1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
//! Schema generator and its settings.

mod naming_strategy;

use std::collections::{HashMap, HashSet};
use std::fmt::Debug;

use self::naming_strategy::NamingStrategy;
use crate::schema::{RootSchema, Schema, SchemaType};
use crate::type_id::{type_id, TypeId};
use crate::{JsonTypedef, Names};

/// A configurable schema generator. An instance is meant to produce one
/// [`RootSchema`] and be consumed in the process.
///
/// If you want to just use the sane defaults, try [`Generator::default()`].
///
/// Otherwise, you can configure schema generation using the builder.
///
/// # Examples
///
/// Using the default settings:
///
/// ```
/// use jtd_derive::{JsonTypedef, Generator};
///
/// #[derive(JsonTypedef)]
/// struct Foo {
///     x: u32,
/// }
///
/// let root_schema = Generator::default().into_root_schema::<Foo>().unwrap();
/// let json_schema = serde_json::to_value(&root_schema).unwrap();
///
/// assert_eq!(json_schema, serde_json::json!{ {
///     "properties": {
///         "x": { "type": "uint32" }
///     },
///     "additionalProperties": true,
/// } });
/// ```
///
/// Using custom settings:
///
/// ```
/// use jtd_derive::{JsonTypedef, Generator};
///
/// #[derive(JsonTypedef)]
/// struct Foo {
///     x: u32,
/// }
///
/// let root_schema = Generator::builder()
///     .top_level_ref()
///     .naming_short()
///     .build()
///     .into_root_schema::<Foo>()
///     .unwrap();
/// let json_schema = serde_json::to_value(&root_schema).unwrap();
///
/// assert_eq!(json_schema, serde_json::json!{ {
///     "definitions": {
///         "Foo": {
///             "properties": {
///                 "x": { "type": "uint32" }
///             },
///             "additionalProperties": true,
///         }
///     },
///     "ref": "Foo",
/// } });
/// ```
#[derive(Default, Debug)]
pub struct Generator {
    naming_strategy: NamingStrategy,
    /// Types for which at least one ref was created during schema gen.
    /// By keeping track of these, we can clean up unused definitions at the end.
    refs: HashSet<TypeId>,
    definitions: HashMap<TypeId, (Names, DefinitionState)>,
    inlining: Inlining,
}

impl Generator {
    /// Provide a `Generator` builder, allowing for some customization.
    pub fn builder() -> GeneratorBuilder {
        GeneratorBuilder::default()
    }

    /// Generate the root schema for the given type according to the settings.
    /// This consumes the generator.
    ///
    /// This will return an error if a naming collision is detected, i.e. two
    /// distinct Rust types produce the same identifier.
    pub fn into_root_schema<T: JsonTypedef>(mut self) -> Result<RootSchema, GenError> {
        let schema = self.sub_schema_impl::<T>(true);
        self.clean_up_defs();

        fn process_defs(
            defs: HashMap<TypeId, (Names, DefinitionState)>,
            ns: &mut NamingStrategy,
        ) -> Result<HashMap<String, Schema>, GenError> {
            // This could probably be optimized somehow.

            let defs = defs
                .into_iter()
                .map(|(_, (n, s))| (ns.fun()(&n), (n, s.unwrap())));

            let mut map = HashMap::new();

            for (key, (names, schema)) in defs {
                if let Some((other_names, _)) = map.get(&key) {
                    return Err(GenError::NameCollision {
                        id: key,
                        type1: NamingStrategy::long().fun()(other_names),
                        type2: NamingStrategy::long().fun()(&names),
                    });
                } else {
                    map.insert(key, (names, schema));
                }
            }

            Ok(map
                .into_iter()
                .map(|(key, (_, schema))| (key, schema))
                .collect())
        }

        Ok(RootSchema {
            definitions: process_defs(self.definitions, &mut self.naming_strategy)?,
            schema,
        })
    }

    /// Generate a [`Schema`] for a given type, adding definitions to the
    /// generator as appropriate.
    ///
    /// This is meant to only be called when implementing [`JsonTypedef`] for
    /// new types. Most commonly you'll derive that trait. It's unlikely you'll
    /// need to call this method explicitly.
    pub fn sub_schema<T: JsonTypedef + ?Sized>(&mut self) -> Schema {
        self.sub_schema_impl::<T>(false)
    }

    fn sub_schema_impl<T: JsonTypedef + ?Sized>(&mut self, top_level: bool) -> Schema {
        let id = type_id::<T>();
        let inlining = match self.inlining {
            Inlining::Always => true,
            Inlining::Normal => top_level,
            Inlining::Never => false,
        };

        let inlined_schema = match self.definitions.get(&id) {
            Some((_, DefinitionState::Finished(schema))) => {
                // we had already built a schema for this type.
                // no need to do it again.

                (!T::referenceable() || (inlining && !self.refs.contains(&id)))
                    .then_some(schema.clone())
            }
            Some((_, DefinitionState::Processing)) => {
                // we're already in the process of building a schema for this type.
                // this means it's recursive and the only way to keep things sane
                // is to go by reference

                None
            }
            None => {
                // no schema available yet, so we have to build it
                if T::referenceable() {
                    self.definitions
                        .insert(id, (T::names(), DefinitionState::Processing));
                    let schema = T::schema(self);
                    self.definitions
                        .get_mut(&id)
                        .unwrap()
                        .1
                        .finalize(schema.clone());

                    (inlining && !self.refs.contains(&id)).then_some(schema)
                } else {
                    Some(T::schema(self))
                }
            }
        };

        inlined_schema.unwrap_or_else(|| {
            let schema = Schema {
                ty: SchemaType::Ref {
                    r#ref: self.naming_strategy.fun()(&T::names()),
                },
                ..Schema::default()
            };
            self.refs.insert(id);
            schema
        })
    }

    fn clean_up_defs(&mut self) {
        let to_remove: Vec<_> = self
            .definitions
            .keys()
            .filter(|names| !self.refs.contains(names))
            .cloned()
            .collect();

        for names in to_remove {
            self.definitions.remove(&names);
        }
    }
}

#[derive(Debug, Clone, Copy)]
enum Inlining {
    Always,
    Normal,
    Never,
}

impl Default for Inlining {
    fn default() -> Self {
        Inlining::Normal
    }
}

/// Builder for [`Generator`]. For example usage, refer to [`Generator`].
#[derive(Default, Debug)]
pub struct GeneratorBuilder {
    inlining: Inlining,
    naming_strategy: Option<NamingStrategy>,
}

impl GeneratorBuilder {
    /// Always try to inline complex types rather than provide them using
    /// definitions/refs. The exception is recursive types - these cannot
    /// be expressed without a ref.
    pub fn prefer_inline(&mut self) -> &mut Self {
        self.inlining = Inlining::Always;
        self
    }

    /// Where possible, provide types by ref even for the top-level type.
    pub fn top_level_ref(&mut self) -> &mut Self {
        self.inlining = Inlining::Never;
        self
    }

    /// A naming strategy that produces the stringified name
    /// of the type with type parameters and const parameters in angle brackets.
    ///
    /// E.g. if you have a struct like this in the top-level of `my_crate`:
    ///
    /// ```
    /// #[derive(jtd_derive::JsonTypedef)]
    /// struct Foo<T, const N: usize> {
    ///     x: [T; N],
    /// }
    /// ```
    ///
    /// Then the concrete type `Foo<u32, 5>` will be named `"Foo<uint32, 5>"`
    /// in the schema.
    ///
    /// Please note that this representation is prone to name collisions if you
    /// use identically named types in different modules or crates.
    pub fn naming_short(&mut self) -> &mut Self {
        self.naming_strategy = Some(NamingStrategy::short());
        self
    }

    /// Use the `long` naming strategy. This is the default.
    ///
    /// The `long` naming strategy produces the stringified full path
    /// of the type with type parameters and const parameters in angle brackets.
    ///
    /// E.g. if you have a struct like this in the top-level of `my_crate`:
    ///
    /// ```
    /// #[derive(jtd_derive::JsonTypedef)]
    /// struct Foo<T, const N: usize> {
    ///     x: [T; N],
    /// }
    /// ```
    ///
    /// Then the concrete type `Foo<u32, 5>` will be named `"my_crate::Foo<uint32, 5>"`
    /// in the schema.
    ///
    /// This representation will prevent name collisions under normal circumstances,
    /// but it's technically possible some type will manually implement `names()`
    /// in a weird way.
    pub fn naming_long(&mut self) -> &mut Self {
        self.naming_strategy = Some(NamingStrategy::long());
        self
    }

    /// Use a custom naming strategy.
    pub fn naming_custom(&mut self, f: impl Fn(&Names) -> String + 'static) -> &mut Self {
        self.naming_strategy = Some(NamingStrategy::custom(f));
        self
    }

    /// Finalize the configuration and get a `Generator`.
    pub fn build(&mut self) -> Generator {
        Generator {
            inlining: self.inlining,
            naming_strategy: self.naming_strategy.take().unwrap_or_default(),
            ..Generator::default()
        }
    }
}

#[derive(Debug, Clone)]
enum DefinitionState {
    Finished(Schema),
    Processing,
}

impl DefinitionState {
    fn unwrap(self) -> Schema {
        if let Self::Finished(schema) = self {
            schema
        } else {
            panic!()
        }
    }

    fn finalize(&mut self, schema: Schema) {
        match self {
            DefinitionState::Finished(_) => panic!("schema already finalized"),
            DefinitionState::Processing => *self = DefinitionState::Finished(schema),
        }
    }
}

impl Default for DefinitionState {
    fn default() -> Self {
        Self::Processing
    }
}

/// Schema generation errors.
#[derive(Debug, Clone, PartialEq, Eq, Hash, thiserror::Error)]
pub enum GenError {
    /// A name collision was detected, i.e. two distinct types have the same
    /// definition/ref identifiers.
    #[error("definition/ref id \"{id}\" is shared by types `{type1}` and `{type2}`")]
    NameCollision {
        type1: String,
        type2: String,
        id: String,
    },
}