1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
// Copyright 2020 Google LLC
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// https://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

use std::collections::HashSet;
use std::hash::Hash;
use std::iter::Iterator;

use crate::commit::Commit;

pub struct BfsIter<'id_fn, 'neighbors_fn, T, ID, NI> {
    id_fn: Box<dyn Fn(&T) -> ID + 'id_fn>,
    neighbors_fn: Box<dyn FnMut(&T) -> NI + 'neighbors_fn>,
    work: Vec<T>,
    visited: HashSet<ID>,
}

impl<T, ID, NI> Iterator for BfsIter<'_, '_, T, ID, NI>
where
    ID: Hash + Eq,
    NI: IntoIterator<Item = T>,
{
    type Item = T;

    fn next(&mut self) -> Option<Self::Item> {
        while !self.work.is_empty() {
            let c = self.work.pop().unwrap();
            let id = (self.id_fn)(&c);
            if self.visited.contains(&id) {
                continue;
            }
            for p in (self.neighbors_fn)(&c) {
                self.work.push(p);
            }
            self.visited.insert(id);
            return Some(c);
        }
        None
    }
}

pub fn bfs<'id_fn, 'neighbors_fn, T, ID, II, NI>(
    start: II,
    id_fn: Box<dyn Fn(&T) -> ID + 'id_fn>,
    neighbors_fn: Box<dyn FnMut(&T) -> NI + 'neighbors_fn>,
) -> BfsIter<'id_fn, 'neighbors_fn, T, ID, NI>
where
    ID: Hash + Eq,
    II: IntoIterator<Item = T>,
    NI: IntoIterator<Item = T>,
{
    BfsIter {
        id_fn,
        neighbors_fn,
        work: start.into_iter().collect(),
        visited: Default::default(),
    }
}

/// Returns neighbors before the node itself.
pub fn topo_order_reverse<'a, T, ID, II, NI>(
    start: II,
    id_fn: Box<dyn Fn(&T) -> ID + 'a>,
    mut neighbors_fn: Box<dyn FnMut(&T) -> NI + 'a>,
) -> Vec<T>
where
    T: Hash + Eq + Clone,
    ID: Hash + Eq + Clone,
    II: IntoIterator<Item = T>,
    NI: IntoIterator<Item = T>,
{
    let mut visiting = HashSet::new();
    let mut emitted = HashSet::new();
    let mut result = vec![];

    let mut start_nodes: Vec<T> = start.into_iter().collect();
    start_nodes.reverse();

    for start_node in start_nodes {
        let mut stack = vec![(start_node, false)];
        while !stack.is_empty() {
            let (node, neighbors_visited) = stack.pop().unwrap();
            let id = id_fn(&node);
            if emitted.contains(&id) {
                continue;
            }
            if !neighbors_visited {
                assert!(visiting.insert(id.clone()), "graph has cycle");
                let neighbors = neighbors_fn(&node);
                stack.push((node, true));
                for neighbor in neighbors {
                    stack.push((neighbor, false));
                }
            } else {
                visiting.remove(&id);
                emitted.insert(id);
                result.push(node);
            }
        }
    }
    result.reverse();
    result
}

pub fn leaves<T, ID, II, NI>(
    start: II,
    neighbors_fn: &mut impl FnMut(&T) -> NI,
    id_fn: &impl Fn(&T) -> ID,
) -> HashSet<T>
where
    T: Hash + Eq + Clone,
    ID: Hash + Eq,
    II: IntoIterator<Item = T>,
    NI: IntoIterator<Item = T>,
{
    let mut visited = HashSet::new();
    let mut work: Vec<T> = start.into_iter().collect();
    let mut leaves: HashSet<T> = work.iter().cloned().collect();
    let mut non_leaves = HashSet::new();
    while !work.is_empty() {
        // TODO: make this not waste so much memory on the sets
        let mut new_work = vec![];
        for c in work {
            let id: ID = id_fn(&c);
            if visited.contains(&id) {
                continue;
            }
            for p in neighbors_fn(&c) {
                non_leaves.insert(c.clone());
                new_work.push(p);
            }
            visited.insert(id);
            leaves.insert(c);
        }
        work = new_work;
    }
    leaves.difference(&non_leaves).cloned().collect()
}

/// Find nodes in the start set that are not reachable from other nodes in the
/// start set.
pub fn heads<T, ID, II, NI>(
    start: II,
    neighbors_fn: &impl Fn(&T) -> NI,
    id_fn: &impl Fn(&T) -> ID,
) -> HashSet<T>
where
    T: Hash + Eq + Clone,
    ID: Hash + Eq,
    II: IntoIterator<Item = T>,
    NI: IntoIterator<Item = T>,
{
    let start: Vec<T> = start.into_iter().collect();
    let mut reachable: HashSet<T> = start.iter().cloned().collect();
    for _node in bfs(
        start.into_iter(),
        Box::new(id_fn),
        Box::new(|node| {
            let neighbors: Vec<T> = neighbors_fn(node).into_iter().collect();
            for neighbor in &neighbors {
                reachable.remove(neighbor);
            }
            neighbors
        }),
    ) {}
    reachable
}

pub fn common_ancestor<'a, I1, I2>(set1: I1, set2: I2) -> Commit
where
    I1: IntoIterator<Item = &'a Commit>,
    I2: IntoIterator<Item = &'a Commit>,
{
    let set1: Vec<Commit> = set1.into_iter().cloned().collect();
    let set2: Vec<Commit> = set2.into_iter().cloned().collect();
    closest_common_node(set1, set2, &|commit| commit.parents(), &|commit| {
        commit.id().clone()
    })
    .unwrap()
}

pub fn closest_common_node<T, ID, II1, II2, NI>(
    set1: II1,
    set2: II2,
    neighbors_fn: &impl Fn(&T) -> NI,
    id_fn: &impl Fn(&T) -> ID,
) -> Option<T>
where
    T: Hash + Eq + Clone,
    ID: Hash + Eq,
    II1: IntoIterator<Item = T>,
    II2: IntoIterator<Item = T>,
    NI: IntoIterator<Item = T>,
{
    let mut visited1 = HashSet::new();
    let mut visited2 = HashSet::new();

    let mut work1: Vec<T> = set1.into_iter().collect();
    let mut work2: Vec<T> = set2.into_iter().collect();
    while !work1.is_empty() || !work2.is_empty() {
        let mut new_work1 = vec![];
        for node in work1 {
            let id: ID = id_fn(&node);
            if visited2.contains(&id) {
                return Some(node);
            }
            if visited1.insert(id) {
                for neighbor in neighbors_fn(&node) {
                    new_work1.push(neighbor);
                }
            }
        }
        work1 = new_work1;

        let mut new_work2 = vec![];
        for node in work2 {
            let id: ID = id_fn(&node);
            if visited1.contains(&id) {
                return Some(node);
            }
            if visited2.insert(id) {
                for neighbor in neighbors_fn(&node) {
                    new_work2.push(neighbor);
                }
            }
        }
        work2 = new_work2;
    }
    None
}

#[cfg(test)]
mod tests {
    use super::*;

    #[test]
    fn test_topo_order_reverse_linear() {
        // This graph:
        //  o C
        //  o B
        //  o A

        let neighbors = hashmap! {
            'A' => vec![],
            'B' => vec!['A'],
            'C' => vec!['B'],
        };

        let common = topo_order_reverse(
            vec!['C'],
            Box::new(|node| *node),
            Box::new(move |node| neighbors[node].clone()),
        );

        assert_eq!(common, vec!['C', 'B', 'A']);
    }

    #[test]
    fn test_topo_order_reverse_merge() {
        // This graph:
        //  o F
        //  |\
        //  o | E
        //  | o D
        //  | o C
        //  | o B
        //  |/
        //  o A

        let neighbors = hashmap! {
            'A' => vec![],
            'B' => vec!['A'],
            'C' => vec!['B'],
            'D' => vec!['C'],
            'E' => vec!['A'],
            'F' => vec!['E', 'D'],
        };

        let common = topo_order_reverse(
            vec!['F'],
            Box::new(|node| *node),
            Box::new(move |node| neighbors[node].clone()),
        );

        assert_eq!(common, vec!['F', 'E', 'D', 'C', 'B', 'A']);
    }

    #[test]
    fn test_topo_order_reverse_multiple_heads() {
        // This graph:
        //  o F
        //  |\
        //  o | E
        //  | o D
        //  | | o C
        //  | | |
        //  | | o B
        //  | |/
        //  |/
        //  o A

        let neighbors = hashmap! {
            'A' => vec![],
            'B' => vec!['A'],
            'C' => vec!['B'],
            'D' => vec!['A'],
            'E' => vec!['A'],
            'F' => vec!['E', 'D'],
        };

        let common = topo_order_reverse(
            vec!['F', 'C'],
            Box::new(|node| *node),
            Box::new(move |node| neighbors[node].clone()),
        );

        assert_eq!(common, vec!['F', 'E', 'D', 'C', 'B', 'A']);
    }

    #[test]
    fn test_closest_common_node_tricky() {
        // Test this case where A is the shortest distance away, but we still want the
        // result to be B because A is an ancestor of B. In other words, we want
        // to minimize the longest distance.
        //
        //  E       H
        //  |\     /|
        //  | D   G |
        //  | C   F |
        //   \ \ / /
        //    \ B /
        //     \|/
        //      A

        let neighbors = hashmap! {
            'A' => vec![],
            'B' => vec!['A'],
            'C' => vec!['B'],
            'D' => vec!['C'],
            'E' => vec!['A','D'],
            'F' => vec!['B'],
            'G' => vec!['F'],
            'H' => vec!['A', 'G'],
        };

        let common = closest_common_node(
            vec!['E'],
            vec!['H'],
            &|node| neighbors[node].clone(),
            &|node| *node,
        );

        // TODO: fix the implementation to return B
        assert_eq!(common, Some('A'));
    }

    #[test]
    fn test_heads_mixed() {
        // Test the uppercase letters are in the start set
        //
        //  D F
        //  |/|
        //  C e
        //  |/
        //  b
        //  |
        //  A

        let neighbors = hashmap! {
            'A' => vec![],
            'b' => vec!['A'],
            'C' => vec!['b'],
            'D' => vec!['C'],
            'e' => vec!['b'],
            'F' => vec!['C', 'e'],
        };

        let actual = heads(
            vec!['A', 'C', 'D', 'F'],
            &|node| neighbors[node].clone(),
            &|node| *node,
        );
        assert_eq!(actual, hashset!['D', 'F']);

        // Check with a different order in the start set
        let actual = heads(
            vec!['F', 'D', 'C', 'A'],
            &|node| neighbors[node].clone(),
            &|node| *node,
        );
        assert_eq!(actual, hashset!['D', 'F']);
    }
}