkan_backend")]
pub use crate::vulkan::{Vulkan, VulkanProgram};

#[cfg(any(feature = "opencl_backend", feature = "vulkan_backend"))]
mod compiler;
#[cfg(feature = "cpu_backend")]
mod cpu;
#[cfg(feature = "arithmetic-parser")]
mod function;
#[cfg(feature = "opencl_backend")]
mod opencl;
pub mod transform;
#[cfg(feature = "vulkan_backend")]
mod vulkan;

/// Image buffer output by a [`Backend`].
pub type ImageBuffer = image::GrayImage;

/// Backend capable of converting an input (the type parameter) into a program. The program
/// then can be used to [`Render`] the Julia set with various rendering [`Params`].
pub trait Backend<In>: Default {
    /// Error that may be returned during program creation.
    type Error: fmt::Debug + fmt::Display;
    /// Program output by the backend.
    type Program: Render;

    /// Creates a program.
    ///
    /// # Errors
    ///
    /// May return an error if program cannot be created (out of memory, etc.).
    fn create_program(&self, function: In) -> Result<Self::Program, Self::Error>;
}

/// Program for a specific [`Backend`] (e.g., OpenCL) corresponding to a specific Julia set.
/// A single program can be rendered with different parameters (e.g., different output sizes),
/// but the core settings (e.g., the complex-valued function describing the set) are fixed.
pub trait Render {
    /// Error that may be returned during rendering.
    type Error: fmt::Debug + fmt::Display;

    /// Renders the Julia set with the specified parameters.
    ///
    /// The rendered image is grayscale; each pixel represents the number of iterations to reach
    /// infinity [as per the Julia set boundary definition](index.html#theory). This number is
    /// normalized to the `[0, 255]` range regardless of the maximum iteration count from `params`.
    ///
    /// You can use the [`transform`] module and/or tools from the [`image`] / [`imageproc`] crates
    /// to post-process the image.
    ///
    /// [`image`]: https://crates.io/crates/image
    /// [`imageproc`]: https://crates.io/crates/imageproc
    ///
    /// # Errors
    ///
    /// May return an error if the backend does not support rendering with the specified params
    /// or due to external reasons (out of memory, etc.).
    fn render(&self, params: &Params) -> Result<ImageBuffer, Self::Error>;
}

/// Julia set rendering parameters.
///
/// The parameters are:
///
/// - Image dimensions (in pixels)
/// - View dimensions and view center determining the rendered area. (Only the view height
///   is specified explicitly; the width is inferred from the height and
///   the image dimension ratio.)
/// - Infinity distance
/// - Upper bound on the iteration count
///
/// See the [Julia set theory] for more details regarding these parameters.
///
/// [Julia set theory]: index.html#theory
#[derive(Debug, Clone)]
pub struct Params {
    view_center: [f32; 2],
    view_height: f32,
    inf_distance: f32,
    image_size: [u32; 2],
    max_iterations: u8,
}

impl Params {
    /// Creates a new set of params with the specified `image_dimensions` and the `view_height`
    /// of the rendered area.
    ///
    /// The remaining parameters are set as follows:
    ///
    /// - The width of the rendered area is inferred from these params.
    /// - The view is centered at `0`.
    /// - The infinity distance is set at `3`.
    ///
    /// # Panics
    ///
    /// Panics if any of the following conditions do not hold:
    ///
    /// - `image_dimensions` are positive
    /// - `view_height` is positive
    pub fn new(image_dimensions: [u32; 2], view_height: f32) -> Self {
        assert!(image_dimensions[0] > 0);
        assert!(image_dimensions[1] > 0);
        assert!(view_height > 0.0, "`view_height` should be positive");

        Self {
            view_center: [0.0, 0.0],
            view_height,
            inf_distance: 3.0,
            image_size: image_dimensions,
            max_iterations: 100,
        }
    }

    /// Sets the view center.
    pub fn with_view_center(mut self, view_center: [f32; 2]) -> Self {
        self.view_center = view_center;
        self
    }

    /// Sets the infinity distance.
    ///
    /// # Panics
    ///
    /// Panics if the provided distance is not positive.
    pub fn with_infinity_distance(mut self, inf_distance: f32) -> Self {
        assert!(inf_distance > 0.0, "`inf_distance` should be positive");
        self.inf_distance = inf_distance;
        self
    }

    /// Sets the maximum iteration count.
    ///
    /// # Panics
    ///
    /// Panics if `max_iterations` is zero.
    pub fn with_max_iterations(mut self, max_iterations: u8) -> Self {
        assert_ne!(max_iterations, 0, "Max iterations must be positive");
        self.max_iterations = max_iterations;
        self
    }

    #[cfg(any(
        feature = "cpu_backend",
        feature = "opencl_backend",
        feature = "vulkan_backend"
    ))]
    #[allow(clippy::cast_precision_loss)] // loss of precision is acceptable
    pub(crate) fn view_width(&self) -> f32 {
        self.view_height * (self.image_size[0] as f32) / (self.image_size[1] as f32)
    }
}