1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
// Copyright 2020-2024 The Jujutsu Authors
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// https://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

//! Domain-specific language helpers.

use std::collections::HashMap;
use std::{array, fmt};

use itertools::Itertools as _;
use pest::iterators::Pairs;
use pest::RuleType;

/// AST node without type or name checking.
#[derive(Clone, Debug, Eq, PartialEq)]
pub struct ExpressionNode<'i, T> {
    /// Expression item such as identifier, literal, function call, etc.
    pub kind: T,
    /// Span of the node.
    pub span: pest::Span<'i>,
}

impl<'i, T> ExpressionNode<'i, T> {
    /// Wraps the given expression and span.
    pub fn new(kind: T, span: pest::Span<'i>) -> Self {
        ExpressionNode { kind, span }
    }
}

/// Function call in AST.
#[derive(Clone, Debug, Eq, PartialEq)]
pub struct FunctionCallNode<'i, T> {
    /// Function name.
    pub name: &'i str,
    /// Span of the function name.
    pub name_span: pest::Span<'i>,
    /// List of positional arguments.
    pub args: Vec<ExpressionNode<'i, T>>,
    /// List of keyword arguments.
    pub keyword_args: Vec<KeywordArgument<'i, T>>,
    /// Span of the arguments list.
    pub args_span: pest::Span<'i>,
}

/// Keyword argument pair in AST.
#[derive(Clone, Debug, Eq, PartialEq)]
pub struct KeywordArgument<'i, T> {
    /// Parameter name.
    pub name: &'i str,
    /// Span of the parameter name.
    pub name_span: pest::Span<'i>,
    /// Value expression.
    pub value: ExpressionNode<'i, T>,
}

impl<'i, T> FunctionCallNode<'i, T> {
    /// Number of arguments assuming named arguments are all unique.
    pub fn arity(&self) -> usize {
        self.args.len() + self.keyword_args.len()
    }

    /// Ensures that no arguments passed.
    pub fn expect_no_arguments(&self) -> Result<(), InvalidArguments<'i>> {
        let ([], []) = self.expect_arguments()?;
        Ok(())
    }

    /// Extracts exactly N required arguments.
    pub fn expect_exact_arguments<const N: usize>(
        &self,
    ) -> Result<&[ExpressionNode<'i, T>; N], InvalidArguments<'i>> {
        let (args, []) = self.expect_arguments()?;
        Ok(args)
    }

    /// Extracts N required arguments and remainders.
    #[allow(clippy::type_complexity)]
    pub fn expect_some_arguments<const N: usize>(
        &self,
    ) -> Result<(&[ExpressionNode<'i, T>; N], &[ExpressionNode<'i, T>]), InvalidArguments<'i>> {
        self.ensure_no_keyword_arguments()?;
        if self.args.len() >= N {
            let (required, rest) = self.args.split_at(N);
            Ok((required.try_into().unwrap(), rest))
        } else {
            Err(self.invalid_arguments_count(N, None))
        }
    }

    /// Extracts N required arguments and M optional arguments.
    #[allow(clippy::type_complexity)]
    pub fn expect_arguments<const N: usize, const M: usize>(
        &self,
    ) -> Result<
        (
            &[ExpressionNode<'i, T>; N],
            [Option<&ExpressionNode<'i, T>>; M],
        ),
        InvalidArguments<'i>,
    > {
        self.ensure_no_keyword_arguments()?;
        let count_range = N..=(N + M);
        if count_range.contains(&self.args.len()) {
            let (required, rest) = self.args.split_at(N);
            let mut optional = rest.iter().map(Some).collect_vec();
            optional.resize(M, None);
            Ok((
                required.try_into().unwrap(),
                optional.try_into().ok().unwrap(),
            ))
        } else {
            let (min, max) = count_range.into_inner();
            Err(self.invalid_arguments_count(min, Some(max)))
        }
    }

    /// Extracts N required arguments and M optional arguments. Some of them can
    /// be specified as keyword arguments.
    ///
    /// `names` is a list of parameter names. Unnamed positional arguments
    /// should be padded with `""`.
    #[allow(clippy::type_complexity)]
    pub fn expect_named_arguments<const N: usize, const M: usize>(
        &self,
        names: &[&str],
    ) -> Result<
        (
            [&ExpressionNode<'i, T>; N],
            [Option<&ExpressionNode<'i, T>>; M],
        ),
        InvalidArguments<'i>,
    > {
        if self.keyword_args.is_empty() {
            let (required, optional) = self.expect_arguments::<N, M>()?;
            // TODO: use .each_ref() if MSRV is bumped to 1.77.0
            Ok((array::from_fn(|i| &required[i]), optional))
        } else {
            let (required, optional) = self.expect_named_arguments_vec(names, N, N + M)?;
            Ok((
                required.try_into().ok().unwrap(),
                optional.try_into().ok().unwrap(),
            ))
        }
    }

    #[allow(clippy::type_complexity)]
    fn expect_named_arguments_vec(
        &self,
        names: &[&str],
        min: usize,
        max: usize,
    ) -> Result<
        (
            Vec<&ExpressionNode<'i, T>>,
            Vec<Option<&ExpressionNode<'i, T>>>,
        ),
        InvalidArguments<'i>,
    > {
        assert!(names.len() <= max);

        if self.args.len() > max {
            return Err(self.invalid_arguments_count(min, Some(max)));
        }
        let mut extracted = Vec::with_capacity(max);
        extracted.extend(self.args.iter().map(Some));
        extracted.resize(max, None);

        for arg in &self.keyword_args {
            let name = arg.name;
            let span = arg.name_span.start_pos().span(&arg.value.span.end_pos());
            let pos = names.iter().position(|&n| n == name).ok_or_else(|| {
                self.invalid_arguments(format!(r#"Unexpected keyword argument "{name}""#), span)
            })?;
            if extracted[pos].is_some() {
                return Err(self.invalid_arguments(
                    format!(r#"Got multiple values for keyword "{name}""#),
                    span,
                ));
            }
            extracted[pos] = Some(&arg.value);
        }

        let optional = extracted.split_off(min);
        let required = extracted.into_iter().flatten().collect_vec();
        if required.len() != min {
            return Err(self.invalid_arguments_count(min, Some(max)));
        }
        Ok((required, optional))
    }

    fn ensure_no_keyword_arguments(&self) -> Result<(), InvalidArguments<'i>> {
        if let (Some(first), Some(last)) = (self.keyword_args.first(), self.keyword_args.last()) {
            let span = first.name_span.start_pos().span(&last.value.span.end_pos());
            Err(self.invalid_arguments("Unexpected keyword arguments".to_owned(), span))
        } else {
            Ok(())
        }
    }

    fn invalid_arguments(&self, message: String, span: pest::Span<'i>) -> InvalidArguments<'i> {
        InvalidArguments {
            name: self.name,
            message,
            span,
        }
    }

    fn invalid_arguments_count(&self, min: usize, max: Option<usize>) -> InvalidArguments<'i> {
        let message = match (min, max) {
            (min, Some(max)) if min == max => format!("Expected {min} arguments"),
            (min, Some(max)) => format!("Expected {min} to {max} arguments"),
            (min, None) => format!("Expected at least {min} arguments"),
        };
        self.invalid_arguments(message, self.args_span)
    }

    fn invalid_arguments_count_with_arities(
        &self,
        arities: impl IntoIterator<Item = usize>,
    ) -> InvalidArguments<'i> {
        let message = format!("Expected {} arguments", arities.into_iter().join(", "));
        self.invalid_arguments(message, self.args_span)
    }
}

/// Unexpected number of arguments, or invalid combination of arguments.
///
/// This error is supposed to be converted to language-specific parse error
/// type, where lifetime `'i` will be eliminated.
#[derive(Clone, Debug)]
pub struct InvalidArguments<'i> {
    /// Function name.
    pub name: &'i str,
    /// Error message.
    pub message: String,
    /// Span of the bad arguments.
    pub span: pest::Span<'i>,
}

/// Expression item that can be transformed recursively by using `folder: F`.
pub trait FoldableExpression<'i>: Sized {
    /// Transforms `self` by applying the `folder` to inner items.
    fn fold<F>(self, folder: &mut F, span: pest::Span<'i>) -> Result<Self, F::Error>
    where
        F: ExpressionFolder<'i, Self> + ?Sized;
}

/// Visitor-like interface to transform AST nodes recursively.
pub trait ExpressionFolder<'i, T: FoldableExpression<'i>> {
    /// Transform error.
    type Error;

    /// Transforms the expression `node`. By default, inner items are
    /// transformed recursively.
    fn fold_expression(
        &mut self,
        node: ExpressionNode<'i, T>,
    ) -> Result<ExpressionNode<'i, T>, Self::Error> {
        let ExpressionNode { kind, span } = node;
        let kind = kind.fold(self, span)?;
        Ok(ExpressionNode { kind, span })
    }

    /// Transforms identifier.
    fn fold_identifier(&mut self, name: &'i str, span: pest::Span<'i>) -> Result<T, Self::Error>;

    /// Transforms function call.
    fn fold_function_call(
        &mut self,
        function: Box<FunctionCallNode<'i, T>>,
        span: pest::Span<'i>,
    ) -> Result<T, Self::Error>;
}

/// Transforms list of `nodes` by using `folder`.
pub fn fold_expression_nodes<'i, F, T>(
    folder: &mut F,
    nodes: Vec<ExpressionNode<'i, T>>,
) -> Result<Vec<ExpressionNode<'i, T>>, F::Error>
where
    F: ExpressionFolder<'i, T> + ?Sized,
    T: FoldableExpression<'i>,
{
    nodes
        .into_iter()
        .map(|node| folder.fold_expression(node))
        .try_collect()
}

/// Transforms function call arguments by using `folder`.
pub fn fold_function_call_args<'i, F, T>(
    folder: &mut F,
    function: FunctionCallNode<'i, T>,
) -> Result<FunctionCallNode<'i, T>, F::Error>
where
    F: ExpressionFolder<'i, T> + ?Sized,
    T: FoldableExpression<'i>,
{
    Ok(FunctionCallNode {
        name: function.name,
        name_span: function.name_span,
        args: fold_expression_nodes(folder, function.args)?,
        keyword_args: function
            .keyword_args
            .into_iter()
            .map(|arg| {
                Ok(KeywordArgument {
                    name: arg.name,
                    name_span: arg.name_span,
                    value: folder.fold_expression(arg.value)?,
                })
            })
            .try_collect()?,
        args_span: function.args_span,
    })
}

/// Helper to parse string literal.
#[derive(Debug)]
pub struct StringLiteralParser<R> {
    /// String content part.
    pub content_rule: R,
    /// Escape sequence part including backslash character.
    pub escape_rule: R,
}

impl<R: RuleType> StringLiteralParser<R> {
    /// Parses the given string literal `pairs` into string.
    pub fn parse(&self, pairs: Pairs<R>) -> String {
        let mut result = String::new();
        for part in pairs {
            if part.as_rule() == self.content_rule {
                result.push_str(part.as_str());
            } else if part.as_rule() == self.escape_rule {
                match &part.as_str()[1..] {
                    "\"" => result.push('"'),
                    "\\" => result.push('\\'),
                    "t" => result.push('\t'),
                    "r" => result.push('\r'),
                    "n" => result.push('\n'),
                    "0" => result.push('\0'),
                    char => panic!("invalid escape: \\{char:?}"),
                }
            } else {
                panic!("unexpected part of string: {part:?}");
            }
        }
        result
    }
}

/// Map of symbol and function aliases.
#[derive(Clone, Debug, Default)]
pub struct AliasesMap<P> {
    symbol_aliases: HashMap<String, String>,
    // name: [(params, defn)] (sorted by arity)
    function_aliases: HashMap<String, Vec<(Vec<String>, String)>>,
    // Parser type P helps prevent misuse of AliasesMap of different language.
    parser: P,
}

impl<P> AliasesMap<P> {
    /// Creates an empty aliases map with default-constructed parser.
    pub fn new() -> Self
    where
        P: Default,
    {
        Self::default()
    }

    /// Adds new substitution rule `decl = defn`.
    ///
    /// Returns error if `decl` is invalid. The `defn` part isn't checked. A bad
    /// `defn` will be reported when the alias is substituted.
    pub fn insert(&mut self, decl: impl AsRef<str>, defn: impl Into<String>) -> Result<(), P::Error>
    where
        P: AliasDeclarationParser,
    {
        match self.parser.parse_declaration(decl.as_ref())? {
            AliasDeclaration::Symbol(name) => {
                self.symbol_aliases.insert(name, defn.into());
            }
            AliasDeclaration::Function(name, params) => {
                let overloads = self.function_aliases.entry(name).or_default();
                match overloads.binary_search_by_key(&params.len(), |(params, _)| params.len()) {
                    Ok(i) => overloads[i] = (params, defn.into()),
                    Err(i) => overloads.insert(i, (params, defn.into())),
                }
            }
        }
        Ok(())
    }

    /// Iterates symbol names in arbitrary order.
    pub fn symbol_names(&self) -> impl Iterator<Item = &str> {
        self.symbol_aliases.keys().map(|n| n.as_ref())
    }

    /// Iterates function names in arbitrary order.
    pub fn function_names(&self) -> impl Iterator<Item = &str> {
        self.function_aliases.keys().map(|n| n.as_ref())
    }

    /// Looks up symbol alias by name. Returns identifier and definition text.
    pub fn get_symbol(&self, name: &str) -> Option<(AliasId<'_>, &str)> {
        self.symbol_aliases
            .get_key_value(name)
            .map(|(name, defn)| (AliasId::Symbol(name), defn.as_ref()))
    }

    /// Looks up function alias by name and arity. Returns identifier, list of
    /// parameter names, and definition text.
    pub fn get_function(&self, name: &str, arity: usize) -> Option<(AliasId<'_>, &[String], &str)> {
        let overloads = self.get_function_overloads(name)?;
        overloads.find_by_arity(arity)
    }

    /// Looks up function aliases by name.
    fn get_function_overloads(&self, name: &str) -> Option<AliasFunctionOverloads<'_>> {
        let (name, overloads) = self.function_aliases.get_key_value(name)?;
        Some(AliasFunctionOverloads { name, overloads })
    }
}

#[derive(Clone, Copy, Debug)]
struct AliasFunctionOverloads<'a> {
    name: &'a String,
    overloads: &'a Vec<(Vec<String>, String)>,
}

impl<'a> AliasFunctionOverloads<'a> {
    fn arities(self) -> impl DoubleEndedIterator<Item = usize> + ExactSizeIterator + 'a {
        self.overloads.iter().map(|(params, _)| params.len())
    }

    fn min_arity(self) -> usize {
        self.arities().next().unwrap()
    }

    fn max_arity(self) -> usize {
        self.arities().next_back().unwrap()
    }

    fn find_by_arity(self, arity: usize) -> Option<(AliasId<'a>, &'a [String], &'a str)> {
        let index = self
            .overloads
            .binary_search_by_key(&arity, |(params, _)| params.len())
            .ok()?;
        let (params, defn) = &self.overloads[index];
        // Exact parameter names aren't needed to identify a function, but they
        // provide a better error indication. (e.g. "foo(x, y)" is easier to
        // follow than "foo/2".)
        Some((AliasId::Function(self.name, params), params, defn))
    }
}

/// Borrowed reference to identify alias expression.
#[derive(Clone, Copy, Debug, Eq, PartialEq)]
pub enum AliasId<'a> {
    /// Symbol name.
    Symbol(&'a str),
    /// Function name and parameter names.
    Function(&'a str, &'a [String]),
    /// Function parameter name.
    Parameter(&'a str),
}

impl fmt::Display for AliasId<'_> {
    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
        match self {
            AliasId::Symbol(name) => write!(f, "{name}"),
            AliasId::Function(name, params) => {
                write!(f, "{name}({params})", params = params.join(", "))
            }
            AliasId::Parameter(name) => write!(f, "{name}"),
        }
    }
}

/// Parsed declaration part of alias rule.
#[derive(Clone, Debug)]
pub enum AliasDeclaration {
    /// Symbol name.
    Symbol(String),
    /// Function name and parameters.
    Function(String, Vec<String>),
}

// AliasDeclarationParser and AliasDefinitionParser can be merged into a single
// trait, but it's unclear whether doing that would simplify the abstraction.

/// Parser for symbol and function alias declaration.
pub trait AliasDeclarationParser {
    /// Parse error type.
    type Error;

    /// Parses symbol or function name and parameters.
    fn parse_declaration(&self, source: &str) -> Result<AliasDeclaration, Self::Error>;
}

/// Parser for symbol and function alias definition.
pub trait AliasDefinitionParser {
    /// Expression item type.
    type Output<'i>;
    /// Parse error type.
    type Error;

    /// Parses alias body.
    fn parse_definition<'i>(
        &self,
        source: &'i str,
    ) -> Result<ExpressionNode<'i, Self::Output<'i>>, Self::Error>;
}

/// Expression item that supports alias substitution.
pub trait AliasExpandableExpression<'i>: FoldableExpression<'i> {
    /// Wraps identifier.
    fn identifier(name: &'i str) -> Self;
    /// Wraps function call.
    fn function_call(function: Box<FunctionCallNode<'i, Self>>) -> Self;
    /// Wraps substituted expression.
    fn alias_expanded(id: AliasId<'i>, subst: Box<ExpressionNode<'i, Self>>) -> Self;
}

/// Error that may occur during alias substitution.
pub trait AliasExpandError: Sized {
    /// Unexpected number of arguments, or invalid combination of arguments.
    fn invalid_arguments(err: InvalidArguments<'_>) -> Self;
    /// Recursion detected during alias substitution.
    fn recursive_expansion(id: AliasId<'_>, span: pest::Span<'_>) -> Self;
    /// Attaches alias trace to the current error.
    fn within_alias_expansion(self, id: AliasId<'_>, span: pest::Span<'_>) -> Self;
}

/// Expands aliases recursively in tree of `T`.
#[derive(Debug)]
struct AliasExpander<'i, T, P> {
    /// Alias symbols and functions that are globally available.
    aliases_map: &'i AliasesMap<P>,
    /// Stack of aliases and local parameters currently expanding.
    states: Vec<AliasExpandingState<'i, T>>,
}

#[derive(Debug)]
struct AliasExpandingState<'i, T> {
    id: AliasId<'i>,
    locals: HashMap<&'i str, ExpressionNode<'i, T>>,
}

impl<'i, T, P, E> AliasExpander<'i, T, P>
where
    T: AliasExpandableExpression<'i> + Clone,
    P: AliasDefinitionParser<Output<'i> = T, Error = E>,
    E: AliasExpandError,
{
    fn expand_defn(
        &mut self,
        id: AliasId<'i>,
        defn: &'i str,
        locals: HashMap<&'i str, ExpressionNode<'i, T>>,
        span: pest::Span<'i>,
    ) -> Result<T, E> {
        // The stack should be short, so let's simply do linear search.
        if self.states.iter().any(|s| s.id == id) {
            return Err(E::recursive_expansion(id, span));
        }
        self.states.push(AliasExpandingState { id, locals });
        // Parsed defn could be cached if needed.
        let result = self
            .aliases_map
            .parser
            .parse_definition(defn)
            .and_then(|node| self.fold_expression(node))
            .map(|node| T::alias_expanded(id, Box::new(node)))
            .map_err(|e| e.within_alias_expansion(id, span));
        self.states.pop();
        result
    }
}

impl<'i, T, P, E> ExpressionFolder<'i, T> for AliasExpander<'i, T, P>
where
    T: AliasExpandableExpression<'i> + Clone,
    P: AliasDefinitionParser<Output<'i> = T, Error = E>,
    E: AliasExpandError,
{
    type Error = E;

    fn fold_identifier(&mut self, name: &'i str, span: pest::Span<'i>) -> Result<T, Self::Error> {
        if let Some(subst) = self.states.last().and_then(|s| s.locals.get(name)) {
            let id = AliasId::Parameter(name);
            Ok(T::alias_expanded(id, Box::new(subst.clone())))
        } else if let Some((id, defn)) = self.aliases_map.get_symbol(name) {
            let locals = HashMap::new(); // Don't spill out the current scope
            self.expand_defn(id, defn, locals, span)
        } else {
            Ok(T::identifier(name))
        }
    }

    fn fold_function_call(
        &mut self,
        function: Box<FunctionCallNode<'i, T>>,
        span: pest::Span<'i>,
    ) -> Result<T, Self::Error> {
        // For better error indication, builtin functions are shadowed by name,
        // not by (name, arity).
        if let Some(overloads) = self.aliases_map.get_function_overloads(function.name) {
            // TODO: add support for keyword arguments
            function
                .ensure_no_keyword_arguments()
                .map_err(E::invalid_arguments)?;
            let Some((id, params, defn)) = overloads.find_by_arity(function.arity()) else {
                let min = overloads.min_arity();
                let max = overloads.max_arity();
                let err = if max - min + 1 == overloads.arities().len() {
                    function.invalid_arguments_count(min, Some(max))
                } else {
                    function.invalid_arguments_count_with_arities(overloads.arities())
                };
                return Err(E::invalid_arguments(err));
            };
            // Resolve arguments in the current scope, and pass them in to the alias
            // expansion scope.
            let args = fold_expression_nodes(self, function.args)?;
            let locals = params.iter().map(|s| s.as_str()).zip(args).collect();
            self.expand_defn(id, defn, locals, span)
        } else {
            let function = Box::new(fold_function_call_args(self, *function)?);
            Ok(T::function_call(function))
        }
    }
}

/// Expands aliases recursively.
pub fn expand_aliases<'i, T, P>(
    node: ExpressionNode<'i, T>,
    aliases_map: &'i AliasesMap<P>,
) -> Result<ExpressionNode<'i, T>, P::Error>
where
    T: AliasExpandableExpression<'i> + Clone,
    P: AliasDefinitionParser<Output<'i> = T>,
    P::Error: AliasExpandError,
{
    let mut expander = AliasExpander {
        aliases_map,
        states: Vec::new(),
    };
    expander.fold_expression(node)
}

/// Collects similar names from the `candidates` list.
pub fn collect_similar<I>(name: &str, candidates: I) -> Vec<String>
where
    I: IntoIterator,
    I::Item: AsRef<str>,
{
    candidates
        .into_iter()
        .filter(|cand| {
            // The parameter is borrowed from clap f5540d26
            strsim::jaro(name, cand.as_ref()) > 0.7
        })
        .map(|s| s.as_ref().to_owned())
        .sorted_unstable()
        .dedup()
        .collect()
}

#[cfg(test)]
mod tests {
    use super::*;

    #[test]
    fn test_expect_arguments() {
        fn empty_span() -> pest::Span<'static> {
            pest::Span::new("", 0, 0).unwrap()
        }

        fn function(
            name: &'static str,
            args: impl Into<Vec<ExpressionNode<'static, u32>>>,
            keyword_args: impl Into<Vec<KeywordArgument<'static, u32>>>,
        ) -> FunctionCallNode<'static, u32> {
            FunctionCallNode {
                name,
                name_span: empty_span(),
                args: args.into(),
                keyword_args: keyword_args.into(),
                args_span: empty_span(),
            }
        }

        fn value(v: u32) -> ExpressionNode<'static, u32> {
            ExpressionNode::new(v, empty_span())
        }

        fn keyword(name: &'static str, v: u32) -> KeywordArgument<'static, u32> {
            KeywordArgument {
                name,
                name_span: empty_span(),
                value: value(v),
            }
        }

        let f = function("foo", [], []);
        assert!(f.expect_no_arguments().is_ok());
        assert!(f.expect_some_arguments::<0>().is_ok());
        assert!(f.expect_arguments::<0, 0>().is_ok());
        assert!(f.expect_named_arguments::<0, 0>(&[]).is_ok());

        let f = function("foo", [value(0)], []);
        assert!(f.expect_no_arguments().is_err());
        assert_eq!(
            f.expect_some_arguments::<0>().unwrap(),
            (&[], [value(0)].as_slice())
        );
        assert_eq!(
            f.expect_some_arguments::<1>().unwrap(),
            (&[value(0)], [].as_slice())
        );
        assert!(f.expect_arguments::<0, 0>().is_err());
        assert_eq!(
            f.expect_arguments::<0, 1>().unwrap(),
            (&[], [Some(&value(0))])
        );
        assert_eq!(f.expect_arguments::<1, 1>().unwrap(), (&[value(0)], [None]));
        assert!(f.expect_named_arguments::<0, 0>(&[]).is_err());
        assert_eq!(
            f.expect_named_arguments::<0, 1>(&["a"]).unwrap(),
            ([], [Some(&value(0))])
        );
        assert_eq!(
            f.expect_named_arguments::<1, 0>(&["a"]).unwrap(),
            ([&value(0)], [])
        );

        let f = function("foo", [], [keyword("a", 0)]);
        assert!(f.expect_no_arguments().is_err());
        assert!(f.expect_some_arguments::<1>().is_err());
        assert!(f.expect_arguments::<0, 1>().is_err());
        assert!(f.expect_arguments::<1, 0>().is_err());
        assert!(f.expect_named_arguments::<0, 0>(&[]).is_err());
        assert!(f.expect_named_arguments::<0, 1>(&[]).is_err());
        assert!(f.expect_named_arguments::<1, 0>(&[]).is_err());
        assert_eq!(
            f.expect_named_arguments::<1, 0>(&["a"]).unwrap(),
            ([&value(0)], [])
        );
        assert_eq!(
            f.expect_named_arguments::<1, 1>(&["a", "b"]).unwrap(),
            ([&value(0)], [None])
        );
        assert!(f.expect_named_arguments::<1, 1>(&["b", "a"]).is_err());

        let f = function("foo", [value(0)], [keyword("a", 1), keyword("b", 2)]);
        assert!(f.expect_named_arguments::<0, 0>(&[]).is_err());
        assert!(f.expect_named_arguments::<1, 1>(&["a", "b"]).is_err());
        assert_eq!(
            f.expect_named_arguments::<1, 2>(&["c", "a", "b"]).unwrap(),
            ([&value(0)], [Some(&value(1)), Some(&value(2))])
        );
        assert_eq!(
            f.expect_named_arguments::<2, 1>(&["c", "b", "a"]).unwrap(),
            ([&value(0), &value(2)], [Some(&value(1))])
        );
        assert_eq!(
            f.expect_named_arguments::<0, 3>(&["c", "b", "a"]).unwrap(),
            ([], [Some(&value(0)), Some(&value(2)), Some(&value(1))])
        );

        let f = function("foo", [], [keyword("a", 0), keyword("a", 1)]);
        assert!(f.expect_named_arguments::<1, 1>(&["", "a"]).is_err());
    }
}