1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
#![deny(missing_docs)]

//! `jaro_winkler` is a crate for calculating Jaro-Winkler distance of two strings.
//!
//! # Examples
//!
//! ```
//! use jaro_winkler::jaro_winkler;
//!
//! assert_eq!(jaro_winkler("martha", "marhta"), 0.9611111111111111);
//! assert_eq!(jaro_winkler("", "words"), 0.0);
//! assert_eq!(jaro_winkler("same", "same"), 1.0);
//! ```

enum DataWrapper {
    Vec(Vec<bool>),
    Bitwise(u128),
}

impl DataWrapper {
    fn build(len: usize) -> Self {
        if len <= 128 {
            DataWrapper::Bitwise(0)
        } else {
            let mut internal = Vec::with_capacity(len);
            internal.extend(std::iter::repeat(false).take(len));
            DataWrapper::Vec(internal)
        }
    }

    fn get(&self, idx: usize) -> bool {
        match self {
            DataWrapper::Vec(v) => v[idx],
            DataWrapper::Bitwise(v1) => (v1 >> idx) & 1 == 1,
        }
    }

    fn set_true(&mut self, idx: usize) {
        match self {
            DataWrapper::Vec(v) => v[idx] = true,
            DataWrapper::Bitwise(v1) => *v1 |= 1 << idx,
        }
    }
}

/// Calculates the Jaro-Winkler distance of two strings.
///
/// The return value is between 0.0 and 1.0, where 1.0 means the strings are equal.
pub fn jaro_winkler(left_: &str, right_: &str) -> f64 {
    let llen = left_.len();
    let rlen = right_.len();

    let (left, right, s1_len, s2_len) = if llen < rlen {
        (right_, left_, rlen, llen)
    } else {
        (left_, right_, llen, rlen)
    };

    match (s1_len, s2_len) {
        (0, 0) => return 1.0,
        (0, _) | (_, 0) => return 0.0,
        (_, _) => (),
    }

    if left == right {
        return 1.0;
    }

    let range = matching_distance(s1_len, s2_len);
    let mut s1m = DataWrapper::build(s1_len);
    let mut s2m = DataWrapper::build(s2_len);
    let mut matching: f64 = 0.0;
    let mut transpositions: f64 = 0.0;
    let left_as_bytes = left.as_bytes();
    let right_as_bytes = right.as_bytes();

    for i in 0..s2_len {
        let mut j = (i as isize - range as isize).max(0) as usize;
        let l = (i + range + 1).min(s1_len);
        while j < l {
            if right_as_bytes[i] == left_as_bytes[j] && !s1m.get(j) {
                s1m.set_true(j);
                s2m.set_true(i);
                matching += 1.0;
                break;
            }

            j += 1;
        }
    }

    if matching == 0.0 {
        return 0.0;
    }

    let mut l = 0;

    for i in 0..s2_len - 1 {
        if s2m.get(i) {
            let mut j = l;

            while j < s1_len {
                if s1m.get(j) {
                    l = j + 1;
                    break;
                }

                j += 1;
            }

            if right_as_bytes[i] != left_as_bytes[j] {
                transpositions += 1.0;
            }
        }
    }
    transpositions = (transpositions / 2.0).ceil();

    let jaro = (matching / (s1_len as f64)
        + matching / (s2_len as f64)
        + (matching - transpositions) / matching)
        / 3.0;

    let prefix_length = left_as_bytes
        .iter()
        .zip(right_as_bytes)
        .take(4)
        .take_while(|(l, r)| l == r)
        .count() as f64;

    jaro + prefix_length * 0.1 * (1.0 - jaro)
}

fn matching_distance(s1_len: usize, s2_len: usize) -> usize {
    let max = s1_len.max(s2_len) as f32;
    ((max / 2.0).floor() - 1.0) as usize
}

#[cfg(test)]
mod tests {
    use super::*;

    #[test]
    fn different_is_zero() {
        assert_eq!(jaro_winkler("foo", "bar"), 0.0);
    }

    #[test]
    fn same_is_one() {
        assert_eq!(jaro_winkler("foo", "foo"), 1.0);
        assert_eq!(jaro_winkler("", ""), 1.0);
    }

    #[test]
    fn test_hello() {
        assert_eq!(jaro_winkler("hell", "hello"), 0.96);
    }

    macro_rules! assert_within {
        ($x:expr, $y:expr, delta=$d:expr) => {
            assert!(($x - $y).abs() <= $d)
        };
    }

    #[test]
    fn test_boundary() {
        let long_value = "test result: ok. 0 passed; 0 failed; 0 ignored; 0 measured; 0 filtered out; finished in 0.00s Doc-tests jaro running 0 tests test result: ok. 0 passed; 0 failed; 0 ignored; 0 measured; 0 filtered out; finished in 0.00s";
        let longer_value = "test result: ok. 0 passed; 0 failed; 0 ignored; 0 measured;test result: ok. 0 passed; 0 failed; 0 ignored; 0 measured;test result: ok. 0 passed; 0 failed; 0 ignored; 0 measured;test result: ok. 0 passed; 0 failed; 0 ignored; 0 measured;test result: ok. 0 passed; 0 failed; 0 ignored; 0 measured; 0 filtered out; finished in 0.00s Doc-tests jaro running 0 tests test result: ok. 0 passed; 0 failed; 0 ignored; 0 measured; 0 filtered out; finished in 0.00s";
        let result = jaro_winkler(long_value, longer_value);
        assert_within!(result, 0.82, delta = 0.01);
    }

    #[test]
    fn test_close_to_boundary() {
        let long_value = "test result: ok. 0 passed; 0 failed; 0 ignored; 0 measured; 0 filtered out; finished in 0.00s Doc-tests jaro running 0 tests test";
        assert_eq!(long_value.len(), 129);
        let longer_value = "test result: ok. 0 passed; 0 failed; 0 ignored; 0 measured;test result: ok. 0 passed; 0 failed; 0 ignored; 0 measured;test result: ok. 0 passed; 0 failed; 0 ignored; 0 measured;test result: ok. 0 passed; 0 failed; 0 ignored; 0 measured;test result: ok. 0 passed; 0 failed; 0 ignored; 0 measured; 0 filtered out; finished in 0.00s Doc-tests jaro running 0 tests test result: ok. 0 passed; 0 failed; 0 ignored; 0 measured; 0 filtered out; finished in 0.00s";
        let result = jaro_winkler(long_value, longer_value);
        assert_within!(result, 0.8, delta = 0.001);
    }
}