json_escape/
lib.rs

1//! # Streaming JSON String Escape/Unescape
2//!
3//! Welcome to a highly efficient, `no_std` compatible library for handling JSON string escaping and unescaping. This crate provides iterator-based tools that process strings on the fly, avoiding heap allocations for the entire result. It's designed for performance-critical applications, such as parsing large JSON files or working in memory-constrained environments. ⚡
4//!
5//! The core of the library is two iterator structs:
6//! - **[`Escape`]**: Takes a string slice (`&str`) and yields escaped string slices ready for JSON serialization.
7//! - **[`Unescape`]**: Takes a byte slice (`&[u8]`) representing the content of a JSON string and yields the decoded byte slices.
8//!
9//! ## Key Features
10//! - **Zero-Copy Slicing**: For sequences of characters that don't need modification, the iterators yield slices that borrow directly from the input, avoiding unnecessary data copying.
11//! - **Comprehensive JSON Support**: Correctly handles all standard JSON escapes: `\"`, `\\`, `\/`, `\b`, `\f`, `\n`, `\r`, `\t`.
12//! - **Full Unicode Handling**: Correctly decodes `\uXXXX` sequences, including full support for UTF-16 surrogate pairs (e.g., `\uD83D\uDE00` for `😀`).
13//! - **Robust Error Handling**: The `Unescape` iterator returns descriptive errors (`UnescapeError`) for invalid or truncated escape sequences, making debugging straightforward.
14//! - **Allocation Control** (with `alloc` feature): Provides convenient methods to collect the iterator's output into owned types like `String` or `Cow<str>`.
15//! - **`std::io` Integration** (with `std` feature): The `Unescape` iterator implements `std::io::Read`, allowing it to be used as an efficient reader for I/O streams.
16//!
17//! ## Quick Start: Escaping a String
18//!
19//! ```
20//! use json_escape::escape_str;
21//!
22//! let input = "Hello, \"world\"!\nThis contains a \\ backslash.";
23//! let expected = r#"Hello, \"world\"!\nThis contains a \\ backslash."#;
24//!
25//! // The `escape_str` function returns an iterator.
26//! let mut escaper = escape_str(input);
27//!
28//! // You can iterate over the chunks:
29//! assert_eq!(escaper.next(), Some("Hello, "));
30//! assert_eq!(escaper.next(), Some(r#"\""#));
31//! assert_eq!(escaper.next(), Some("world"));
32//! // ...and so on.
33//!
34//! // Or, collect it into a String (requires the "alloc" feature).
35//! // let escaped_string: String = escape_str(input).collect();
36//! // assert_eq!(escaped_string, expected);
37//! ```
38//!
39//! ## Quick Start: Unescaping a String
40//!
41//! ```
42//! use json_escape::unescape;
43//!
44//! let input = r#"A 😀 emoji: \uD83D\uDE00 and a tab\t!"#;
45//!
46//! // The unescape iterator yields `Result<&[u8], _>`.
47//! let unescaper = unescape(input);
48//!
49//! // With the "alloc" feature, you can decode it directly into a string.
50//! let decoded_cow = unescaper.decode_utf8().unwrap();
51//! assert_eq!(decoded_cow, "A 😀 emoji: 😀 and a tab\t!");
52//! ```
53#![no_std]
54#![deny(missing_docs)]
55#![cfg_attr(all(feature = "simd", nightly), feature(portable_simd))]
56
57#[cfg(any(test, feature = "std"))]
58extern crate std;
59
60#[cfg(feature = "alloc")]
61extern crate alloc;
62
63#[cfg(any(test, feature = "alloc"))]
64use alloc::{borrow::Cow, string::String, vec::Vec};
65
66use core::{
67    char,
68    fmt::{self, Write as _},
69    iter::FusedIterator,
70    slice, str,
71};
72use memchr::memchr;
73
74// =============================================================================
75// Escape Implementation
76// =============================================================================
77
78/// Creates a streaming JSON string escaper from a string slice.
79///
80/// The returned [`Escape`] iterator lazily processes the input string, yielding
81/// slices that represent the escaped output.
82///
83/// # Examples
84///
85/// ```
86/// use json_escape::escape_str;
87///
88/// let escaper = escape_str("a\nb");
89/// let escaped_parts: Vec<_> = escaper.collect();
90///
91/// assert_eq!(escaped_parts, vec!["a", r#"\n"#, "b"]);
92/// ```
93#[inline]
94pub fn escape_str(input: &str) -> Escape<'_> {
95    Escape {
96        bytes: input.as_bytes(),
97    }
98}
99
100/// A streaming JSON string escaper that yields `&'a str` slices.
101///
102/// This struct is created by the [`escape_str`] function. It is an [`Iterator`]
103/// that breaks the input string into chunks at each character that needs to be
104/// escaped according to JSON rules.
105///
106/// - For sequences of safe characters, it yields a single borrowed slice (`&'a str`).
107/// - For each character that must be escaped, it yields a `'static` slice
108///   containing the escaped representation (e.g., `r#"\n"#`).
109///
110/// This approach is highly efficient as it avoids allocating a new string for the
111/// entire output, processing the input in a streaming fashion.
112///
113/// ### Implemented Traits
114/// - **`Iterator<Item = &'a str>`**: Allows you to process the escaped parts in a loop or with adapters.
115/// - **`Display`**: Lets you write the escaped content directly to any formatter, like `println!` or a file, without intermediate allocation.
116/// - **`Clone`**, **`Debug`**: Standard utility traits.
117/// - **`PartialEq`**, **`PartialEq<B: AsRef<[u8]>>`**: Allows direct comparison of the escaped output. An `Escape` iterator is equal to another `Escape` or a byte slice if they produce an identical sequence of escaped bytes.
118/// - **`From<Escape<'a>> for Cow<'a, str>`** (requires `alloc` feature): Provides an efficient way to convert the iterator into a potentially owned string.
119#[derive(Clone)]
120#[must_use = "iterators are lazy and do nothing unless consumed"]
121pub struct Escape<'a> {
122    bytes: &'a [u8],
123}
124
125impl<'a> Iterator for Escape<'a> {
126    type Item = &'a str;
127
128    #[inline]
129    fn next(&mut self) -> Option<&'a str> {
130        if self.bytes.is_empty() {
131            return None;
132        }
133
134        // Find the first byte that needs escaping.
135        let pos = find_escape_char(self.bytes);
136
137        match pos {
138            // No escapable characters left; return the rest of the slice.
139            None => {
140                let s = self.bytes;
141                self.bytes = &[];
142                // SAFETY: The input was a valid &str, and we're returning the
143                // whole remaining chunk, so it's still valid UTF-8.
144                Some(unsafe { str::from_utf8_unchecked(s) })
145            }
146            // An escapable byte is at the beginning of the slice.
147            Some(0) => {
148                let byte = self.bytes[0];
149                self.bytes = &self.bytes[1..];
150                // The table lookup gives us a &'static str, which is a valid &'a str.
151                //
152                // Some(....unwrap()) is more correct
153                ESCAPE_TABLE[byte as usize]
154            }
155            // Found an escapable byte after a safe prefix. Return the prefix.
156            Some(p) => {
157                let (prefix, rest) = self.bytes.split_at(p);
158                self.bytes = rest;
159                // SAFETY: The soundness of this operation is critical.
160                // We are splitting the byte slice at the position of the first
161                // character that requires escaping. All JSON characters that
162                // require escaping (`"`, `\`, and control characters `\u0000`-`\u001F`)
163                // are single-byte ASCII characters. Therefore, `p` is guaranteed
164                // to be on a valid UTF-8 character boundary.
165                Some(unsafe { str::from_utf8_unchecked(prefix) })
166            }
167        }
168    }
169
170    fn size_hint(&self) -> (usize, Option<usize>) {
171        if self.bytes.is_empty() {
172            (0, Some(0))
173        } else {
174            // We'll yield at least 1 slice, and at most `len` slices if every byte is escaped.
175            (1, Some(self.bytes.len()))
176        }
177    }
178}
179
180impl<'a> FusedIterator for Escape<'a> {}
181
182impl fmt::Display for Escape<'_> {
183    /// Allows direct formatting of the escaped string without intermediate allocation.
184    ///
185    /// This is very useful for writing the escaped output directly to a stream,
186    /// such as a file or a network socket.
187    ///
188    /// # Example
189    ///
190    /// ```
191    /// use json_escape::escape_str;
192    ///
193    /// let escaper = escape_str("User said: \"Hi!\"\n");
194    /// let formatted = format!("{}", escaper);
195    ///
196    /// assert_eq!(formatted, r#"User said: \"Hi!\"\n"#);
197    /// ```
198    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
199        // The `clone()` is cheap as it only copies a slice reference.
200        for s in self.clone() {
201            f.write_str(s)?
202        }
203        Ok(())
204    }
205}
206
207impl fmt::Debug for Escape<'_> {
208    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
209        f.debug_struct("Escape").finish_non_exhaustive()
210    }
211}
212
213impl<B: AsRef<[u8]> + ?Sized> PartialEq<B> for Escape<'_> {
214    /// Compares the escaped output with any byte-slice-like object.
215    ///
216    /// This is primarily a convenience for testing, allowing you to check the
217    /// fully concatenated result of an `Escape` iterator against a known `&str` or `&[u8]`.
218    ///
219    /// The notion of equality is based on the **output**, not the iterator's internal state.
220    ///
221    /// # Example
222    ///
223    /// ```
224    /// use json_escape::escape_str;
225    ///
226    /// let escaper = escape_str("key\tvalue");
227    ///
228    /// // The escaper's output, when concatenated, equals the right-hand side.
229    /// assert_eq!(escaper, r#"key\tvalue"#);
230    /// ```
231    fn eq(&self, other: &B) -> bool {
232        let mut other = other.as_ref();
233        for chunk in self.clone() {
234            if !other.starts_with(chunk.as_bytes()) {
235                return false;
236            }
237            other = &other[chunk.len()..];
238        }
239        // We completely searched it
240        other.is_empty()
241    }
242}
243
244impl<'a, 'b> PartialEq<Escape<'a>> for Escape<'b> {
245    /// Compares two `Escape` iterators for equality.
246    ///
247    /// Two `Escape` iterators are considered equal if they'll produce the same **output**.
248    /// It first performs a fast check on the underlying byte slices.
249    fn eq(&self, other: &Escape<'a>) -> bool {
250        // Fast path: if they are views into the same underlying data.
251        self.bytes == other.bytes || chunks_eq(self.clone(), other.clone())
252    }
253}
254
255#[cfg(feature = "alloc")]
256impl<'a> From<Escape<'a>> for Cow<'a, str> {
257    /// Efficiently collects the escaped parts into a `Cow<'a, str>`.
258    ///
259    /// This implementation is optimized to avoid allocation if possible:
260    /// - If the input string requires **no escaping**, it returns `Cow::Borrowed`
261    ///   with a slice of the original string.
262    /// - If escaping is needed, it allocates a `String` and returns `Cow::Owned`.
263    ///
264    /// This is more efficient than `iter.collect::<String>()` because `collect`
265    /// will always allocate.
266    ///
267    /// **Requires the `alloc` feature.**
268    ///
269    /// # Example
270    ///
271    /// ```
272    /// # #[cfg(feature = "alloc")] {
273    /// use json_escape::escape_str;
274    /// use std::borrow::Cow;
275    ///
276    /// // No escaping needed, so no allocation occurs.
277    /// let cow_borrowed: Cow<str> = escape_str("plain text").into();
278    /// assert!(matches!(cow_borrowed, Cow::Borrowed(_)));
279    ///
280    /// // Escaping is required, so a new String is allocated.
281    /// let cow_owned: Cow<str> = escape_str("text with\nnewline").into();
282    /// assert!(matches!(cow_owned, Cow::Owned(_)));
283    /// assert_eq!(cow_owned, r#"text with\nnewline"#);
284    /// # }
285    /// ```
286    fn from(mut iter: Escape<'a>) -> Self {
287        match iter.next() {
288            None => Cow::Borrowed(""),
289            Some(first) => match iter.next() {
290                None => Cow::Borrowed(first),
291                Some(second) => {
292                    let mut string =
293                        String::with_capacity(first.len() + second.len() + iter.bytes.len());
294                    string.push_str(first);
295                    string.push_str(second);
296                    string.extend(iter);
297                    Cow::Owned(string)
298                }
299            },
300        }
301    }
302}
303
304// =============================================================================
305// Unescape Implementation
306// =============================================================================
307
308/// Creates a streaming JSON string unescaper from a byte slice.
309///
310/// This function creates an iterator to unescape a byte slice representing the
311/// **raw contents** of a JSON string, assuming the outer quotes have already
312/// been removed.
313///
314/// For a more convenient way to handle complete JSON string literals (including
315/// their surrounding `"` quotes), see the [`unescape_quoted`] function, which
316/// automatically trims them.
317///
318/// The iterator will fail if the input contains invalid JSON escape sequences.
319///
320/// # Example
321///
322/// ```
323/// use json_escape::{unescape, unescape_quoted};
324///
325/// // `unescape` works on the raw content, without quotes.
326/// let content = r#"hello\tworld"#;
327/// assert_eq!(unescape(content), "hello\tworld");
328///
329/// // If you pass a full JSON literal, the quotes are treated as literal characters.
330/// let literal = r#""hello\tworld""#;
331/// assert_eq!(unescape(literal), "\"hello\tworld\""); // Note the quotes in the output.
332///
333/// // For full literals like this, `unescape_quoted` is the recommended function.
334/// assert_eq!(unescape_quoted(literal), "hello\tworld");
335/// ```
336#[inline]
337pub fn unescape<I: AsRef<[u8]> + ?Sized>(input: &I) -> Unescape<'_> {
338    Unescape::new(input.as_ref())
339}
340
341/// Creates a streaming JSON string unescaper, trimming enclosing quotes.
342///
343/// This function acts as a convenience wrapper around [`unescape`]. It first
344/// inspects the input byte slice. If the slice begins and ends with a double-quote
345/// character (`"`), these quotes are trimmed before the inner content is passed to
346/// the unescaper.
347///
348/// If the input is not enclosed in quotes, this function behaves exactly like
349/// [`unescape`]. This is useful for directly unescaping a complete JSON string
350/// literal.
351///
352/// # Example
353///
354/// ```
355/// use json_escape::{unescape, unescape_quoted};
356///
357/// // 1. With quotes: The outer quotes are trimmed before unescaping.
358/// let unescaper = unescape_quoted(r#""hello\nworld""#);
359/// assert_eq!(unescaper, b"hello\nworld");
360///
361/// // 2. Without quotes: Behaves exactly like the standard `unescape`.
362/// let unescaper_no_quotes = unescape_quoted(r#"raw string"#);
363/// assert_eq!(unescaper_no_quotes, b"raw string");
364///
365/// // 3. Mismatched quotes: The input is passed through as-is, quotes are not trimmed.
366/// let mismatched_quotes = unescape_quoted(r#"hello""#);
367/// assert_eq!(mismatched_quotes, b"hello\"");
368///
369/// // 4. Empty quoted string: Correctly results in an empty output.
370/// let empty_quoted = unescape_quoted(r#""""#);
371/// assert_eq!(empty_quoted, b"");
372/// ```
373#[inline]
374pub fn unescape_quoted<I: AsRef<[u8]> + ?Sized>(input: &I) -> Unescape<'_> {
375    let bytes = input.as_ref();
376    let input = if bytes.len() >= 2 && bytes[0] == b'\"' && bytes[bytes.len() - 1] == b'\"' {
377        &bytes[1..bytes.len() - 1]
378    } else {
379        bytes
380    };
381
382    unescape(input)
383}
384
385/// A streaming JSON string unescaper.
386///
387/// This struct is created by the [`unescape`] function. It implements an [`Iterator`]
388/// that yields `Result<&'a [u8], UnescapeError>`, lazily decoding the input.
389///
390/// The iterator's output chunks are either:
391/// - **`Ok(&'a [u8])`**: A borrowed slice of the original input for a sequence of non-escaped bytes.
392/// - **`Ok(&'static [u8])`**: A single-byte slice for a decoded escape sequence (e.g., `\n` becomes a slice containing `0x0A`). For `\uXXXX` sequences, it yields a series of single-byte slices representing the UTF-8 encoding of the character.
393/// - **`Err(UnescapeError)`**: An error indicating an invalid escape sequence, which halts further iteration.
394///
395/// Because it operates on bytes, you can use helper methods like [`Unescape::decode_utf8`] or [`Unescape::decode_utf8_lossy`] to convert the final result into a string.
396///
397/// ### Implemented Traits
398/// - **`Iterator<Item = Result<&'a [u8], UnescapeError>>`**: The core trait for processing the unescaped byte chunks.
399/// - **`std::io::Read`** (requires `std` feature): Lets you use the unescaper as a standard reader, perfect for integrating with other I/O APIs.
400/// - **`Clone`**, **`Debug`**: Standard utility traits.
401/// - **`PartialEq<B: AsRef<[u8]>>`**: Compares the fully unescaped output with a byte slice.
402/// - **`TryFrom<Unescape<'a>> for Cow<'a, [u8]>`** (requires `alloc` feature): An efficient way to collect the unescaped bytes, propagating any errors.
403///
404/// ### Reading Unescaped Bytes
405///
406/// With the `std` feature, `Unescape` can be used as any other `std::io::Read` source.
407/// This is ideal for streaming and decoding large JSON string contents without
408/// buffering the entire result in memory first.
409///
410/// ```
411/// # #[cfg(feature = "std")] {
412/// use json_escape::unescape;
413/// use std::io::Read;
414///
415/// let mut reader = unescape(r#"chunk1\nchunk2"#);
416/// let mut buf = Vec::new();
417///
418/// // Read all unescaped bytes from the iterator into the buffer.
419/// reader.read_to_end(&mut buf).unwrap();
420///
421/// assert_eq!(buf, b"chunk1\nchunk2");
422/// # }
423/// ```
424#[derive(Clone)]
425#[must_use = "iterators are lazy and do nothing unless consumed"]
426pub struct Unescape<'a> {
427    // iterator over the input bytes (we use slice::Iter to clone/peek where necessary
428    // without worrying too much about bookkeeping)
429    bytes: slice::Iter<'a, u8>,
430
431    // scratch buffer for encoded UTF-8 bytes from a \uXXXX (or surrogate pair)
432    unicode: [u8; 4],
433    // We can eliminate this by depending on the header.
434    unicode_len: u8, // how many bytes are valid in buf (0 means no pending)
435    unicode_pos: u8, // how many bytes already emitted
436}
437
438impl<'a> Unescape<'a> {
439    /// Construct from a byte slice which contains the characters inside the JSON string (no quotes).
440    fn new(input: &'a [u8]) -> Self {
441        Self {
442            bytes: input.iter(),
443            unicode: [0; 4],
444            unicode_len: 0,
445            unicode_pos: 0,
446        }
447    }
448
449    /// Helper: parse exactly 4 hex digits from `it`. Returns Ok(u16) or an error.
450    #[inline(always)]
451    fn parse_hex4(iter: &mut slice::Iter<'a, u8>, base_offset: u8) -> Result<u16, UnescapeError> {
452        let mut acc = 0u16;
453        for i in 0..4 {
454            let b = match iter.next() {
455                Some(b) => *b,
456                None => {
457                    return Err(UnescapeError {
458                        kind: UnescapeErrorKind::UnexpectedEof,
459                        // The error occurs where the next digit was expected.
460                        offset: base_offset + i,
461                    });
462                }
463            };
464            let v = match b {
465                b'0'..=b'9' => (b - b'0') as u16,
466                b'a'..=b'f' => (b - b'a' + 10) as u16,
467                b'A'..=b'F' => (b - b'A' + 10) as u16,
468                _ => {
469                    return Err(UnescapeError {
470                        kind: UnescapeErrorKind::InvalidHex(InvalidHexError { found: b }),
471                        // The error is the invalid digit itself.
472                        offset: base_offset + i,
473                    });
474                }
475            };
476            acc = (acc << 4) | v;
477        }
478        Ok(acc)
479    }
480
481    #[inline(always)]
482    fn handle_unicode_escape(bytes: &mut slice::Iter<'a, u8>) -> Result<char, UnescapeError> {
483        // We need to parse 4 hex digits from the iterator. But because
484        // `bytes` implements `Clone`, we can clone it to peek ahead
485        // in order to support surrogate pair detection without losing
486        // the original iterator state on failure.
487        let mut cloned_iter = bytes.clone();
488        // parse first 4 hex from cloned_iter to leave original untouched until we commit
489        //
490        // The iterator starts *after* '\u'. The first hex digit is at offset 2 from '\'.
491        let first = Self::parse_hex4(&mut cloned_iter, 2)?;
492
493        // If it's a high surrogate, check for a following `\uXXXX` low surrogate
494        if (0xD800..=0xDBFF).contains(&first) {
495            // cloned_iter currently points after the 4 hex digits; check next two chars
496            if cloned_iter.next() == Some(&b'\\') && cloned_iter.next() == Some(&b'u') {
497                // try parse low
498                //
499                // The first hex digit of the second escape is at offset 8.
500                // (\uXXXX\u -> 8 chars)
501                if let Ok(low) = Self::parse_hex4(&mut cloned_iter, 8) {
502                    if (0xDC00..=0xDFFF).contains(&low) {
503                        // success: we must advance the real iterator
504                        *bytes = cloned_iter;
505                        let high_t = first as u32;
506                        let low_t = low as u32;
507                        let code = 0x10000 + (((high_t - 0xD800) << 10) | (low_t - 0xDC00));
508                        return Ok(char::from_u32(code).expect(
509                            "valid surrogate pair math should always produce a valid char",
510                        ));
511                    }
512                }
513                // If parse_hex4 failed, the error would have been returned.
514                // If it succeeded but the value wasn't a low surrogate, we fallthrough.
515            }
516            // If we reach here, no valid surrogate pair followed. That's a lone high surrogate.
517            return Err(UnescapeError {
518                kind: UnescapeErrorKind::LoneSurrogate(LoneSurrogateError { surrogate: first }),
519                // The error is detected after consuming `\uXXXX` (6 bytes).
520                offset: 6,
521            });
522        }
523
524        // Not a surrogate, or a valid low surrogate on its own (which is an error).
525        // If `first` is a low surrogate, `from_u32` will return None.
526        match char::from_u32(first as u32) {
527            Some(c) => {
528                // Success. Advance the main iterator.
529                *bytes = cloned_iter;
530                Ok(c)
531            }
532
533            None => Err(UnescapeError {
534                kind: UnescapeErrorKind::LoneSurrogate(LoneSurrogateError { surrogate: first }),
535                // The error is detected after consuming `\uXXXX` (6 bytes).
536                offset: 6,
537            }),
538        }
539    }
540
541    #[inline]
542    fn store_unicode(&mut self, ch: char) {
543        self.unicode_len = ch.encode_utf8(&mut self.unicode).len() as u8;
544        self.unicode_pos = 0;
545    }
546
547    #[inline]
548    fn emit_pending_byte(&mut self) -> Option<u8> {
549        if self.unicode_pos < self.unicode_len {
550            let b = self.unicode[self.unicode_pos as usize];
551            self.unicode_pos += 1;
552            Some(b)
553        } else {
554            None
555        }
556    }
557
558    /// Helper to emit the full unicode sequence and advance the internal position.
559    #[inline]
560    fn emit_unicode_as_str(&mut self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
561        // The check `unicode_pos > 0` is implicit from the call site.
562        // The buffer is guaranteed to contain a valid UTF-8 sequence.
563        let s = unsafe { str::from_utf8_unchecked(&self.unicode[..self.unicode_len as usize]) };
564        f.write_str(s)?;
565
566        // Mark the entire sequence as emitted.
567        self.unicode_pos = self.unicode_len;
568
569        Ok(())
570    }
571
572    /// The single, authoritative helper for producing unescaped byte chunks.
573    ///
574    /// It takes an optional `max` length to limit the size of the returned slice,
575    /// which is essential for the `std::io::Read` implementation.
576    #[inline(always)]
577    fn next_limit(&mut self, limit: Option<usize>) -> Option<Result<&'a [u8], UnescapeError>> {
578        if limit.is_some_and(|l| l == 0) {
579            return Some(Ok(&[]));
580        }
581
582        // If we have pending bytes, emit them first (fast).
583        //
584        // LIMIT: We're allowed not checking here since we'll only produce 1 byte
585        // and limit is at least 1.
586        if let Some(s) = self.emit_pending_byte() {
587            // s: &'static [u8] coerces to &'a [u8]
588            return Some(Ok(byte_as_static_slice(s)));
589        }
590
591        let bytes = self.bytes.as_slice();
592        if bytes.is_empty() {
593            return None;
594        }
595
596        // Find next backslash in the remaining bytes.
597        let pos = memchr(b'\\', bytes);
598
599        match pos {
600            None => {
601                // No more escapes. Return the rest of the slice as a borrowed chunk.
602                let chunk_len = bytes.len().min(limit.unwrap_or(bytes.len()));
603                let (chunk, rest) = bytes.split_at(chunk_len);
604                self.bytes = rest.iter();
605                Some(Ok(chunk))
606            }
607            // LIMIT: We're allowed not checking here since we'll only produce 1 byte
608            // and limit is at least 1.
609            Some(0) => {
610                // Backslash is the first byte in the slice: handle escape
611                self.bytes.next(); // Consume the backslash
612
613                // Next byte dictates the escape form
614                match self.bytes.next() {
615                    Some(b'"') => Some(Ok(b"\"")),
616                    Some(b'\\') => Some(Ok(b"\\")),
617                    Some(b'/') => Some(Ok(b"/")),
618                    Some(b'b') => Some(Ok(b"\x08")),
619                    Some(b'f') => Some(Ok(b"\x0C")),
620                    Some(b'n') => Some(Ok(b"\n")),
621                    Some(b'r') => Some(Ok(b"\r")),
622                    Some(b't') => Some(Ok(b"\t")),
623                    Some(b'u') => match Self::handle_unicode_escape(&mut self.bytes) {
624                        Ok(ch) => {
625                            self.store_unicode(ch);
626                            self.emit_pending_byte()
627                                .map(|b| Ok(byte_as_static_slice(b)))
628                        }
629                        Err(err) => Some(Err(err)),
630                    },
631                    Some(other) => Some(Err(UnescapeError {
632                        kind: UnescapeErrorKind::InvalidEscape(InvalidEscapeError {
633                            found: *other,
634                        }),
635                        // The invalid character is 1 byte after '\'.
636                        offset: 1,
637                    })),
638                    None => Some(Err(UnescapeError {
639                        kind: UnescapeErrorKind::UnexpectedEof,
640                        // EOF occurred 1 byte after '\'.
641                        offset: 1,
642                    })),
643                }
644            }
645            // Found \ after a safe prefix. Return the prefix. We'll handle on next call to next
646            Some(p) => {
647                // Return the safe prefix (borrowed from input)
648                let chunk_len = p.min(limit.unwrap_or(p));
649                let (chunk, rest) = bytes.split_at(chunk_len);
650                self.bytes = rest.iter();
651                Some(Ok(chunk))
652            }
653        }
654    }
655
656    fn _display_utf8(mut self, f: &mut fmt::Formatter<'_>, lossy: bool) -> fmt::Result {
657        // The key insight: Chunks with more than one byte are *always*
658        // borrowed from the original input, as all escaped characters
659        // are yielded byte-by-byte.
660        while let Some(result) = self.next() {
661            match result {
662                Ok(chunk) => {
663                    if chunk.is_empty() {
664                        continue;
665                    }
666
667                    // THE CORE LOGIC:
668                    // Check if the iterator just yielded the *first byte* of a *multi-byte* sequence.
669                    // - `unicode_pos == 1` means the first byte was just emitted.
670                    // - `unicode_len > 1` means it's a multi-byte char (e.g., '¢', '😎').
671                    if self.unicode_pos == 1 && self.unicode_len > 1 {
672                        // This is our special case. We have the first byte in `chunk`, but
673                        // it's more efficient to write the whole character at once from our buffer.
674                        self.emit_unicode_as_str(f)?;
675                        // The iterator will no longer yield the rest of the bytes. Since our helper
676                        // has now advanced it. But to be sure...
677                        self.unicode_pos = self.unicode_len;
678                    } else {
679                        // This is the normal case:
680                        // 1. A large chunk borrowed from the original input.
681                        // 2. A single-byte escape like `\n` or `\t`.
682                        // 3. The last byte of a multi-byte sequence (or the only byte).
683                        // In all these cases, we just need to display the chunk we received.
684                        display_bytes_uft8(chunk, f, lossy)?;
685                    }
686                }
687                Err(_) => {
688                    if lossy {
689                        break;
690                    } else {
691                        return Err(fmt::Error);
692                    }
693                }
694            }
695        }
696
697        Ok(())
698    }
699
700    /// Decodes the unescaped byte stream into a UTF-8 string.
701    ///
702    /// This method consumes the iterator and collects all resulting byte chunks.
703    /// If an unescaping error occurs, it's returned immediately. If the final
704    /// sequence of bytes is not valid UTF-8, a UTF-8 error is returned.
705    ///
706    /// Like `From<Escape>`, this is optimized to return a `Cow::Borrowed` if no
707    /// escapes were present in the input, avoiding allocation.
708    ///
709    /// **Requires the `alloc` feature.**
710    ///
711    /// # Example
712    ///
713    /// ```
714    /// # #[cfg(feature = "alloc")] {
715    /// use json_escape::unescape;
716    ///
717    /// let input = r#"Emoji: \uD83D\uDE00"#;
718    /// let cow = unescape(input).decode_utf8().unwrap();
719    ///
720    /// assert_eq!(cow, "Emoji: 😀");
721    /// # }
722    /// ```
723    #[cfg(feature = "alloc")]
724    pub fn decode_utf8(self) -> Result<Cow<'a, str>, DecodeUtf8Error> {
725        match self.try_into().map_err(DecodeUtf8Error::Unescape)? {
726            Cow::Borrowed(bytes) => str::from_utf8(bytes)
727                .map(Cow::Borrowed)
728                .map_err(DecodeUtf8Error::Utf8),
729            Cow::Owned(bytes) => String::from_utf8(bytes)
730                .map(Cow::Owned)
731                .map_err(|e| DecodeUtf8Error::Utf8(e.utf8_error())),
732        }
733    }
734
735    /// Decodes the unescaped byte stream lossily into a UTF-8 string.
736    ///
737    /// This is similar to [`Unescape::decode_utf8`] but replaces any invalid UTF-8 sequences
738    /// with the replacement character (U+FFFD) instead of returning an error.
739    ///
740    /// An `UnescapeError` can still be returned if the JSON escaping itself is invalid.
741    ///
742    /// **Requires the `alloc` feature.**
743    #[cfg(feature = "alloc")]
744    pub fn decode_utf8_lossy(self) -> Result<Cow<'a, str>, UnescapeError> {
745        Ok(decode_utf8_lossy(self.try_into()?))
746    }
747
748    /// Returns a wrapper that implements [`fmt::Display`].
749    ///
750    /// This allows an `Unescape` iterator to be used directly with formatting
751    /// macros like `println!`, `format!`, etc. It writes the unescaped content
752    /// directly to the formatter's buffer, **avoiding any heap allocations**.
753    ///
754    /// The iterator is consumed, and the resulting unescaped string is written
755    /// to the formatter. Any invalid JSON escape sequences or invalid UTF-8 will
756    /// cause a `fmt::Error`. **You should be cautious when using this method
757    /// with the `format!` macro, as a `fmt::Error` from us will cause the macro
758    /// to panic**.
759    ///
760    /// For a more robust alternative that will not panic on `UnescapeError` or
761    /// invalid bytes, consider using [`Unescape::display_utf8_lossy`] instead.
762    ///
763    /// This method is a **zero-allocation** alternative to [`Unescape::decode_utf8`],
764    /// which might allocate a `String` to return the unescaped content.
765    ///
766    /// # Example
767    ///
768    /// ```
769    /// use json_escape::unescape;
770    ///
771    /// let original = r#"Hello, \uD83C\uDF0E!"#;
772    /// let unescaper = unescape(original);
773    ///
774    /// let formatted = format!("{}", unescaper.display_utf8());
775    /// assert_eq!(formatted, "Hello, 🌎!");
776    /// ```
777    pub fn display_utf8(self) -> DisplayUnescape<'a> {
778        DisplayUnescape { inner: self }
779    }
780
781    /// Returns a wrapper that implements [`fmt::Display`] lossily.
782    ///
783    /// This method is an **allocation-free** way to write unescaped content
784    /// to a formatter. It handles invalid JSON escape sequences and invalid
785    /// UTF-8 gracefully, making it a "lossy" operation.
786    ///
787    /// - **Invalid JSON escape sequences:** Instead of causing an error, the iterator
788    ///   terminates without an error.
789    /// - **Invalid UTF-8 bytes:** These are replaced with the Unicode
790    ///   replacement character (U+FFFD).
791    ///
792    /// This method is the **zero-allocation** counterpart to [`Unescape::decode_utf8_lossy`].
793    pub fn display_utf8_lossy(self) -> DisplayUnescapeLossy<'a> {
794        DisplayUnescapeLossy { inner: self }
795    }
796}
797
798impl<'a> Iterator for Unescape<'a> {
799    type Item = Result<&'a [u8], UnescapeError>;
800
801    fn next(&mut self) -> Option<Self::Item> {
802        self.next_limit(None)
803    }
804
805    fn size_hint(&self) -> (usize, Option<usize>) {
806        // The minimum size is 0 (if the rest of the string is an invalid escape).
807        // The maximum size is the remaining length of the underlying bytes + pending_unicode
808        let (lower, upper) = self.bytes.size_hint();
809        let upper = upper.map(|x| x + (self.unicode_len as usize));
810        // Worst-case is \uXXXX -> 1 byte, so 6 -> 1.
811        (lower.saturating_add(1) / 6, upper)
812    }
813}
814
815impl<'a> FusedIterator for Unescape<'a> {}
816
817#[cfg(feature = "std")]
818impl std::io::Read for Unescape<'_> {
819    fn read(&mut self, mut buf: &mut [u8]) -> std::io::Result<usize> {
820        let start_len = buf.len();
821
822        // Read until buf is full or iter drained
823        loop {
824            // If the buffer is empty, we're done.
825            if buf.is_empty() {
826                return Ok(start_len);
827            }
828
829            match self.next_limit(Some(buf.len())) {
830                Some(Ok(chunk)) => {
831                    // chunk.len() <= buf.len()... next_limit ensures this
832                    let len = chunk.len();
833                    buf[..len].copy_from_slice(chunk);
834                    buf = &mut buf[len..]
835                }
836                Some(Err(err)) => {
837                    return Err(std::io::Error::new(std::io::ErrorKind::InvalidData, err));
838                }
839                None => {
840                    // iter is drained
841                    return Ok(start_len - buf.len());
842                }
843            }
844        }
845    }
846
847    // We can provide an optimized version of read_to_end
848    fn read_to_end(&mut self, buf: &mut Vec<u8>) -> std::io::Result<usize> {
849        let start_len = buf.len();
850
851        // Now, efficiently consume the rest of the iterator
852        for result in self {
853            match result {
854                Ok(chunk) => buf.extend_from_slice(chunk),
855                Err(err) => return Err(std::io::Error::new(std::io::ErrorKind::InvalidData, err)),
856            }
857        }
858
859        Ok(buf.len() - start_len)
860    }
861}
862
863impl fmt::Debug for Unescape<'_> {
864    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
865        f.debug_struct("Unescape").finish_non_exhaustive()
866    }
867}
868
869impl<B: AsRef<[u8]> + ?Sized> PartialEq<B> for Unescape<'_> {
870    /// Compares the unescaped output with a byte-slice-like object.
871    ///
872    /// An `Unescape` iterator is considered equal to a byte slice if it successfully
873    /// unescapes to produce a sequence of bytes identical to that slice. If the
874    /// iterator would produce an error, the comparison returns `false`.
875    ///
876    /// # Example
877    ///
878    /// ```
879    /// use json_escape::unescape;
880    ///
881    /// let unescaper = unescape(r#"hello\nworld"#);
882    /// assert_eq!(unescaper, b"hello\nworld");
883    ///
884    /// // An iterator that produces an error is not equal to any valid slice.
885    /// let failing_unescaper = unescape(r#"\k"#);
886    /// assert_ne!(failing_unescaper, b"k");
887    /// ```
888    fn eq(&self, other: &B) -> bool {
889        let mut other = other.as_ref();
890        for result in self.clone() {
891            match result {
892                Ok(chunk) => {
893                    if !other.starts_with(chunk) {
894                        return false;
895                    }
896                    other = &other[chunk.len()..];
897                }
898                Err(_) => return false, // An erroring iterator cannot be equal to a valid slice.
899            }
900        }
901        other.is_empty()
902    }
903}
904
905impl<B: AsRef<[u8]>> PartialEq<Unescape<'_>> for Result<B, UnescapeError> {
906    /// Compares the unescaper's outcome with a `Result`.
907    ///
908    /// This implementation allows for precise testing of the `Unescape` iterator
909    /// by comparing it against either a successful outcome (`Ok`) or a specific
910    /// failure (`Err`).
911    ///
912    /// - If `result` is `Ok(bytes)`, the comparison is `true` only if the iterator
913    ///   completes successfully and its concatenated output is identical to `bytes`.
914    ///
915    /// - If `result` is `Err(error)`, the comparison is `true` only if the iterator
916    ///   produces the exact same `UnescapeError`.
917    ///
918    /// # Example
919    ///
920    /// ```
921    /// use json_escape::{unescape, UnescapeError, InvalidEscapeError};
922    ///
923    /// // --- Success Case ---
924    /// let unescaper = unescape(r#"hello\tworld"#);
925    /// // The comparison is against an `Ok` variant.
926    /// assert_eq!(Ok("hello\tworld"), unescaper);
927    ///
928    /// // --- Error Case ---
929    /// let failing_unescaper = unescape(r#"invalid-\u"#);
930    /// // We can assert that the iterator produces a specific error.
931    /// # let unexpected_eof = unescape(r"\u").next().unwrap().unwrap_err();
932    /// assert_eq!(Err::<&str, _>(unexpected_eof), failing_unescaper);
933    /// ```
934    fn eq(&self, unescape: &Unescape<'_>) -> bool {
935        match self {
936            Ok(expected_bytes) => unescape == expected_bytes,
937            Err(expected_error) => {
938                for result in unescape.clone() {
939                    if let Err(actual_error) = result {
940                        // The iterator's first error is its final outcome.
941                        // It must match the expected error exactly.
942                        return actual_error == *expected_error;
943                    }
944                }
945                // `unescape` completed successfully, but an error was expected.
946                false
947            }
948        }
949    }
950}
951
952impl<'a, 'b> PartialEq<Unescape<'a>> for Unescape<'b> {
953    /// Compares two `Unescape` iterators for equality based on their terminal result.
954    ///
955    /// The equality of two `Unescape` iterators is determined by the final `Result`
956    /// that would be obtained if each iterator were fully consumed (e.g., by using `try_collect()`).
957    ///
958    /// The specific rules are as follows:
959    ///
960    /// 1.  **Error vs. Error**: If both iterators terminate with an `Err`, they are
961    ///     considered **equal** if and only if their `UnescapeError`s are identical.
962    ///     Any bytes successfully unescaped *before* the error are ignored in this case.
963    /// 2.  **Success vs. Success**: If both iterators terminate with `Ok`, they are
964    ///     considered **equal** if and only if the complete sequence of unescaped bytes
965    ///     is identical for both.
966    /// 3.  **Success vs. Error**: If one iterator terminates with `Ok` and the other
967    ///     with `Err`, they are always **not equal**.
968    ///
969    /// # Example
970    ///
971    /// ```
972    /// use json_escape::unescape;
973    ///
974    /// // Case 1: Both iterators produce the same error. They are equal,
975    /// // even though their valid prefixes ("a" and "b") are different.
976    /// let failing_a = unescape(r#"a\k"#);
977    /// let failing_b = unescape(r#"b\k"#);
978    /// assert_eq!(failing_a, failing_b);
979    ///
980    /// // Case 2: Both iterators succeed. Equality depends on the byte stream.
981    /// let successful_a = unescape(r#"hello\nworld"#);
982    /// let successful_b = unescape(r#"hello\nworld"#);
983    /// assert_eq!(successful_a, successful_b);
984    ///
985    /// let successful_c = unescape(r#"different"#);
986    /// assert_ne!(successful_a, successful_c);
987    ///
988    /// // Case 3: One succeeds and one fails. They are not equal.
989    /// let succeeding = unescape(r#"stop"#);
990    /// let failing = unescape(r#"stop\k"#);
991    /// assert_ne!(succeeding, failing);
992    ///
993    /// // Case 4: Both iterators fail differently. They are not equal.
994    /// let failing_a = unescape(r#"data:\k"#);
995    /// let failing_b = unescape(r#"data:\"#);
996    /// assert_ne!(failing_a, failing_b);
997    /// ```
998    fn eq(&self, other: &Unescape<'a>) -> bool {
999        // Fast path: if they are views into the same underlying data with the same state.
1000        ((self.bytes.as_ref() == other.bytes.as_ref())
1001            && (self.unicode == other.unicode)
1002            && (self.unicode_len == other.unicode_len)
1003            && (self.unicode_pos == other.unicode_pos))
1004            || {
1005                let mut a_error = None;
1006                let mut b_error = None;
1007
1008                let mut a = self.clone().map_while(|result| match result {
1009                    Ok(ok) => Some(ok),
1010                    Err(err) => {
1011                        a_error = Some(err);
1012                        None
1013                    }
1014                });
1015
1016                let mut b = other.clone().map_while(|result| match result {
1017                    Ok(ok) => Some(ok),
1018                    Err(err) => {
1019                        b_error = Some(err);
1020                        None
1021                    }
1022                });
1023
1024                let streams_match = chunks_eq(&mut a, &mut b);
1025
1026                // Drain the iterators to ensure the error state is captured,
1027                // especially if chunks_eq returned false early.
1028                // (e.g unescape("a\k") and unescape("b\k") which are actually
1029                // equal)
1030                a.for_each(|_| {});
1031                b.for_each(|_| {});
1032
1033                match (a_error, b_error) {
1034                    // Both errored: equality depends only on the errors being the same.
1035                    (Some(a_err), Some(b_err)) => a_err == b_err,
1036                    // Both succeeded: equality depends on the byte streams having been identical.
1037                    (None, None) => streams_match,
1038                    // One errored and the other didn't: they are not equal.
1039                    _ => false,
1040                }
1041            }
1042    }
1043}
1044
1045#[cfg(feature = "alloc")]
1046impl<'a> TryFrom<Unescape<'a>> for Cow<'a, [u8]> {
1047    type Error = UnescapeError;
1048
1049    /// Efficiently collects the unescaped bytes into a `Cow<'a, [u8]>`.
1050    ///
1051    /// This implementation will return `Cow::Borrowed` if the original input contained
1052    /// no escape sequences, avoiding allocation. Otherwise, it returns `Cow::Owned`.
1053    ///
1054    /// If any `UnescapeError` is encountered during iteration, the operation
1055    /// halts and returns that error.
1056    ///
1057    /// **Requires the `alloc` feature.**
1058    fn try_from(mut value: Unescape<'a>) -> Result<Self, Self::Error> {
1059        match value.next() {
1060            None => Ok(Cow::Borrowed(b"")),
1061            Some(Ok(first)) => match value.next() {
1062                None => Ok(Cow::Borrowed(first)),
1063                Some(Ok(second)) => {
1064                    let mut buf =
1065                        Vec::with_capacity(first.len() + second.len() + value.bytes.len());
1066                    buf.extend_from_slice(first);
1067                    buf.extend_from_slice(second);
1068                    for item in value {
1069                        buf.extend_from_slice(item?);
1070                    }
1071                    Ok(Cow::Owned(buf))
1072                }
1073                Some(Err(e)) => Err(e),
1074            },
1075            Some(Err(e)) => Err(e),
1076        }
1077    }
1078}
1079
1080// =============================================================================
1081// DisplayUnescape Implementation
1082// =============================================================================
1083
1084/// A wrapper for an [`Unescape`] iterator that implements [`fmt::Display`].
1085///
1086/// This struct is created by the [`Unescape::display_utf8()`] method. It allows for
1087/// printing the unescaped content directly to a formatter, which **avoids
1088/// any heap allocations**. The unescaping and UTF-8 decoding are performed on-the-fly as the
1089/// `fmt` method is called.
1090pub struct DisplayUnescape<'a> {
1091    inner: Unescape<'a>,
1092}
1093
1094impl fmt::Display for DisplayUnescape<'_> {
1095    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
1096        self.inner.clone()._display_utf8(f, false)
1097    }
1098}
1099
1100/// A wrapper for an [`Unescape`] iterator that implements [`fmt::Display`] lossily.
1101///
1102/// This struct is created by the [`Unescape::display_utf8_lossy()`] method. Like
1103/// `DisplayUnescape`, it performs its operation **without any heap allocations**.
1104///
1105/// This method differs from `display_utf8` in that it handles two types of
1106/// errors gracefully:
1107/// - Invalid JSON escape sequences will be ignored, and the iterator will
1108///   continue to completion without a `fmt::Error`.
1109/// - Invalid UTF-8 byte sequences will be replaced with the Unicode
1110///   replacement character (``, U+FFFD)
1111pub struct DisplayUnescapeLossy<'a> {
1112    inner: Unescape<'a>,
1113}
1114
1115impl fmt::Display for DisplayUnescapeLossy<'_> {
1116    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
1117        // Lossy mode: replace invalid sequences with U+FFFD and continue.
1118        self.inner.clone()._display_utf8(f, true)
1119    }
1120}
1121
1122// =============================================================================
1123// Error Types
1124// =============================================================================
1125
1126/// An error that can occur when decoding the final byte stream to a UTF-8 string.
1127#[derive(Copy, Eq, PartialEq, Clone, Debug)]
1128pub enum DecodeUtf8Error {
1129    /// The unescaped byte sequence was not valid UTF-8.
1130    Utf8(str::Utf8Error),
1131    /// An error occurred during the JSON unescaping process itself.
1132    Unescape(UnescapeError),
1133}
1134
1135impl fmt::Display for DecodeUtf8Error {
1136    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
1137        match self {
1138            DecodeUtf8Error::Utf8(e) => fmt::Display::fmt(e, f),
1139            DecodeUtf8Error::Unescape(e) => fmt::Display::fmt(e, f),
1140        }
1141    }
1142}
1143
1144/// Details of an invalid escape sequence error.
1145#[derive(Copy, Eq, PartialEq, Clone, Debug)]
1146#[non_exhaustive]
1147pub struct InvalidEscapeError {
1148    /// The invalid character found after a `\`.
1149    pub found: u8,
1150}
1151
1152/// Details of a lone UTF-16 surrogate error.
1153#[derive(Copy, Eq, PartialEq, Clone, Debug)]
1154#[non_exhaustive]
1155pub struct LoneSurrogateError {
1156    /// The 16-bit surrogate code point.
1157    pub surrogate: u16,
1158}
1159
1160/// Details of an invalid hex digit error within a `\uXXXX` sequence.
1161#[derive(Copy, Eq, PartialEq, Clone, Debug)]
1162#[non_exhaustive]
1163pub struct InvalidHexError {
1164    /// The non-hex character that was found.
1165    pub found: u8,
1166}
1167
1168impl fmt::Display for InvalidHexError {
1169    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
1170        write!(f, "found invalid hex digit '0x{:02X}'", self.found)
1171    }
1172}
1173
1174/// An error that can occur during the JSON string unescaping process.
1175#[derive(Copy, Eq, PartialEq, Clone, Debug)]
1176pub struct UnescapeError {
1177    /// The specific kind of unescaping error.
1178    pub(crate) kind: UnescapeErrorKind,
1179    /// The byte offset from the start of the escape sequence (`\`) where the
1180    /// error was detected.
1181    ///
1182    /// This is guaranteed to be less than 12, as the maximum escape sequence
1183    /// is `\uXXXX\uXXXX`.
1184    pub(crate) offset: u8,
1185}
1186
1187impl UnescapeError {
1188    /// Returns the specific kind of error that occurred.
1189    ///
1190    /// This can be used to programmatically handle different error types,
1191    /// such as distinguishing between a malformed hex sequence and an
1192    /// invalid escape character.
1193    ///
1194    /// ### Example
1195    ///
1196    /// ```
1197    /// # use json_escape::{unescape, UnescapeErrorKind, InvalidHexError};
1198    /// let mut unescaper = unescape(r#"\u123Z"#);
1199    /// let err = unescaper.next().unwrap().unwrap_err();
1200    ///
1201    /// match err.kind() {
1202    ///     UnescapeErrorKind::InvalidHex(InvalidHexError { found, .. }) => {
1203    ///         // We can inspect the exact invalid character found.
1204    ///         assert_eq!(found, b'Z');
1205    ///     }
1206    ///     _ => panic!("Expected an InvalidHex error"),
1207    /// }
1208    /// ```
1209    pub fn kind(&self) -> UnescapeErrorKind {
1210        self.kind
1211    }
1212
1213    /// Returns the byte offset from the start of the escape sequence (`\`)
1214    /// where the error was detected.
1215    ///
1216    /// - For `\x`, the offset is `1` (pointing to `x`).
1217    /// - For `\u123?`, the offset is `5` (pointing to `?`).
1218    /// - For a lone surrogate `\uD800`, the offset is `6` (pointing after the sequence).
1219    ///
1220    /// This is useful for providing detailed error messages that can point
1221    /// to the exact location of the problem in the source string.
1222    ///
1223    /// ### Example
1224    ///
1225    /// ```
1226    /// # use json_escape::unescape;
1227    /// let json_string_content = r#"bad escape \x here"#;
1228    /// let mut unescaper = unescape(json_string_content);
1229    ///
1230    /// // read off 'bad escape '
1231    /// let first = unescaper.next().unwrap().unwrap();
1232    /// assert_eq!(first, b"bad escape ");
1233    ///
1234    /// let err = unescaper.next().unwrap().unwrap_err();
1235    ///
1236    /// // The error occurred at the 'x', which is 1 byte after the '\'
1237    /// assert_eq!(err.offset(), 1);
1238    ///
1239    /// // You could use this to highlight the error in the original input
1240    /// let backslash_pos = json_string_content.find('\\').unwrap();
1241    /// let error_pos = backslash_pos + err.offset() as usize;
1242    /// assert_eq!(json_string_content.as_bytes()[error_pos], b'x');
1243    ///
1244    /// // The generated error message also includes this info.
1245    /// let expected_msg = "invalid escape: '\\0x78' at offset 1";
1246    /// assert_eq!(err.to_string(), expected_msg);
1247    /// ```
1248    pub fn offset(&self) -> u8 {
1249        self.offset
1250    }
1251}
1252
1253/// The specific kind of error that can occur during JSON string unescaping.
1254///
1255/// This enum covers all possible failures described by the JSON standard for string contents.
1256#[derive(Copy, Eq, PartialEq, Clone, Debug)]
1257#[non_exhaustive]
1258pub enum UnescapeErrorKind {
1259    /// Found a backslash followed by an unexpected character (e.g., `\x`).
1260    InvalidEscape(InvalidEscapeError),
1261    /// Found `\u` but the following characters were not 4 valid hex digits.
1262    InvalidHex(InvalidHexError),
1263    /// Input ended unexpectedly while parsing an escape sequence (e.g., `\u12`).
1264    UnexpectedEof,
1265    /// The `\u` sequence yielded a lone high or low surrogate without a matching pair.
1266    LoneSurrogate(LoneSurrogateError),
1267}
1268
1269impl fmt::Display for UnescapeError {
1270    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
1271        match self.kind {
1272            UnescapeErrorKind::InvalidEscape(e) => {
1273                write!(
1274                    f,
1275                    "invalid escape: '\\0x{:02X}' at offset {}",
1276                    e.found, self.offset
1277                )
1278            }
1279            UnescapeErrorKind::InvalidHex(ref s) => {
1280                write!(f, "{} at offset {}", s, self.offset)
1281            }
1282            UnescapeErrorKind::UnexpectedEof => {
1283                write!(
1284                    f,
1285                    "unexpected end of input while parsing escape sequence, expected character at offset {}",
1286                    self.offset
1287                )
1288            }
1289            UnescapeErrorKind::LoneSurrogate(e) => write!(
1290                f,
1291                "invalid unicode sequence: lone surrogate found: 0x{:04X} at offset {}",
1292                e.surrogate, self.offset
1293            ),
1294        }
1295    }
1296}
1297
1298impl core::error::Error for UnescapeError {}
1299impl core::error::Error for DecodeUtf8Error {
1300    fn source(&self) -> Option<&(dyn std::error::Error + 'static)> {
1301        match self {
1302            DecodeUtf8Error::Utf8(e) => Some(e),
1303            DecodeUtf8Error::Unescape(e) => Some(e),
1304        }
1305    }
1306}
1307
1308// =============================================================================
1309// Utilities
1310// =============================================================================
1311
1312// A const lookup table for JSON escape sequences.
1313// Maps a byte to its escaped `&'static str` representation.
1314// `None` indicates the byte does not need to be escaped.
1315const ESCAPE_TABLE: [Option<&'static str>; 256] = {
1316    let mut table: [Option<&'static str>; 256] = [None; 256];
1317
1318    // Special characters
1319    table[b'"' as usize] = Some(r#"\""#);
1320    table[b'\\' as usize] = Some(r#"\\"#);
1321
1322    // Common control characters with short escapes
1323    table[0x08] = Some(r#"\b"#); // Backspace
1324    table[0x09] = Some(r#"\t"#); // Tab
1325    table[0x0A] = Some(r#"\n"#); // Line Feed
1326    table[0x0C] = Some(r#"\f"#); // Form Feed
1327    table[0x0D] = Some(r#"\r"#); // Carriage Return
1328
1329    // The rest of the control characters must be `\uXXXX` encoded.
1330    // We can pre-calculate and store all of them as static strings.
1331    table[0x00] = Some(r#"\u0000"#);
1332    table[0x01] = Some(r#"\u0001"#);
1333    table[0x02] = Some(r#"\u0002"#);
1334    table[0x03] = Some(r#"\u0003"#);
1335    table[0x04] = Some(r#"\u0004"#);
1336    table[0x05] = Some(r#"\u0005"#);
1337    table[0x06] = Some(r#"\u0006"#);
1338    table[0x07] = Some(r#"\u0007"#);
1339    // 0x08 to 0x0D are already handled above
1340    table[0x0B] = Some(r#"\u000b"#);
1341    table[0x0E] = Some(r#"\u000e"#);
1342    table[0x0F] = Some(r#"\u000f"#);
1343    table[0x10] = Some(r#"\u0010"#);
1344    table[0x11] = Some(r#"\u0011"#);
1345    table[0x12] = Some(r#"\u0012"#);
1346    table[0x13] = Some(r#"\u0013"#);
1347    table[0x14] = Some(r#"\u0014"#);
1348    table[0x15] = Some(r#"\u0015"#);
1349    table[0x16] = Some(r#"\u0016"#);
1350    table[0x17] = Some(r#"\u0017"#);
1351    table[0x18] = Some(r#"\u0018"#);
1352    table[0x19] = Some(r#"\u0019"#);
1353    table[0x1A] = Some(r#"\u001a"#);
1354    table[0x1B] = Some(r#"\u001b"#);
1355    table[0x1C] = Some(r#"\u001c"#);
1356    table[0x1D] = Some(r#"\u001d"#);
1357    table[0x1E] = Some(r#"\u001e"#);
1358    table[0x1F] = Some(r#"\u001f"#);
1359
1360    table
1361};
1362
1363// A simple boolean-like lookup table for SIMD.
1364// 0 = no escape needed, 1 = escape needed.
1365// This is very compact (256 bytes) and fits easily in the L1 cache.
1366#[allow(unused)]
1367const ESCAPE_DECISION_TABLE: [u8; 256] = {
1368    let mut table = [0u8; 256];
1369    let mut i = 0;
1370    while i < 256 {
1371        if ESCAPE_TABLE[i].is_some() {
1372            table[i] = 1;
1373        }
1374        i += 1;
1375    }
1376    table
1377};
1378
1379// This is the SIMD version, compiled only when the "simd" feature is enabled on nightly build.
1380#[cfg(all(feature = "simd", nightly))]
1381#[inline]
1382fn find_escape_char(bytes: &[u8]) -> Option<usize> {
1383    use std::simd::{Simd, prelude::SimdPartialEq, prelude::SimdPartialOrd};
1384
1385    const LANES: usize = 16; // Process 16 bytes at a time (fits in SSE2/AVX)
1386    let mut i = 0;
1387
1388    // SIMD main loop
1389    while i + LANES <= bytes.len() {
1390        // Load 16 bytes from the slice into a SIMD vector.
1391        let chunk = Simd::<u8, LANES>::from_slice(&bytes[i..]);
1392
1393        // Create comparison vectors. These are effectively 16 copies of the byte.
1394        let space_v = Simd::splat(b' ' - 1); // For the < ' ' check (i.e., <= 0x1F)
1395        let quote_v = Simd::splat(b'"');
1396        let slash_v = Simd::splat(b'\\');
1397
1398        // Perform all 16 comparisons at once. The result is a mask.
1399        let lt_space_mask = chunk.simd_le(space_v);
1400        let eq_quote_mask = chunk.simd_eq(quote_v);
1401        let eq_slash_mask = chunk.simd_eq(slash_v);
1402
1403        // Combine the masks. A byte needs escaping if ANY of the conditions are true.
1404        let combined_mask = lt_space_mask | eq_quote_mask | eq_slash_mask;
1405
1406        // Check if any lane in the combined mask is true.
1407        if combined_mask.any() {
1408            // If yes, find the index of the *first* true lane.
1409            // trailing_zeros() on the bitmask gives us this index directly.
1410            let first_match_index = combined_mask.to_bitmask().trailing_zeros() as usize;
1411            return Some(i + first_match_index);
1412        }
1413
1414        i += LANES;
1415    }
1416
1417    // Handle the remaining bytes (if any) with the simple iterator method.
1418    if i < bytes.len() {
1419        if let Some(pos) = bytes[i..]
1420            .iter()
1421            .position(|&b| ESCAPE_DECISION_TABLE[b as usize] != 0)
1422        {
1423            return Some(i + pos);
1424        }
1425    }
1426
1427    None
1428}
1429
1430// A fallback for when SIMD feature is off.
1431#[cfg(not(nightly))]
1432#[inline]
1433fn find_escape_char(bytes: &[u8]) -> Option<usize> {
1434    bytes
1435        .iter()
1436        .position(|&b| ESCAPE_DECISION_TABLE[b as usize] != 0)
1437}
1438
1439/// Static table mapping every u8 -> a &'static [u8] of length 1.
1440/// This lets us return a `'static` slice for any single byte cheaply.
1441const U8_TABLE: [[u8; 1]; 256] = {
1442    let mut arr = [[0u8; 1]; 256];
1443    let mut i = 0usize;
1444    while i < 256 {
1445        arr[i] = [i as u8];
1446        i += 1;
1447    }
1448    arr
1449};
1450
1451#[inline(always)]
1452fn byte_as_static_slice(b: u8) -> &'static [u8] {
1453    // coerce from &'static [u8;1] to &'static [u8]
1454    &U8_TABLE[b as usize]
1455}
1456
1457// The following function is copied from the `percent-encoding` crate, version 2.3.2.
1458// Source: https://github.com/servo/rust-url/blob/22b925f93ad505a830f1089538a9ed6f5fd90612/percent_encoding/src/lib.rs#L337-L365
1459//
1460// It is licensed under the same terms as the `percent-encoding` crate (MIT/Apache-2.0).
1461//
1462// This helper is used to efficiently convert a Cow<'_, [u8]> to a Cow<'_, str>
1463// lossily, with a specific optimization to avoid a re-allocation when the input
1464// is an owned, valid UTF-8 Vec<u8>.
1465#[cfg(feature = "alloc")]
1466#[allow(ambiguous_wide_pointer_comparisons)]
1467fn decode_utf8_lossy(input: Cow<'_, [u8]>) -> Cow<'_, str> {
1468    // Note: This function is duplicated in `form_urlencoded/src/query_encoding.rs`.
1469    match input {
1470        Cow::Borrowed(bytes) => String::from_utf8_lossy(bytes),
1471        Cow::Owned(bytes) => {
1472            match String::from_utf8_lossy(&bytes) {
1473                Cow::Borrowed(utf8) => {
1474                    // If from_utf8_lossy returns a Cow::Borrowed, then we can
1475                    // be sure our original bytes were valid UTF-8. This is because
1476                    // if the bytes were invalid UTF-8 from_utf8_lossy would have
1477                    // to allocate a new owned string to back the Cow so it could
1478                    // replace invalid bytes with a placeholder.
1479
1480                    // First we do a debug_assert to confirm our description above.
1481                    let raw_utf8: *const [u8] = utf8.as_bytes();
1482                    debug_assert!(core::ptr::eq(raw_utf8, &*bytes));
1483
1484                    // Given we know the original input bytes are valid UTF-8,
1485                    // and we have ownership of those bytes, we re-use them and
1486                    // return a Cow::Owned here.
1487                    Cow::Owned(unsafe { String::from_utf8_unchecked(bytes) })
1488                }
1489                Cow::Owned(s) => Cow::Owned(s),
1490            }
1491        }
1492    }
1493}
1494
1495/// Compare two chunk-iterators by their concatenated byte stream (streaming,
1496/// zero allocations).
1497///
1498/// This is allocation-free: it streams through both iterators, comparing
1499/// overlapping prefixes and carrying the remainder of the longer chunk
1500/// forward into the next round.
1501fn chunks_eq<'a, I1, A, I2, B>(mut a: I1, mut b: I2) -> bool
1502where
1503    A: 'a + AsRef<[u8]> + ?Sized,
1504    B: 'a + AsRef<[u8]> + ?Sized,
1505    I1: Iterator<Item = &'a A>,
1506    I2: Iterator<Item = &'a B>,
1507{
1508    let mut a_rem: &[u8] = &[];
1509    let mut b_rem: &[u8] = &[];
1510
1511    loop {
1512        // If the remainder buffer for 'a' is empty, try to get the next chunk.
1513        if a_rem.is_empty() {
1514            match a.next() {
1515                Some(chunk) => a_rem = chunk.as_ref(),
1516                // 'a' is exhausted. They are equal only if 'b' is also exhausted.
1517                None => return b_rem.is_empty() && b.next().is_none(),
1518            }
1519        }
1520
1521        // If the remainder buffer for 'b' is empty, try to get the next chunk.
1522        if b_rem.is_empty() {
1523            match b.next() {
1524                Some(chunk) => b_rem = chunk.as_ref(),
1525                // 'b' is exhausted, but we know 'a' is not (since a_rem is non-empty).
1526                // Therefore, they cannot be equal.
1527                None => return false,
1528            }
1529        }
1530
1531        // At this point, both a_rem and b_rem are guaranteed to be non-empty.
1532        // Determine the length of the smaller chunk to compare.
1533        let n = a_rem.len().min(b_rem.len());
1534
1535        // Compare the overlapping parts of the chunks.
1536        if a_rem[..n] != b_rem[..n] {
1537            return false;
1538        }
1539
1540        // Move the slices past the part we just compared.
1541        a_rem = &a_rem[n..];
1542        b_rem = &b_rem[n..];
1543    }
1544}
1545
1546#[inline]
1547fn display_bytes_uft8(bytes: &[u8], f: &mut fmt::Formatter<'_>, lossy: bool) -> fmt::Result {
1548    for chunk in bytes.utf8_chunks() {
1549        f.write_str(chunk.valid())?;
1550
1551        if !chunk.invalid().is_empty() {
1552            if lossy {
1553                f.write_char(char::REPLACEMENT_CHARACTER)?
1554            } else {
1555                return Err(fmt::Error);
1556            }
1557        }
1558    }
1559
1560    Ok(())
1561}
1562
1563#[cfg(test)]
1564mod tests {
1565    use core::fmt::Display;
1566    use std::{io::Read as _, string::ToString as _, vec};
1567
1568    use super::*;
1569
1570    // ===================== Escape ===================== //
1571
1572    fn test_escape_typical(input: &str, want: &str) {
1573        let got = escape_str(input).collect::<String>();
1574        assert_eq!(got, want);
1575
1576        // Test PartialEq too
1577        assert_eq!(escape_str(input), want)
1578    }
1579
1580    #[test]
1581    fn test_empty_string() {
1582        test_escape_typical("", "");
1583    }
1584
1585    #[test]
1586    fn test_quotes() {
1587        test_escape_typical("\"hello\"", "\\\"hello\\\"")
1588    }
1589
1590    #[test]
1591    fn test_backslash() {
1592        test_escape_typical("\\hello\\", "\\\\hello\\\\");
1593    }
1594
1595    #[test]
1596    fn test_slash() {
1597        test_escape_typical("/hello/", "/hello/");
1598    }
1599
1600    #[test]
1601    fn test_control_chars() {
1602        test_escape_typical("\n\r\t\x08\x0C", "\\n\\r\\t\\b\\f");
1603    }
1604
1605    #[test]
1606    fn test_escape_fully() {
1607        let input = "Hello, \"world\"!\nThis contains a \\ backslash and a \t tab.";
1608        let expected = r#"Hello, \"world\"!\nThis contains a \\ backslash and a \t tab."#;
1609        test_escape_typical(input, expected);
1610    }
1611
1612    #[test]
1613    fn test_other_control_chars() {
1614        let input = "Null:\0, Bell:\x07";
1615        let expected = r#"Null:\u0000, Bell:\u0007"#;
1616        test_escape_typical(input, expected);
1617
1618        test_escape_typical("\x00\x1F", "\\u0000\\u001f");
1619        test_escape_typical("\x19", "\\u0019");
1620    }
1621
1622    #[test]
1623    fn test_iterator_chunks() {
1624        let input = "prefix\npostfix";
1625        let mut iter = escape_str(input);
1626        assert_eq!(iter.next(), Some("prefix"));
1627        assert_eq!(iter.next(), Some(r#"\n"#));
1628        assert_eq!(iter.next(), Some("postfix"));
1629        assert_eq!(iter.next(), None);
1630    }
1631
1632    #[test]
1633    fn test_no_escape_needed() {
1634        let input = "A simple string with no escapes.";
1635        let mut iter = escape_str(input);
1636        assert_eq!(iter.next(), Some("A simple string with no escapes."));
1637        assert_eq!(iter.next(), None);
1638
1639        let input = "café";
1640        let mut iter = escape_str(input);
1641        assert_eq!(iter.next(), Some("café"));
1642        assert_eq!(iter.next(), None);
1643
1644        let input = "❤️";
1645        let mut iter = escape_str(input);
1646        assert_eq!(iter.next(), Some("❤️"));
1647        assert_eq!(iter.next(), None);
1648    }
1649
1650    // ===================== Unescape ===================== //
1651
1652    #[test]
1653    fn test_byte_table() {
1654        assert_eq!(byte_as_static_slice(0), &[0]);
1655        assert_eq!(byte_as_static_slice(5), &[5]);
1656        assert_eq!(byte_as_static_slice(255), &[255]);
1657    }
1658
1659    fn test_unescape_typical<I: AsRef<[u8]> + ?Sized>(input: &I, want: &str) {
1660        let got = unescape(input).decode_utf8().unwrap();
1661        assert_eq!(got, want);
1662
1663        // Test PartialEq too
1664        assert_eq!(unescape(input), want);
1665
1666        // Help display
1667        assert_display(unescape(input).display_utf8(), Ok(want));
1668    }
1669
1670    #[test]
1671    fn test_unicode_escape_basic_unescape() {
1672        // \u4E16 => 世 (E4 B8 96)
1673        let s = "X\\u4E16Y";
1674        test_unescape_typical(s, "X世Y");
1675
1676        let s = "Snow: \\u2603"; // \u2603 => ☃
1677        test_unescape_typical(s, "Snow: ☃");
1678
1679        let s = "A \\u03A9 B"; // Ω is U+03A9
1680        test_unescape_typical(s, "A Ω B");
1681    }
1682
1683    #[test]
1684    fn test_surrogate_pair_unescape() {
1685        // 😀 is U+1F600 -> in JSON: \uD83D\uDE00
1686        let s = "A\\uD83D\\uDE00B";
1687        test_unescape_typical(s, "A😀B")
1688    }
1689
1690    #[test]
1691    fn test_invalid_escape_unescape() {
1692        let s = b"\\x";
1693        let mut u = unescape(s);
1694
1695        match u.next() {
1696            Some(Err(UnescapeError {
1697                kind: UnescapeErrorKind::InvalidEscape(InvalidEscapeError { found: b'x' }),
1698                offset: 1,
1699            })) => {}
1700            _ => panic!("expected invalid escape"),
1701        }
1702    }
1703
1704    #[test]
1705    fn test_simple_unescape() {
1706        let input = "Hello\\nWorld\\\"!"; // "Hello\nWorld\"!"
1707        test_unescape_typical(input, "Hello\nWorld\"!")
1708    }
1709
1710    #[test]
1711    fn test_truncated_unicode() {
1712        let input = "Trunc: \\u12"; // too short
1713        let it = unescape(input);
1714        let mut found = false;
1715        for r in it {
1716            match r {
1717                Ok(_) => continue,
1718                Err(UnescapeError {
1719                    kind: UnescapeErrorKind::UnexpectedEof,
1720                    offset: 4,
1721                }) => {
1722                    found = true;
1723                    break;
1724                }
1725                Err(_) => break,
1726            }
1727        }
1728        assert!(found);
1729    }
1730
1731    // ===================== Chunk_Eq ===================== //
1732
1733    #[test]
1734    fn test_empty_iterators_are_equal() {
1735        let a: Vec<&[u8]> = vec![];
1736        let b: Vec<&[u8]> = vec![];
1737        assert!(chunks_eq(a.into_iter(), b.into_iter()));
1738    }
1739
1740    #[test]
1741    fn test_empty_vs_non_empty() {
1742        let a: Vec<&[u8]> = vec![];
1743        let b = vec![&[1, 2, 3]];
1744        assert!(!chunks_eq(a.into_iter(), b.into_iter()));
1745
1746        // And the other way around
1747        let a = vec![&[1, 2, 3]];
1748        let b: Vec<&[u8]> = vec![];
1749        assert!(!chunks_eq(a.into_iter(), b.into_iter()));
1750    }
1751
1752    #[test]
1753    fn test_single_identical_chunks() {
1754        let a = vec!["hello world"];
1755        let b = vec!["hello world"];
1756        assert!(chunks_eq(a.into_iter(), b.into_iter()));
1757    }
1758
1759    #[test]
1760    fn test_different_chunk_boundaries_str() {
1761        // This is the key test: the concatenated content is identical,
1762        // but the chunk divisions are different.
1763        let a = vec!["he", "llo", " ", "world"];
1764        let b = vec!["hello ", "wo", "rld"];
1765        assert!(chunks_eq(a.into_iter(), b.into_iter()));
1766    }
1767
1768    #[test]
1769    fn test_different_chunk_boundaries_bytes() {
1770        let a = vec![&[1, 2], &[3, 4, 5][..]];
1771        let b = vec![&[1, 2, 3], &[4, 5][..]];
1772        assert!(chunks_eq(a.into_iter(), b.into_iter()));
1773    }
1774
1775    #[test]
1776    fn test_one_long_vs_many_short() {
1777        let a = vec!["a-long-single-chunk"];
1778        let b = vec!["a", "-", "long", "-", "single", "-", "chunk"];
1779        assert!(chunks_eq(a.into_iter(), b.into_iter()));
1780    }
1781
1782    #[test]
1783    fn test_unequal_content_same_length() {
1784        let a = vec!["hello"];
1785        let b = vec!["hallo"];
1786        assert!(!chunks_eq(a.into_iter(), b.into_iter()));
1787    }
1788
1789    #[test]
1790    fn test_unequal_at_chunk_boundary() {
1791        let a = vec!["ab", "c"]; // "abc"
1792        let b = vec!["ab", "d"]; // "abd"
1793        assert!(!chunks_eq(a.into_iter(), b.into_iter()));
1794    }
1795
1796    #[test]
1797    fn test_one_is_prefix_of_other() {
1798        // a is shorter
1799        let a = vec!["user", "name"]; // "username"
1800        let b = vec!["user", "name", "123"]; // "username123"
1801        assert!(!chunks_eq(a.into_iter(), b.into_iter()));
1802
1803        // b is shorter
1804        let a = vec!["user", "name", "123"];
1805        let b = vec!["user", "name"];
1806        assert!(!chunks_eq(a.into_iter(), b.into_iter()));
1807    }
1808
1809    #[test]
1810    fn test_complex_remainer_logic() {
1811        // This tests the carry-over logic extensively.
1812        // a: [1,2,3], [4,5], [6,7,8,9], [10]
1813        // b: [1,2], [3,4,5,6], [7,8], [9,10]
1814        let a = vec![&[1, 2, 3], &[4, 5][..], &[6, 7, 8, 9], &[10]];
1815        let b = vec![&[1, 2], &[3, 4, 5, 6][..], &[7, 8], &[9, 10]];
1816        assert!(chunks_eq(a.into_iter(), b.into_iter()));
1817    }
1818
1819    #[test]
1820    fn test_with_vec_references() {
1821        let v_a1 = vec![1, 2];
1822        let v_a2 = vec![3, 4, 5];
1823        let a_data = vec![&v_a1, &v_a2];
1824
1825        let v_b1 = vec![1, 2, 3];
1826        let v_b2 = vec![4, 5];
1827        let b_data = vec![&v_b1, &v_b2];
1828        assert!(chunks_eq(a_data.into_iter(), b_data.into_iter()));
1829    }
1830
1831    // ===================== Unescape Read ===================== //
1832
1833    #[test]
1834    fn test_read_simple() {
1835        let input = br#"hello world"#;
1836        let mut reader = unescape(input);
1837        let mut buf = [0u8; 20];
1838
1839        let bytes_read = reader.read(&mut buf).unwrap();
1840
1841        assert_eq!(bytes_read, 11);
1842        assert_eq!(&buf[..bytes_read], b"hello world");
1843
1844        // Second read should return 0 (EOF)
1845        let bytes_read_eof = reader.read(&mut buf).unwrap();
1846        assert_eq!(bytes_read_eof, 0);
1847    }
1848
1849    #[test]
1850    fn test_read_with_simple_escapes() {
1851        let input = br#"hello\tworld\nline2"#;
1852        let mut reader = unescape(input);
1853        let mut buf = Vec::new();
1854
1855        reader.read_to_end(&mut buf).unwrap();
1856
1857        assert_eq!(buf, b"hello\tworld\nline2");
1858    }
1859
1860    #[test]
1861    fn test_read_into_small_buffer_multiple_calls() {
1862        let input = br#"this is a long string with no escapes"#;
1863        let mut reader = unescape(input);
1864        let mut buf = [0u8; 10];
1865        let mut result = Vec::new();
1866
1867        loop {
1868            match reader.read(&mut buf) {
1869                Ok(0) => break, // EOF
1870                Ok(n) => {
1871                    result.extend_from_slice(&buf[..n]);
1872                }
1873                Err(e) => panic!("Read error: {}", e),
1874            }
1875        }
1876
1877        assert_eq!(result, input);
1878    }
1879
1880    #[test]
1881    fn test_read_multibyte_char_across_buffer_boundary() {
1882        // The grinning face emoji 😀 is \uD83D\uDE00, which is 4 bytes in UTF-8: 0xF0 0x9F 0x98 0x80
1883        let input = br#"emoji: \uD83D\uDE00 is here"#;
1884        let mut reader = unescape(input);
1885
1886        // Buffer is small, forcing the 4-byte emoji to be written across multiple calls
1887        let mut buf = [0u8; 8];
1888        let mut result = Vec::new();
1889
1890        // First read: "emoji: " (7 bytes) + first byte of emoji
1891        let n1 = reader.read(&mut buf).unwrap();
1892        assert_eq!(n1, 8);
1893        assert_eq!(&buf[..n1], b"emoji: \xF0");
1894        result.extend_from_slice(&buf[..n1]);
1895
1896        // Second read: next 3 bytes of emoji + " is h"
1897        let n2 = reader.read(&mut buf).unwrap();
1898        assert_eq!(n2, 8);
1899        assert_eq!(&buf[..n2], b"\x9F\x98\x80 is h");
1900        result.extend_from_slice(&buf[..n2]);
1901
1902        // Third read: "ere"
1903        let n3 = reader.read(&mut buf).unwrap();
1904        assert_eq!(n3, 3);
1905        assert_eq!(&buf[..n3], b"ere");
1906        result.extend_from_slice(&buf[..n3]);
1907
1908        // Final read should be EOF
1909        let n4 = reader.read(&mut buf).unwrap();
1910        assert_eq!(n4, 0);
1911
1912        assert_eq!(result, b"emoji: \xF0\x9F\x98\x80 is here");
1913        assert_eq!(result, "emoji: 😀 is here".as_bytes());
1914    }
1915
1916    #[test]
1917    fn test_read_error_invalid_escape() {
1918        let input = br#"hello \q world"#;
1919        let mut reader = unescape(input);
1920        let mut buf = [0u8; 20];
1921
1922        let result = reader.read(&mut buf);
1923
1924        assert!(result.is_err());
1925        let err = result.unwrap_err();
1926        assert_eq!(err.kind(), std::io::ErrorKind::InvalidData);
1927        assert!(err.to_string().contains("invalid escape"));
1928    }
1929
1930    #[test]
1931    fn test_read_error_lone_surrogate() {
1932        let input = br#"\uD83D"#; // High surrogate without a following low one
1933        let mut reader = unescape(input);
1934        let mut buf = [0u8; 10];
1935
1936        let err = reader.read(&mut buf).unwrap_err();
1937        assert_eq!(err.kind(), std::io::ErrorKind::InvalidData);
1938        assert!(err.to_string().contains("lone surrogate"));
1939    }
1940
1941    #[test]
1942    fn test_read_empty_input() {
1943        let input = b"";
1944        let mut reader = unescape(input);
1945        let mut buf = [0u8; 10];
1946        let bytes_read = reader.read(&mut buf).unwrap();
1947        assert_eq!(bytes_read, 0);
1948    }
1949
1950    #[test]
1951    fn test_read_into_empty_buffer() {
1952        let input = b"hello";
1953        let mut reader = unescape(input);
1954        let mut buf = [0u8; 0];
1955        let bytes_read = reader.read(&mut buf).unwrap();
1956        // A read into an empty buffer should always succeed and return 0.
1957        assert_eq!(bytes_read, 0);
1958    }
1959
1960    #[test]
1961    fn test_read_to_end_optimized() {
1962        let input = br#"first\nsecond\tthird \uD83D\uDE00 last"#;
1963        let mut reader = unescape(input);
1964        let mut buf = Vec::new();
1965
1966        let bytes_read = reader.read_to_end(&mut buf).unwrap();
1967        let expected = b"first\nsecond\tthird \xF0\x9F\x98\x80 last";
1968
1969        assert_eq!(bytes_read, expected.len());
1970        assert_eq!(buf, expected);
1971    }
1972
1973    // ===================== Unescape Display ===================== //
1974
1975    fn assert_display(display: impl Display, want: Result<&str, ()>) {
1976        let mut w = String::new();
1977        let res = fmt::write(&mut w, format_args!("{display}"));
1978
1979        match want {
1980            Ok(want) => {
1981                assert!(res.is_ok());
1982                assert_eq!(w, want)
1983            }
1984            Err(_) => assert!(
1985                res.is_err(),
1986                "strict mode should return Err on invalid bytes"
1987            ),
1988        }
1989    }
1990
1991    // -- NON-LOSSY TESTS (must be perfect) --
1992
1993    #[test]
1994    fn test_display_simple_string() {
1995        let display = unescape("hello world").display_utf8();
1996        assert_display(display, Ok("hello world"));
1997    }
1998
1999    #[test]
2000    fn test_display_empty_string() {
2001        assert_display(unescape("").display_utf8(), Ok(""));
2002    }
2003
2004    #[test]
2005    fn test_display_standard_escapes() {
2006        let input = br#"\" \\ \/ \b \f \n \r \t"#;
2007        let expected = "\" \\ / \x08 \x0C \n \r \t";
2008        assert_display(unescape(input).display_utf8(), Ok(expected));
2009    }
2010
2011    #[test]
2012    fn test_display_non_escaped_utf8() {
2013        let input = "你好, world".as_bytes();
2014        let expected = "你好, world";
2015        assert_display(unescape(input).display_utf8(), Ok(expected));
2016    }
2017
2018    #[test]
2019    fn test_display_unicode_escape_bmp() {
2020        // cent sign: \u00A2 -> C2 A2 (2 bytes)
2021        let input = br"a\u00A2b";
2022        let expected = "a¢b";
2023        assert_display(unescape(input).display_utf8(), Ok(expected));
2024    }
2025
2026    #[test]
2027    fn test_display_mixed_content() {
2028        let input = br#"Text with \n, \u00A2, and \uD83D\uDE0E emojis."#;
2029        let expected = "Text with \n, ¢, and 😎 emojis.";
2030        assert_display(unescape(input).display_utf8(), Ok(expected));
2031    }
2032
2033    #[test]
2034    fn test_display_starts_and_ends_with_escape() {
2035        let input = br#"\u00A2hello\t"#;
2036        let expected = "¢hello\t";
2037        assert_display(unescape(input).display_utf8(), Ok(expected));
2038    }
2039
2040    // -- NON-LOSSY ERROR TESTS --
2041
2042    #[test]
2043    fn test_display_err_invalid_escape() {
2044        assert_display(unescape(br"hello \z world").display_utf8(), Err(()));
2045    }
2046
2047    #[test]
2048    fn test_display_err_incomplete_unicode() {
2049        assert_display(unescape(br"\u123").display_utf8(), Err(()));
2050    }
2051
2052    #[test]
2053    fn test_display_err_invalid_hex_in_unicode() {
2054        assert_display(unescape(br"\u123g").display_utf8(), Err(()));
2055    }
2056
2057    #[test]
2058    fn test_display_err_lone_high_surrogate() {
2059        assert_display(unescape(br"\uD800").display_utf8(), Err(()));
2060    }
2061
2062    #[test]
2063    fn test_display_err_high_surrogate_not_followed_by_low() {
2064        assert_display(unescape(br"\uD800\uABCD").display_utf8(), Err(()));
2065    }
2066
2067    #[test]
2068    fn test_display_err_invalid_source_utf8() {
2069        // A valid UTF-8 sequence for 'h' followed by an invalid byte
2070        assert_display(unescape(b"h\x80ello").display_utf8(), Err(()));
2071    }
2072
2073    #[test]
2074    fn strict_valid_multi_byte_split() {
2075        // "€" U+20AC => bytes [0xE2, 0x82, 0xAC]
2076        let input = &[0xE2, 0x82, 0xAC];
2077        let display = unescape(input).display_utf8();
2078        assert_display(display, Ok("€"));
2079    }
2080
2081    #[test]
2082    fn strict_errors_on_invalid_start_byte() {
2083        let input = &[0xFF, b'a'];
2084        let display = unescape(input).display_utf8();
2085
2086        assert_display(display, Err(()));
2087    }
2088
2089    // -- LOSSY TESTS --
2090
2091    #[test]
2092    fn lossy_replaces_invalid_start_byte() {
2093        // 0xFF is invalid as a leading UTF-8 byte.
2094        let input = &[0xFF, b'a']; // invalid byte then ASCII 'a';
2095        let display = unescape(input).display_utf8_lossy();
2096        // replacement char + 'a'
2097        assert_display(display, Ok("\u{FFFD}a"));
2098    }
2099
2100    #[test]
2101    fn lossy_handles_trailing_incomplete_bytes() {
2102        // A trailing incomplete 3-byte sequence: [0xE2, 0x82] (missing 0xAC)
2103        let input: &[u8] = &[0xE2, 0x82];
2104        let display = unescape(input).display_utf8_lossy();
2105        // Should replace incomplete tail with U+FFFD.
2106        assert_display(display, Ok("\u{FFFD}"));
2107    }
2108
2109    #[test]
2110    fn test_display_lossy_invalid_source_utf8() {
2111        // The invalid byte sequence should be replaced.
2112        let input = b"valid\xF0\x90\x80invalid";
2113        let expected = "valid\u{FFFD}invalid";
2114        assert_display(unescape(input).display_utf8_lossy(), Ok(expected));
2115    }
2116
2117    #[test]
2118    fn test_display_lossy_invalid_escape_truncates() {
2119        // In lossy mode, an invalid JSON escape stops the processing.
2120        let input = br"this is ok\z but this is not";
2121        let expected = "this is ok";
2122        assert_display(unescape(input).display_utf8_lossy(), Ok(expected));
2123    }
2124
2125    #[test]
2126    fn test_display_lossy_incomplete_unicode_truncates() {
2127        let input = br"truncate here \uD83D";
2128        let expected = "truncate here ";
2129        assert_display(unescape(input).display_utf8_lossy(), Ok(expected));
2130    }
2131
2132    // Inspired by and copied from memchr
2133    #[test]
2134    fn sync_regression() {
2135        use core::panic::{RefUnwindSafe, UnwindSafe};
2136
2137        fn assert_send_sync<T: Send + Sync + UnwindSafe + RefUnwindSafe>() {}
2138        assert_send_sync::<Unescape<'_>>();
2139        assert_send_sync::<Escape<'_>>();
2140    }
2141}