1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
//! Implementation of the Java Random Number generator.

#[cfg(test)]
mod test;
#[cfg(test)]
mod test_data;

use std::num::Wrapping;

/// Modulus
pub const M: Wrapping<i64> = Wrapping((1 << 48) - 1);

/// Multiplier
pub const A: Wrapping<i64> = Wrapping(0x5DEECE66D);

/// Increment
pub const C: Wrapping<i64> = Wrapping(11);

const F32_DIV: f32 = (1u32 << 24) as f32;
const F64_DIV: f64 = (1u64 << 53) as f64;

#[derive(Debug, Clone)]
pub struct Random {
	state: Wrapping<i64>,
	next_gaussian: Option<f64>
}

impl Random {
	pub fn new(seed: u64) -> Self {
		Random {
			state: Wrapping((seed as i64) ^ A.0) & M,
			next_gaussian: None
		}
	}

	/// Sets the seed to `seed`. This is equivalent to `Random::new`
	pub fn set_seed(&mut self, seed: u64) {
		*self = Random::new(seed);
	}

	/// Steps the RNG, returning up to 48 bits.
	///
	/// # Panics
	/// If the amount of requested bits is over 48, this function panics. Use next_i64/next_u64 instead, or multiple calls.
	pub fn next(&mut self, bits: u8) -> i32 {
		if bits > 48 {
			panic!("Too many bits!")
		}

		self.state = (self.state * A + C) & M;

		((self.state.0 as u64) >> (48 - bits)) as i32
	}

	/// Fills the byte array with random bytes.
	pub fn next_bytes(&mut self, bytes: &mut [u8]) {
		for chunk in bytes.chunks_mut(4) {
			let mut block = self.next_u32();

			for item in chunk {
				*item = (block & 0xFF) as u8;
				block >>= 8;
			}
		}
	}

	/// Returns a uniformly distributed signed 32-bit integer.
	pub fn next_i32(&mut self) -> i32 {
		self.next(32) as i32
	}

	/// Returns a uniformly distributed unsigned 32-bit integer.
	pub fn next_u32(&mut self) -> u32 {
		self.next(32) as u32
	}

	/// Returns a positive random number in the range [0, max), up to 2^31.
	/// The range of the return value is represented by the value `0 <= value < max`.
	/// A maximum of less than 1 is invalid because then no value would satisfy the range.
	///
	/// # Panics
	/// If `max` is less than 1, the function panics.
	pub fn next_i32_bound(&mut self, max: i32) -> i32 {
		if max <= 0 {
			panic!("Maximum must be > 0")
		}

		if (max as u32).is_power_of_two() {
			let max = max as i64;

			return ((max.wrapping_mul(self.next(31) as i64)) >> 31) as i32;
		}

		let mut bits = self.next(31);
		let mut val = bits % max;

		while bits.wrapping_sub(val).wrapping_add(max - 1) < 0 {
			bits = self.next(31);
			val = bits % max;
		}

		val
	}

	/// Returns a positive random number in the range [0, max), up to 2^31.
	/// The range of the return value is represented by the value `0 <= value < max`.
	/// A maximum of 0 is invalid because then no value would satisfy the range.
	/// Maximums of 2^31 or greater are not supported in Java.
	///
	/// # Panics
	/// If `max` reinterpreted as a signed 32-bit integer is less than 1, the function panics.
	pub fn next_u32_bound(&mut self, max: u32) -> u32 {
		self.next_i32_bound(max as i32) as u32
	}

	/// Returns a uniformly distributed signed 64-bit integer.
	pub fn next_i64(&mut self) -> i64 {
		((self.next(32) as i64) << 32).wrapping_add(self.next(32) as i64)
	}

	/// Returns a uniformly distributed unsigned 64-bit integer.
	pub fn next_u64(&mut self) -> u64 {
		self.next_i64() as u64
	}

	/// Returns a boolean value that has an equal chance of being true or false.
	pub fn next_bool(&mut self) -> bool {
		self.next(1) == 1
	}

	/// Returns a f32 uniformly distributed between 0.0 and 1.0.
	pub fn next_f32(&mut self) -> f32 {
		(self.next(24) as f32) / F32_DIV
	}

	/// Returns a f64 uniformly distributed between 0.0 and 1.0.
	pub fn next_f64(&mut self) -> f64 {
		let high = (self.next(26) as i64) << 27;
		let low = self.next(27) as i64;

		(high.wrapping_add(low) as f64) / F64_DIV
	}

	/// Returns a pair of gaussian random numbers generated by the Box-Mueller transform.
	fn next_gaussian_pair(&mut self) -> (f64, f64) {
		let mut next_candidate = || {
			let v = (
				2.0 * self.next_f64() - 1.0,
				2.0 * self.next_f64() - 1.0
			);

			(v, v.0*v.0 + v.1*v.1)
		};

		let (mut v, mut s) = next_candidate();

		while s >= 1.0 || s == 0.0 {
			let (vn, sn) = next_candidate();
			v = vn;
			s = sn;
		}

		// TODO: Use StrictMath (software) equivalent.
		let multiplier = ((s.log(::std::f64::consts::E) / s) * -2.0).sqrt();

		(v.0 * multiplier, v.1 * multiplier)
	}

	/// Returns a gaussian-distributed number with a mean of 0.0 and standard deviation of 1.0.
	pub fn next_gaussian(&mut self) -> f64 {
		match self.next_gaussian.take() {
			Some(next) => next,
			None => {
				let (v0, v1) = self.next_gaussian_pair();

				self.next_gaussian = Some(v1);

				v0
			}
		}
	}
}