1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153
//! This crate implements an [`Iterator`] extension that provides
//! instruction-parallel reductions
//!
//! # Motivation
//!
//! Have you ever wondered why `Iterator::sum()` performs so poorly on
//! floating-point data?
//!
//! On my machine, a benchmark of summing the elements of a `Vec<f32>` that fits
//! in the CPU's L1d cache (which is a precondition for maximal computation
//! performance) sums about a billion numbers per second. This may seem
//! reasonable until you realize that modern CPUs have multi-GHz clock rates,
//! can process [multiple instructions per clock
//! cycle](https://en.wikipedia.org/wiki/Superscalar_processor), and can sum
//! [multiple floating-point numbers per
//! instruction](https://en.wikipedia.org/wiki/Single_instruction,_multiple_data).
//! Then you come to the realization that the orders of magnitude aren't right.
//!
//! The problem lies not in the implementation of `Iterator::sum()`, but in its
//! definition. This code...
//!
//! ```
//! # let floats = [0.0; 8192];
//! let sum = floats.iter().sum::<f32>();
//! ```
//!
//! ...correctly compiles down to the same assembly as that loop...
//!
//! ```
//! # let floats = [0.0; 8192];
//! let mut sum = 0.0;
//! for &float in &floats {
//! sum += float;
//! }
//! ```
//!
//! ...but that loop itself isn't right for modern hardware, because it does not
//! expose enough [instruction-level parallelism
//! (ILP)](https://en.wikipedia.org/wiki/Instruction-level_parallelism).
//!
//! To give some context, the Rust compiler does not allow itself to reorder
//! floating-point operations with respect to what the user wrote. This is a
//! good thing in general because floating-point arithmetic is not
//! [associative](https://en.wikipedia.org/wiki/Associative_property), which
//! means such optimizations would make program output nondeterministic (it
//! depends on what compiler optimizations were applied) and could break the
//! [numerical stability](https://en.wikipedia.org/wiki/Numerical_stability) of
//! some trickier algorithms.
//!
//! But in the case of the loop above, it also means that whatever optimizations
//! are applied, the final code must only use one accumulator, and sum the first
//! number into that accumulator, then the second number, then the third one...
//!
//! Doing so turns our whole program into a gigantic dependency chain of
//! scalar floating-point operations, with no opportunities for compilers or
//! hardware to extract parallelism. Without parallelism, hardware capabilities
//! for small-scale parallelism go to waste, and execution speed becomes limited
//! by the CPU's addition latency (how much time it takes to compute one
//! addition) rather than its addition throughput (how many unrelated additions
//! it can compute per second).
//!
//! This problem is not unique to `Iterator::sum()`, or even to floating-point
//! data. All iterator methods that perform data reduction (take an iterator of
//! elements and produce a single result) are affected by this problem to some
//! degree. All it takes is an operation whose semantics depend on the number
//! of observed iterator items or the order in which operations are performed,
//! and the compiler will generate bad code.
//!
//! And since most of these Iterator methods are documented to perform data
//! reduction in a specific way, this problem cannot be solved by improving
//! the standard library's `Iterator` implementation, at least not without
//! breaking the API of `Iterator`, which would be Very Bad (tm) and is thus
//! highly unlikely to happen.
//!
//! # What this crate provides
//!
//! [`IteratorILP`] is an Iterator extension trait that can be implemented for
//! all iterators of known length, and provides variants of the standard
//! reduction methods with a `STREAMS` const generic parameter. By tuning up
//! this parameter, you divide the iterator reduction work across more and more
//! instruction streams, exposing more and more instruction-level parallelism
//! for the compiler and hardware to take advantage of.
//!
//! This is effectively
//! [loop unrolling](https://en.wikipedia.org/wiki/Loop_unrolling), but instead
//! of making your code unreadable by manually implementing the operation
//! yourself, you let `IteratorILP` do it for you by just providing it with the
//! tuning parameter it needs.
//!
//! So to reuse the above example...
//!
//! ```
//! # let floats = [0.0; 8192];
//! use iterator_ilp::IteratorILP;
//! let sum = floats.iter().sum_ilp::<16, f32>();
//! ```
//!
//! ...would sum a slice of floating-point numbers using 16 independent
//! instruction streams, achieving a more respectable throughput of
//! 17 billion floating-point sums per second on an Intel i9-10900 CPU running
//! at 2.5 GHz. This corresponds to 6.8 additions per CPU cycle, which is
//! reasonable when considering that the hardware can do 16 additions per second
//! on correctly aligned SIMD data, but here the data is _not_ correctly
//! aligned and hence reaching about half the hardware throughput is expected.
//!
//! # How many instruction streams do I need?
//!
//! The number of independent instruction streams you need to reach peak
//! hardware performance depends on many factors:
//!
//! - What hardware you are running on
//! - What hardware features (e.g. SIMD instruction set extensions) are used by
//! the compiled program
//! - What type of data you are manipulating
//! - How complex your input iterator and the reduction operation are
//!
//! Further, you cannot just tune the number of streams up indefinitely because
//! managing more instruction streams requires more hardware resources (CPU
//! registers, instruction cache...), and at some point you will run out of
//! these scarce resources and your runtime performance will drop. Even before
//! that, some internal compiler optimizer code complexity threshold may be
//! reached at which point the compiler will decide to stop optimizing the code
//! of individual instruction streams as much at it would optimize that of a
//! normal reduction, which will reduce performance as well.
//!
//! To give orders of magnitude, simple reductions, like the floating point sum
//! discussed above, can benefit from being spread over 16 instruction streams
//! or more on some hardware (e.g. x86 CPUs with AVX enabled), while complex
//! reductions (e.g. those using manually vectorized data) may not benefit from
//! more than 2 streams, or could even already exhibit decreased performance in
//! that configuration.
//!
//! Since the rules for determining the right number of streams are so complex,
//! and involve information unknown to this crate, we leave it up to you to
//! tune this parameter. An empirical approach is advised: take a workload
//! whose performance you care about, benchmark it with various numbers of
//! streams on a broad range of target configurations, and find out the right
//! compromise for you (which may be a hardware-dependent compromise selected
//! via `#[cfg()]` attributes and/or runtime detection if needed).
#![cfg_attr(not(any(test, feature = "std")), no_std)]
#[cfg(doc)]
use core::iter::{Product, Sum};
use core::{
cell::RefCell,
iter::FusedIterator,
ops::{Add, Mul},
};
use num_traits::{One, Zero};
/// Iterator extension that provides instruction-parallel reductions
///
/// See the [crate-level documentation](crate) for more information on what
/// instruction-level parallelism is, why it's needed, how much of it you need,
/// and why standard iterator reductions may not provide enough of it.
///
/// This trait's documentation will instead focus on how and why ILP reduction
/// semantics differ from standard reduction semantics.
///
/// # General strategy
///
/// All reductions provided by this trait use the name of the equivalent
/// reduction operation provided by the standard [`Iterator`] trait, with an
/// `_ilp` suffix that stands for Instruction-Level Parallelism and a `STREAMS`
/// const parameter that lets you tune the number of independent instruction
/// streams that you want to extract.
///
/// `STREAMS` must be at least one, but at the time of writing we cannot express
/// this at the type level, so we handle requests for 0 streams through
/// panicking instead.
///
/// ILP reductions are implemented by treating an [`Iterator`] as the
/// interleaved output of `STREAMS` different iterators, that we will call
/// streams in the following to avoid confusion:
///
/// - The first item is treated as if it were the first item of the first stream
/// - The second item is treated as if it were the first item of the second stream
/// - ...and so on until STREAMS items have been processed...
/// - Then the (STREAMS+1)-th item is treated as if it were the second
/// item of the first stream, and so on.
///
/// Each of these streams is independently processed using a close cousin of the
/// algorithm that a standard iterator reduction would use, then at the end
/// the results of individual reductions are merged into a global result.
///
/// Like all forms of parallelism, instruction-level parallelism does not
/// handle early exit very well. To avoid losing its benefits, we must read out
/// input data in groups of STREAMS elements, and only after that check if any
/// of the elements that we have read requires us to terminate iteration.
///
/// In principle, a [`FusedIterator`] bound should be enough to satisfy this
/// requirement. But in practice, good code generation could not be obtained
/// without relying on the lower bound of [`Iterator::size_hint()`] to be
/// correct for safety. This is a subset of the contract of [`TrustedLen`],
/// which, unfortunately, is unstable.
///
/// Therefore, we provide our own [`TrustedLowerBound`] unsafe trait, which we
/// implement for all standard library iterators. If you need to use
/// `iterator_ilp` with another iterator whose lower size bound you trust, you
/// can do either of the following:
///
/// - Implement [`TrustedLowerBound`] for this iterator, if it's a type that you
/// control. This is the preferred path, because it allows users to leverage
/// `iterator_ilp` without unsafe assertions about types outside of their
/// control. In an ideal world, all numerical container libraries would
/// eventually provide such implementations.
/// - Use the [`AssertLowerBoundOk`] wrapper to unsafely assert, on your side,
/// that **you** trust an iterator to have a `size_hint()` implementation that
/// provides a correct lower bound.
///
/// That's it for the general strategy, now to get into the detail of particular
/// algorithms, we must divide [`Iterator`] reductions into three categories:
///
/// - [Searches](#Searching) like [`Iterator::find()`] iterate until an item
/// matching a user-provided predicate is found, then abort iteration.
/// - [Accumulations](#Accumulating) like [`Iterator::fold()`] set up an
/// accumulator and go through the entire input iterator, combining the
/// accumulator with each item and returning the final accumulator at the end.
/// - [`Iterator::sum()`] and [`Iterator::product()`] are technically
/// accumulations, but their API is so different from that of other
/// accumulations that they [are discussed separately](#sum-and-product).
///
/// # Searching
///
/// As mentioned earlier, data must be read in groups of `STREAMS` for optimal
/// instruction level parallelism. As a result, the short-circuiting feature of
/// Rust's standard search algorithms becomes somewhat meaningless and
/// deceitful, so it was dropped and the iterator is consumed instead.
///
/// Users of iterators with side effects (e.g. [`inspect()`]) must bear in mind
/// that when using the ILP version of search routines, elements may be read
/// beyond the point where the search will terminate.
///
/// # Accumulating
///
/// The signature of [`fold_ilp()`] differs a fair bit from that of
/// [`Iterator::fold()`] because instruction-parallel accumulation requires
/// setting up `STREAMS` different accumulators at the beginning and merging
/// them into one at the end. Users are invited to read [the documentation of
/// `fold_ilp()`](IteratorILP::fold_ilp()) for more details about how its usage
/// differs from that of standard [`fold()`].
///
/// Higher-level accumulation routines that do not expose the accumulator, like
/// [`reduce_ilp()`], are not as drastically affected from an API standpoint.
/// The main thing to keep in mind when using them is that since accumulation is
/// performed in a different order, results will differ for non-associative
/// reduction functions like floating-point summation, and the provided
/// reduction callable will observe a different sequence of inputs, so it should
/// not rely on ordering of inputs for correctness.
///
/// # Sum and product
///
/// The definition of the [`Sum`] and [`Product`] traits is very high-level and
/// does not allow us to inject the right code in the right place in order to
/// achieve satisfactory code generation. Therefore, our versions of the
/// [`sum()`] and [`product()`] iterator reductions have to use completely
/// different trait bounds. For sane types, this is mostly transparent,
/// reordering of operations aside.
///
/// [`fold()`]: Iterator::fold()
/// [`fold_ilp()`]: IteratorILP::fold_ilp()
/// [`inspect()`]: Iterator::inspect()
/// [`product()`]: Iterator::product()
/// [`product_ilp()`]: IteratorILP::product_ilp()
/// [`reduce_ilp()`]: IteratorILP::reduce_ilp()
/// [`sum()`]: Iterator::sum()
/// [`sum_ilp()`]: IteratorILP::sum_ilp()
/// [`TrustedLen`]: core::iter::TrustedLen
pub trait IteratorILP: Iterator + Sized + TrustedLowerBound {
// === Searching ===
/// Like [`Iterator::any()`], but with multiple ILP streams and consumes the
/// iterator
///
/// See also the [general IteratorILP documentation](IteratorILP) and [its
/// section on search routines](#Searching) in particular.
///
/// # Panics
///
/// - If `STREAMS` is set to 0. Need at least one instruction stream to
/// make progress.
#[inline]
fn any_ilp<const STREAMS: usize>(self, mut predicate: impl FnMut(Self::Item) -> bool) -> bool {
assert_ne!(STREAMS, 0, "Need at least one stream to make progress");
self.find_map_ilp::<STREAMS, _>(|item| predicate(item).then_some(true))
.unwrap_or(false)
}
/// Like [`Iterator::all()`], but with multiple ILP streams and consumes the iterator
///
/// See also the [general IteratorILP documentation](IteratorILP) and [its
/// section on search routines](#Searching) in particular.
///
/// # Panics
///
/// - If `STREAMS` is set to 0. Need at least one instruction stream to
/// make progress.
#[inline]
fn all_ilp<const STREAMS: usize>(self, mut predicate: impl FnMut(Self::Item) -> bool) -> bool {
assert_ne!(STREAMS, 0, "Need at least one stream to make progress");
self.find_map_ilp::<STREAMS, _>(|item| (!predicate(item)).then_some(false))
.unwrap_or(true)
}
/// Like [`Iterator::find()`], but with multiple ILP streams and consumes the iterator
///
/// See also the [general IteratorILP documentation](IteratorILP) and [its
/// section on search routines](#Searching) in particular.
///
/// # Panics
///
/// - If `STREAMS` is set to 0. Need at least one instruction stream to
/// make progress.
#[inline]
fn find_ilp<const STREAMS: usize>(
self,
mut predicate: impl FnMut(&Self::Item) -> bool,
) -> Option<Self::Item> {
assert_ne!(STREAMS, 0, "Need at least one stream to make progress");
// Map the iterator in such a way that it returns Some(item) if the item
// matches the predicate
let mut iter = self.map(|item| predicate(&item).then_some(item));
// Process the regular part of the stream
let stream_len = iter.size_hint().0 / STREAMS;
for _ in 0..stream_len {
// Fetch one Option<Item> per stream
let item_opts: [Option<Self::Item>; STREAMS] =
// SAFETY: The TrustedLowerBound contract lets us assume than
// the lower bound returned by size_hint is correct, and
// the above loop will not iterate for more than this
// amount of iteration, so this is trusted to be safe.
core::array::from_fn(|_| unsafe { iter.next().unwrap_unchecked() });
// Check if the item of interest was found
if let Some(item) = item_opts.into_iter().flatten().next() {
return Some(item);
}
}
// Process irregular elements at the end
iter.flatten().next()
}
/// Like [`Iterator::find_map()`], but with multiple ILP streams and consumes the iterator
///
/// See also the [general IteratorILP documentation](IteratorILP) and [its
/// section on search routines](#Searching) in particular.
///
/// # Panics
///
/// - If `STREAMS` is set to 0. Need at least one instruction stream to
/// make progress.
#[inline]
fn find_map_ilp<const STREAMS: usize, Res>(
self,
f: impl FnMut(Self::Item) -> Option<Res>,
) -> Option<Res> {
assert_ne!(STREAMS, 0, "Need at least one stream to make progress");
self.map(f)
.find_ilp::<STREAMS>(|res| res.is_some())
.flatten()
}
/// Like [`Iterator::position()`], but with multiple ILP streams and consumes the iterator
///
/// See also the [general IteratorILP documentation](IteratorILP) and [its
/// section on search routines](#Searching) in particular.
///
/// # Panics
///
/// - If `STREAMS` is set to 0. Need at least one instruction stream to
/// make progress.
#[inline]
fn position_ilp<const STREAMS: usize>(
self,
mut predicate: impl FnMut(Self::Item) -> bool,
) -> Option<usize> {
assert_ne!(STREAMS, 0, "Need at least one stream to make progress");
self.enumerate()
.find_map_ilp::<STREAMS, _>(|(idx, elem)| predicate(elem).then_some(idx))
}
/// Like [`Iterator::rposition()`], but with multiple ILP streams and consumes the iterator
///
/// See also the [general IteratorILP documentation](IteratorILP) and [its
/// section on search routines](#Searching) in particular.
///
/// # Panics
///
/// - If `STREAMS` is set to 0. Need at least one instruction stream to
/// make progress.
#[inline]
fn rposition_ilp<const STREAMS: usize>(
self,
mut predicate: impl FnMut(Self::Item) -> bool,
) -> Option<usize>
where
Self: DoubleEndedIterator + ExactSizeIterator,
{
assert_ne!(STREAMS, 0, "Need at least one stream to make progress");
self.enumerate()
.rev()
.find_map_ilp::<STREAMS, _>(|(idx, elem)| predicate(elem).then_some(idx))
}
// === Accumulating ===
/// Like [`Iterator::fold()`], but with multiple ILP streams and thus
/// multiple accumulators
///
/// `neutral` should produce the neutral element of the computation being
/// performed. All accumulators will be initialized using this function,
/// and eventually merged using `merge`.
///
/// Implementations of `accumulate` and `merge` should not be sensitive to
/// the traversal order of items and accumulators, respectively.
///
/// See also the [general IteratorILP documentation](IteratorILP) and [its
/// section on accumulation](#Accumulating) in particular.
///
/// # Panics
///
/// - If `STREAMS` is set to 0. Need at least one instruction stream to
/// make progress.
#[inline]
fn fold_ilp<const STREAMS: usize, Acc>(
mut self,
mut neutral: impl FnMut() -> Acc,
mut accumulate: impl FnMut(Acc, Self::Item) -> Acc,
mut merge: impl FnMut(Acc, Acc) -> Acc,
) -> Acc {
assert_ne!(STREAMS, 0, "Need at least one stream to make progress");
// Set up accumulators
let mut accumulators: [Option<Acc>; STREAMS] = core::array::from_fn(|_| Some(neutral()));
let mut accumulate_opt = |accumulator: &mut Option<Acc>, item| {
if let Some(prev_acc) = accumulator.take() {
*accumulator = Some(accumulate(prev_acc, item));
}
};
// Accumulate the regular part of the stream
let stream_len = self.size_hint().0 / STREAMS;
for _ in 0..stream_len {
for acc in &mut accumulators {
// SAFETY: The TrustedLowerBound contract lets us assume than
// the lower bound returned by size_hint is correct, and
// the above loop will not iterate for more than this
// amount of iteration, so this is trusted to be safe.
accumulate_opt(acc, unsafe { self.next().unwrap_unchecked() });
}
}
// Merge the accumulators
let mut stride = if STREAMS.is_power_of_two() {
STREAMS
} else {
STREAMS.next_power_of_two()
};
while stride > 1 {
stride /= 2;
for i in 0..stride.min(STREAMS - stride) {
accumulators[i] = Some(merge(
accumulators[i].take().unwrap(),
accumulators[i + stride].take().unwrap(),
));
}
}
let ilp_result = accumulators[0].take().unwrap();
// Accumulate remaining irregular elements using standard iterator fold,
// then merge (doing it like this improves floating-point accuracy)
merge(ilp_result, self.fold(neutral(), accumulate))
}
/// Like [`Iterator::reduce()`], but with multiple ILP streams
///
/// Implementations of `reduce` should not be sensitive to the order in
/// which iterator items are traversed.
///
/// See also the [general IteratorILP documentation](IteratorILP) and [its
/// section on accumulation](#Accumulating) in particular.
///
/// # Panics
///
/// - If `STREAMS` is set to 0. Need at least one instruction stream to
/// make progress.
#[inline]
fn reduce_ilp<const STREAMS: usize>(
self,
reduce: impl FnMut(Self::Item, Self::Item) -> Self::Item,
) -> Option<Self::Item> {
assert_ne!(STREAMS, 0, "Need at least one stream to make progress");
let reduce = RefCell::new(reduce);
self.fold_ilp::<STREAMS, _>(
|| None,
|acc_opt, item| {
Some(if let Some(acc) = acc_opt {
reduce.borrow_mut()(acc, item)
} else {
item
})
},
|acc_opt_1, acc_opt_2| match (acc_opt_1, acc_opt_2) {
(Some(a), Some(b)) => Some(reduce.borrow_mut()(a, b)),
(Some(a), _) | (_, Some(a)) => Some(a),
(None, None) => None,
},
)
}
// === Sum and product ===
/// Like [`Iterator::sum()`], but with multiple ILP streams, and uses
/// different trait bounds.
///
/// See also the [general IteratorILP documentation](IteratorILP) and [its
/// section on sum and product](#sum-and-product) in particular.
///
/// # Panics
///
/// - If `STREAMS` is set to 0. Need at least one instruction stream to
/// make progress.
#[inline(always)]
fn sum_ilp<const STREAMS: usize, S: Add<Self::Item, Output = S> + Add<S> + Zero>(self) -> S {
assert_ne!(STREAMS, 0, "Need at least one stream to make progress");
self.fold_ilp::<STREAMS, _>(|| S::zero(), |acc, it| acc + it, |acc1, acc2| acc1 + acc2)
}
/// Like [`Iterator::product()`], but with multiple ILP streams, and uses
/// different trait bounds.
///
/// See also the [general IteratorILP documentation](IteratorILP) and [its
/// section on sum and product](#sum-and-product) in particular.
///
/// # Panics
///
/// - If `STREAMS` is set to 0. Need at least one instruction stream to
/// make progress.
#[inline]
fn product_ilp<const STREAMS: usize, P: Mul<Self::Item, Output = P> + Mul<P> + One>(self) -> P {
assert_ne!(STREAMS, 0, "Need at least one stream to make progress");
self.fold_ilp::<STREAMS, _>(|| P::one(), |acc, it| acc * it, |acc1, acc2| acc1 * acc2)
}
}
impl<I: Iterator + Sized + TrustedLowerBound> IteratorILP for I {}
/// An iterator that reports an accurate lower bound using [`size_hint()`]
///
/// # Safety
///
/// The lower bound reported by this iterator is guaranteed to be accurate, in
/// the sense that the iterator cannot output less items. Unsafe code can rely
/// on this being correct for safety.
///
/// For optimal performance, the lower bound should also be exact (i.e. equal to
/// the number of elements being returned) whenever possible, but this is not a
/// safety-critical property.
///
/// Since this iterator trait is a subset of the unstable [`TrustedLen`]
/// trait, it will be implemented for all implementations of [`TrustedLen`] as
/// they stabilize.
///
/// [`size_hint()`]: Iterator::size_hint()
/// [`TrustedLen`]: core::iter::TrustedLen
pub unsafe trait TrustedLowerBound: Iterator {}
//
// SAFETY: All Iterator impls from std are trusted to be implemented correctly,
// since if you can't trust std, there is no hope for you...
mod core_iters {
use crate::TrustedLowerBound;
use core::{
iter::{
Chain, Cloned, Copied, Cycle, Empty, Enumerate, Filter, FilterMap, FlatMap, Flatten,
FromFn, Fuse, Inspect, Map, MapWhile, Once, OnceWith, Peekable, Repeat, RepeatWith,
Rev, Scan, Skip, SkipWhile, StepBy, Successors, Take, TakeWhile, Zip,
},
ops::{Range, RangeFrom, RangeInclusive},
str::{CharIndices, Chars, EncodeUtf16, SplitAsciiWhitespace, SplitWhitespace},
};
unsafe impl<'a, I> TrustedLowerBound for &'a mut I where I: TrustedLowerBound + ?Sized {}
unsafe impl<A, B> TrustedLowerBound for Chain<A, B>
where
A: TrustedLowerBound,
B: TrustedLowerBound<Item = <A as Iterator>::Item>,
{
}
unsafe impl TrustedLowerBound for CharIndices<'_> {}
unsafe impl TrustedLowerBound for Chars<'_> {}
unsafe impl<'a, I, T> TrustedLowerBound for Cloned<I>
where
I: TrustedLowerBound<Item = &'a T>,
T: 'a + Clone,
{
}
unsafe impl<'a, I, T> TrustedLowerBound for Copied<I>
where
I: TrustedLowerBound<Item = &'a T>,
T: 'a + Copy,
{
}
unsafe impl<I> TrustedLowerBound for Cycle<I> where I: TrustedLowerBound + Clone {}
unsafe impl<T> TrustedLowerBound for Empty<T> {}
unsafe impl TrustedLowerBound for EncodeUtf16<'_> {}
unsafe impl<I> TrustedLowerBound for Enumerate<I> where I: TrustedLowerBound {}
unsafe impl<I, P> TrustedLowerBound for Filter<I, P>
where
I: TrustedLowerBound,
P: FnMut(&<I as Iterator>::Item) -> bool,
{
}
unsafe impl<B, I, F> TrustedLowerBound for FilterMap<I, F>
where
F: FnMut(<I as Iterator>::Item) -> Option<B>,
I: TrustedLowerBound,
{
}
unsafe impl<I, U> TrustedLowerBound for Flatten<I>
where
I: TrustedLowerBound,
<I as Iterator>::Item: IntoIterator<IntoIter = U, Item = <U as Iterator>::Item>,
U: TrustedLowerBound,
{
}
unsafe impl<I, U, F> TrustedLowerBound for FlatMap<I, U, F>
where
I: TrustedLowerBound,
U: IntoIterator,
<U as IntoIterator>::IntoIter: TrustedLowerBound,
F: FnMut(<I as Iterator>::Item) -> U,
{
}
unsafe impl<T, F> TrustedLowerBound for FromFn<F> where F: FnMut() -> Option<T> {}
unsafe impl<I> TrustedLowerBound for Fuse<I> where I: TrustedLowerBound {}
unsafe impl<I, F> TrustedLowerBound for Inspect<I, F>
where
I: TrustedLowerBound,
F: FnMut(&<I as Iterator>::Item),
{
}
unsafe impl<B, I, F> TrustedLowerBound for Map<I, F>
where
F: FnMut(<I as Iterator>::Item) -> B,
I: TrustedLowerBound,
{
}
unsafe impl<B, I, F> TrustedLowerBound for MapWhile<I, F>
where
F: FnMut(<I as Iterator>::Item) -> Option<B>,
I: TrustedLowerBound,
{
}
unsafe impl<T> TrustedLowerBound for Once<T> {}
unsafe impl<A, F> TrustedLowerBound for OnceWith<F> where F: FnOnce() -> A {}
unsafe impl<I> TrustedLowerBound for Peekable<I> where I: TrustedLowerBound {}
unsafe impl TrustedLowerBound for Range<usize> {}
unsafe impl TrustedLowerBound for Range<isize> {}
unsafe impl TrustedLowerBound for Range<u8> {}
unsafe impl TrustedLowerBound for Range<i8> {}
unsafe impl TrustedLowerBound for Range<u16> {}
unsafe impl TrustedLowerBound for Range<i16> {}
unsafe impl TrustedLowerBound for Range<u32> {}
unsafe impl TrustedLowerBound for Range<i32> {}
unsafe impl TrustedLowerBound for Range<i64> {}
unsafe impl TrustedLowerBound for Range<u64> {}
unsafe impl TrustedLowerBound for RangeFrom<usize> {}
unsafe impl TrustedLowerBound for RangeFrom<isize> {}
unsafe impl TrustedLowerBound for RangeFrom<u8> {}
unsafe impl TrustedLowerBound for RangeFrom<i8> {}
unsafe impl TrustedLowerBound for RangeFrom<u16> {}
unsafe impl TrustedLowerBound for RangeFrom<i16> {}
unsafe impl TrustedLowerBound for RangeFrom<u32> {}
unsafe impl TrustedLowerBound for RangeFrom<i32> {}
unsafe impl TrustedLowerBound for RangeFrom<i64> {}
unsafe impl TrustedLowerBound for RangeFrom<u64> {}
unsafe impl TrustedLowerBound for RangeInclusive<usize> {}
unsafe impl TrustedLowerBound for RangeInclusive<isize> {}
unsafe impl TrustedLowerBound for RangeInclusive<u8> {}
unsafe impl TrustedLowerBound for RangeInclusive<i8> {}
unsafe impl TrustedLowerBound for RangeInclusive<u16> {}
unsafe impl TrustedLowerBound for RangeInclusive<i16> {}
unsafe impl TrustedLowerBound for RangeInclusive<u32> {}
unsafe impl TrustedLowerBound for RangeInclusive<i32> {}
unsafe impl TrustedLowerBound for RangeInclusive<i64> {}
unsafe impl TrustedLowerBound for RangeInclusive<u64> {}
unsafe impl<A: Clone> TrustedLowerBound for Repeat<A> {}
unsafe impl<A, F> TrustedLowerBound for RepeatWith<F> where F: FnMut() -> A {}
unsafe impl<I> TrustedLowerBound for Rev<I> where I: TrustedLowerBound + DoubleEndedIterator {}
unsafe impl<B, I, St, F> TrustedLowerBound for Scan<I, St, F>
where
F: FnMut(&mut St, <I as Iterator>::Item) -> Option<B>,
I: TrustedLowerBound,
{
}
unsafe impl<I> TrustedLowerBound for Skip<I> where I: TrustedLowerBound {}
unsafe impl<I, P> TrustedLowerBound for SkipWhile<I, P>
where
I: TrustedLowerBound,
P: FnMut(&<I as Iterator>::Item) -> bool,
{
}
unsafe impl TrustedLowerBound for SplitAsciiWhitespace<'_> {}
unsafe impl TrustedLowerBound for SplitWhitespace<'_> {}
unsafe impl<I> TrustedLowerBound for StepBy<I> where I: TrustedLowerBound {}
unsafe impl<T, F> TrustedLowerBound for Successors<T, F> where F: FnMut(&T) -> Option<T> {}
unsafe impl<I> TrustedLowerBound for Take<I> where I: TrustedLowerBound {}
unsafe impl<I, P> TrustedLowerBound for TakeWhile<I, P>
where
I: TrustedLowerBound,
P: FnMut(&<I as Iterator>::Item) -> bool,
{
}
unsafe impl<A, B> TrustedLowerBound for Zip<A, B>
where
A: TrustedLowerBound,
B: TrustedLowerBound,
{
}
unsafe impl<T, const N: usize> TrustedLowerBound for core::array::IntoIter<T, N> {}
unsafe impl TrustedLowerBound for core::ascii::EscapeDefault {}
unsafe impl<I> TrustedLowerBound for core::char::DecodeUtf16<I> where
I: TrustedLowerBound<Item = u16>
{
}
unsafe impl TrustedLowerBound for core::char::EscapeDebug {}
unsafe impl TrustedLowerBound for core::char::EscapeDefault {}
unsafe impl TrustedLowerBound for core::char::EscapeUnicode {}
unsafe impl TrustedLowerBound for core::char::ToLowercase {}
unsafe impl TrustedLowerBound for core::char::ToUppercase {}
unsafe impl<'a, A> TrustedLowerBound for core::option::Iter<'a, A> {}
unsafe impl<'a, A> TrustedLowerBound for core::option::IterMut<'a, A> {}
unsafe impl<A> TrustedLowerBound for core::option::IntoIter<A> {}
unsafe impl<'a, A> TrustedLowerBound for core::result::Iter<'a, A> {}
unsafe impl<'a, A> TrustedLowerBound for core::result::IterMut<'a, A> {}
unsafe impl<A> TrustedLowerBound for core::result::IntoIter<A> {}
unsafe impl<T> TrustedLowerBound for core::slice::Chunks<'_, T> {}
unsafe impl<T> TrustedLowerBound for core::slice::ChunksExact<'_, T> {}
unsafe impl<T> TrustedLowerBound for core::slice::ChunksExactMut<'_, T> {}
unsafe impl<T> TrustedLowerBound for core::slice::ChunksMut<'_, T> {}
unsafe impl TrustedLowerBound for core::slice::EscapeAscii<'_> {}
unsafe impl<'a, T> TrustedLowerBound for core::slice::Iter<'a, T> {}
unsafe impl<'a, T> TrustedLowerBound for core::slice::IterMut<'a, T> {}
unsafe impl<T> TrustedLowerBound for core::slice::RChunks<'_, T> {}
unsafe impl<T> TrustedLowerBound for core::slice::RChunksExact<'_, T> {}
unsafe impl<T> TrustedLowerBound for core::slice::RChunksExactMut<'_, T> {}
unsafe impl<T> TrustedLowerBound for core::slice::RChunksMut<'_, T> {}
unsafe impl<'a, T, P> TrustedLowerBound for core::slice::RSplit<'a, T, P> where P: FnMut(&T) -> bool {}
unsafe impl<'a, T, P> TrustedLowerBound for core::slice::RSplitMut<'a, T, P> where
P: FnMut(&T) -> bool
{
}
unsafe impl<'a, T, P> TrustedLowerBound for core::slice::RSplitN<'a, T, P> where P: FnMut(&T) -> bool
{}
unsafe impl<'a, T, P> TrustedLowerBound for core::slice::RSplitNMut<'a, T, P> where
P: FnMut(&T) -> bool
{
}
unsafe impl<'a, T, P> TrustedLowerBound for core::slice::Split<'a, T, P> where P: FnMut(&T) -> bool {}
unsafe impl<'a, T, P> TrustedLowerBound for core::slice::SplitInclusive<'a, T, P> where
P: FnMut(&T) -> bool
{
}
unsafe impl<'a, T, P> TrustedLowerBound for core::slice::SplitInclusiveMut<'a, T, P> where
P: FnMut(&T) -> bool
{
}
unsafe impl<'a, T, P> TrustedLowerBound for core::slice::SplitMut<'a, T, P> where
P: FnMut(&T) -> bool
{
}
unsafe impl<'a, T, P> TrustedLowerBound for core::slice::SplitN<'a, T, P> where P: FnMut(&T) -> bool {}
unsafe impl<'a, T, P> TrustedLowerBound for core::slice::SplitNMut<'a, T, P> where
P: FnMut(&T) -> bool
{
}
unsafe impl<T> TrustedLowerBound for core::slice::Windows<'_, T> {}
unsafe impl TrustedLowerBound for core::str::Bytes<'_> {}
unsafe impl TrustedLowerBound for core::str::EscapeDebug<'_> {}
unsafe impl TrustedLowerBound for core::str::EscapeDefault<'_> {}
unsafe impl TrustedLowerBound for core::str::EscapeUnicode<'_> {}
unsafe impl TrustedLowerBound for core::str::Lines<'_> {}
#[cfg(feature = "std")]
mod std {
use crate::TrustedLowerBound;
use core::hash::{BuildHasher, Hash};
use std::{
env::{Args, ArgsOs, SplitPaths, Vars, VarsOs},
fs::ReadDir,
io::{BufRead, Read},
path::{Ancestors, Components},
process::{CommandArgs, CommandEnvs},
sync::mpsc::TryIter,
vec::Splice,
};
unsafe impl TrustedLowerBound for Ancestors<'_> {}
unsafe impl TrustedLowerBound for Args {}
unsafe impl TrustedLowerBound for ArgsOs {}
unsafe impl<I> TrustedLowerBound for Box<I> where I: TrustedLowerBound {}
unsafe impl TrustedLowerBound for CommandArgs<'_> {}
unsafe impl TrustedLowerBound for CommandEnvs<'_> {}
unsafe impl TrustedLowerBound for Components<'_> {}
unsafe impl TrustedLowerBound for ReadDir {}
unsafe impl<I> TrustedLowerBound for Splice<'_, I> where I: TrustedLowerBound {}
unsafe impl TrustedLowerBound for SplitPaths<'_> {}
unsafe impl<T> TrustedLowerBound for TryIter<'_, T> {}
unsafe impl TrustedLowerBound for Vars {}
unsafe impl TrustedLowerBound for VarsOs {}
unsafe impl<T> TrustedLowerBound for std::collections::binary_heap::Drain<'_, T> {}
unsafe impl<T> TrustedLowerBound for std::collections::binary_heap::Iter<'_, T> {}
unsafe impl<T> TrustedLowerBound for std::collections::binary_heap::IntoIter<T> {}
unsafe impl<K, V> TrustedLowerBound for std::collections::btree_map::IntoIter<K, V> {}
unsafe impl<K, V> TrustedLowerBound for std::collections::btree_map::IntoKeys<K, V> {}
unsafe impl<K, V> TrustedLowerBound for std::collections::btree_map::IntoValues<K, V> {}
unsafe impl<K, V> TrustedLowerBound for std::collections::btree_map::Iter<'_, K, V> {}
unsafe impl<K, V> TrustedLowerBound for std::collections::btree_map::IterMut<'_, K, V> {}
unsafe impl<K, V> TrustedLowerBound for std::collections::btree_map::Keys<'_, K, V> {}
unsafe impl<K, V> TrustedLowerBound for std::collections::btree_map::Range<'_, K, V> {}
unsafe impl<K, V> TrustedLowerBound for std::collections::btree_map::RangeMut<'_, K, V> {}
unsafe impl<K, V> TrustedLowerBound for std::collections::btree_map::Values<'_, K, V> {}
unsafe impl<K, V> TrustedLowerBound for std::collections::btree_map::ValuesMut<'_, K, V> {}
unsafe impl<T> TrustedLowerBound for std::collections::btree_set::IntoIter<T> {}
unsafe impl<T> TrustedLowerBound for std::collections::btree_set::Iter<'_, T> {}
unsafe impl<T> TrustedLowerBound for std::collections::btree_set::Range<'_, T> {}
unsafe impl<T: Ord> TrustedLowerBound for std::collections::btree_set::SymmetricDifference<'_, T> {}
unsafe impl<T: Ord> TrustedLowerBound for std::collections::btree_set::Union<'_, T> {}
unsafe impl<K, V> TrustedLowerBound for std::collections::hash_map::Drain<'_, K, V> {}
unsafe impl<K, V> TrustedLowerBound for std::collections::hash_map::IntoIter<K, V> {}
unsafe impl<K, V> TrustedLowerBound for std::collections::hash_map::IntoKeys<K, V> {}
unsafe impl<K, V> TrustedLowerBound for std::collections::hash_map::IntoValues<K, V> {}
unsafe impl<K, V> TrustedLowerBound for std::collections::hash_map::Iter<'_, K, V> {}
unsafe impl<K, V> TrustedLowerBound for std::collections::hash_map::IterMut<'_, K, V> {}
unsafe impl<K, V> TrustedLowerBound for std::collections::hash_map::Keys<'_, K, V> {}
unsafe impl<K, V> TrustedLowerBound for std::collections::hash_map::Values<'_, K, V> {}
unsafe impl<K, V> TrustedLowerBound for std::collections::hash_map::ValuesMut<'_, K, V> {}
unsafe impl<'a, T, S> TrustedLowerBound for std::collections::hash_set::Difference<'a, T, S>
where
T: Eq + Hash,
S: BuildHasher,
{
}
unsafe impl<'a, T, S> TrustedLowerBound for std::collections::hash_set::Intersection<'a, T, S>
where
T: Eq + Hash,
S: BuildHasher,
{
}
unsafe impl<'a, T, S> TrustedLowerBound
for std::collections::hash_set::SymmetricDifference<'a, T, S>
where
T: Eq + Hash,
S: BuildHasher,
{
}
unsafe impl<'a, T, S> TrustedLowerBound for std::collections::hash_set::Union<'a, T, S>
where
T: Eq + Hash,
S: BuildHasher,
{
}
unsafe impl<K> TrustedLowerBound for std::collections::hash_set::Drain<'_, K> {}
unsafe impl<K> TrustedLowerBound for std::collections::hash_set::IntoIter<K> {}
unsafe impl<K> TrustedLowerBound for std::collections::hash_set::Iter<'_, K> {}
unsafe impl<T> TrustedLowerBound for std::collections::linked_list::IntoIter<T> {}
unsafe impl<T> TrustedLowerBound for std::collections::linked_list::Iter<'_, T> {}
unsafe impl<T> TrustedLowerBound for std::collections::linked_list::IterMut<'_, T> {}
unsafe impl<T> TrustedLowerBound for std::collections::vec_deque::Drain<'_, T> {}
unsafe impl<T> TrustedLowerBound for std::collections::vec_deque::IntoIter<T> {}
unsafe impl<T> TrustedLowerBound for std::collections::vec_deque::Iter<'_, T> {}
unsafe impl<T> TrustedLowerBound for std::collections::vec_deque::IterMut<'_, T> {}
unsafe impl<R: Read> TrustedLowerBound for std::io::Bytes<R> {}
unsafe impl<B: BufRead> TrustedLowerBound for std::io::Lines<B> {}
unsafe impl<B: BufRead> TrustedLowerBound for std::io::Split<B> {}
unsafe impl TrustedLowerBound for std::string::Drain<'_> {}
unsafe impl TrustedLowerBound for std::net::Incoming<'_> {}
unsafe impl TrustedLowerBound for std::path::Iter<'_> {}
unsafe impl<T> TrustedLowerBound for std::sync::mpsc::IntoIter<T> {}
unsafe impl<T> TrustedLowerBound for std::sync::mpsc::Iter<'_, T> {}
unsafe impl<T> TrustedLowerBound for std::vec::Drain<'_, T> {}
unsafe impl<T> TrustedLowerBound for std::vec::IntoIter<T> {}
#[cfg(target_os = "windows")]
mod windows {
use crate::TrustedLowerBound;
use std::os::windows::ffi::EncodeWide;
unsafe impl TrustedLowerBound for EncodeWide<'_> {}
}
}
}
/// Manual implementation of [`TrustedLowerBound`] for an iterator
#[derive(Copy, Clone, Debug, Eq, Hash, Ord, PartialEq, PartialOrd)]
pub struct AssertLowerBoundOk<I: Iterator>(I);
//
impl<I: Iterator> AssertLowerBoundOk<I> {
/// Assert that the lower size bound provided by an iterator's `size_hint()`
/// method is correct.
///
/// # Safety
///
/// The lower size bound must indeed be correct.
#[inline]
pub unsafe fn new(inner: I) -> Self {
Self(inner)
}
}
//
impl<I: DoubleEndedIterator> DoubleEndedIterator for AssertLowerBoundOk<I> {
#[inline]
fn next_back(&mut self) -> Option<Self::Item> {
self.0.next_back()
}
#[inline]
fn nth_back(&mut self, n: usize) -> Option<Self::Item> {
self.0.nth_back(n)
}
}
//
impl<I: ExactSizeIterator> ExactSizeIterator for AssertLowerBoundOk<I> {
#[inline]
fn len(&self) -> usize {
self.0.len()
}
}
//
impl<I: FusedIterator> FusedIterator for AssertLowerBoundOk<I> {}
//
impl<I: Iterator> Iterator for AssertLowerBoundOk<I> {
type Item = I::Item;
#[inline]
fn next(&mut self) -> Option<Self::Item> {
self.0.next()
}
#[inline]
fn size_hint(&self) -> (usize, Option<usize>) {
self.0.size_hint()
}
#[inline]
fn count(self) -> usize
where
I: Sized,
{
self.0.count()
}
#[inline]
fn last(self) -> Option<Self::Item>
where
I: Sized,
{
self.0.last()
}
#[inline]
fn nth(&mut self, n: usize) -> Option<Self::Item> {
self.0.nth(n)
}
}
//
// # Safety
//
// Safety assertion is offloaded to the `new()` constructor
unsafe impl<I: Iterator> TrustedLowerBound for AssertLowerBoundOk<I> {}
#[cfg(test)]
mod tests {
use super::*;
use proptest::prelude::*;
use static_assertions::assert_impl_all;
assert_impl_all!(
std::slice::Iter<'static, u32>: FusedIterator, TrustedLowerBound
);
proptest! {
#[test]
fn assert_lower_bound_basic(data: Vec<u8>) {
let raw = data.iter();
// SAFETY: The size_hint of Vec's iterator is trusted
let iter = unsafe { AssertLowerBoundOk::new(raw.clone()) };
assert_eq!(iter.size_hint(), raw.size_hint());
assert_eq!(iter.len(), raw.len());
assert_eq!(iter.clone().count(), raw.clone().count());
assert_eq!(iter.clone().next(), raw.clone().next());
assert_eq!(iter.clone().next_back(), raw.clone().next_back());
assert_eq!(iter.clone().last(), raw.clone().last());
}
#[test]
fn assert_lower_bound_strided(data: Vec<u8>, stride: usize) {
let raw = data.iter();
// SAFETY: The size_hint of Vec's iterator is trusted
let iter = unsafe { AssertLowerBoundOk::new(raw.clone()) };
assert_eq!(iter.clone().nth(stride), raw.clone().nth(stride));
assert_eq!(iter.clone().nth_back(stride), raw.clone().nth_back(stride));
}
#[test]
fn any(dataset: Vec<u8>, needle: u8) {
let predicate = |&item| item == needle;
let expected = dataset.iter().any(predicate);
prop_assert_eq!(dataset.iter().any_ilp::<1>(predicate), expected);
prop_assert_eq!(dataset.iter().any_ilp::<2>(predicate), expected);
prop_assert_eq!(dataset.iter().any_ilp::<3>(predicate), expected);
prop_assert_eq!(dataset.iter().any_ilp::<4>(predicate), expected);
prop_assert_eq!(dataset.iter().any_ilp::<5>(predicate), expected);
prop_assert_eq!(dataset.iter().any_ilp::<6>(predicate), expected);
}
#[test]
fn all(dataset: Vec<u8>, needle: u8) {
let predicate = |&item| item == needle;
let expected = dataset.iter().all(predicate);
prop_assert_eq!(dataset.iter().all_ilp::<1>(predicate), expected);
prop_assert_eq!(dataset.iter().all_ilp::<2>(predicate), expected);
prop_assert_eq!(dataset.iter().all_ilp::<3>(predicate), expected);
prop_assert_eq!(dataset.iter().all_ilp::<4>(predicate), expected);
prop_assert_eq!(dataset.iter().all_ilp::<5>(predicate), expected);
prop_assert_eq!(dataset.iter().all_ilp::<6>(predicate), expected);
}
#[test]
fn find(dataset: Vec<u8>, needle: u8) {
let predicate = |item: &&u8| **item == needle;
let expected = dataset.iter().find(predicate);
prop_assert_eq!(dataset.iter().find_ilp::<1>(predicate), expected);
prop_assert_eq!(dataset.iter().find_ilp::<2>(predicate), expected);
prop_assert_eq!(dataset.iter().find_ilp::<3>(predicate), expected);
prop_assert_eq!(dataset.iter().find_ilp::<4>(predicate), expected);
prop_assert_eq!(dataset.iter().find_ilp::<5>(predicate), expected);
prop_assert_eq!(dataset.iter().find_ilp::<6>(predicate), expected);
}
#[test]
fn find_map(dataset: Vec<u8>, needle: u8) {
let find_map = |item: &u8| (*item == needle).then_some(42);
let expected = dataset.iter().find_map(find_map);
prop_assert_eq!(dataset.iter().find_map_ilp::<1, _>(find_map), expected);
prop_assert_eq!(dataset.iter().find_map_ilp::<2, _>(find_map), expected);
prop_assert_eq!(dataset.iter().find_map_ilp::<3, _>(find_map), expected);
prop_assert_eq!(dataset.iter().find_map_ilp::<4, _>(find_map), expected);
prop_assert_eq!(dataset.iter().find_map_ilp::<5, _>(find_map), expected);
prop_assert_eq!(dataset.iter().find_map_ilp::<6, _>(find_map), expected);
}
#[test]
fn position(dataset: Vec<u8>, needle: u8) {
let predicate = |item: &u8| *item == needle;
let expected = dataset.iter().position(predicate);
prop_assert_eq!(dataset.iter().position_ilp::<1>(predicate), expected);
prop_assert_eq!(dataset.iter().position_ilp::<2>(predicate), expected);
prop_assert_eq!(dataset.iter().position_ilp::<3>(predicate), expected);
prop_assert_eq!(dataset.iter().position_ilp::<4>(predicate), expected);
prop_assert_eq!(dataset.iter().position_ilp::<5>(predicate), expected);
prop_assert_eq!(dataset.iter().position_ilp::<6>(predicate), expected);
}
#[test]
fn rposition(dataset: Vec<u8>, needle: u8) {
let predicate = |item: &u8| *item == needle;
let expected = dataset.iter().rposition(predicate);
prop_assert_eq!(dataset.iter().rposition_ilp::<1>(predicate), expected);
prop_assert_eq!(dataset.iter().rposition_ilp::<2>(predicate), expected);
prop_assert_eq!(dataset.iter().rposition_ilp::<3>(predicate), expected);
prop_assert_eq!(dataset.iter().rposition_ilp::<4>(predicate), expected);
prop_assert_eq!(dataset.iter().rposition_ilp::<5>(predicate), expected);
prop_assert_eq!(dataset.iter().rposition_ilp::<6>(predicate), expected);
}
#[test]
fn fold(dataset: Vec<u8>) {
let zero = || 0;
let accumulate = |a, &b| a + b as u64;
let merge = |a, b| a + b;
let expected = dataset.iter().fold(zero(), accumulate);
prop_assert_eq!(
dataset.iter().fold_ilp::<1, _>(zero, accumulate, merge),
expected
);
prop_assert_eq!(
dataset.iter().fold_ilp::<2, _>(zero, accumulate, merge),
expected
);
prop_assert_eq!(
dataset.iter().fold_ilp::<3, _>(zero, accumulate, merge),
expected
);
prop_assert_eq!(
dataset.iter().fold_ilp::<4, _>(zero, accumulate, merge),
expected
);
prop_assert_eq!(
dataset.iter().fold_ilp::<5, _>(zero, accumulate, merge),
expected
);
prop_assert_eq!(
dataset.iter().fold_ilp::<6, _>(zero, accumulate, merge),
expected
);
}
#[test]
fn reduce(dataset: Vec<u64>) {
let reduce = |a: u64, b| a.wrapping_add(b);
let expected = dataset.iter().copied().reduce(reduce);
prop_assert_eq!(dataset.iter().copied().reduce_ilp::<1>(reduce), expected);
prop_assert_eq!(dataset.iter().copied().reduce_ilp::<2>(reduce), expected);
prop_assert_eq!(dataset.iter().copied().reduce_ilp::<3>(reduce), expected);
prop_assert_eq!(dataset.iter().copied().reduce_ilp::<4>(reduce), expected);
prop_assert_eq!(dataset.iter().copied().reduce_ilp::<5>(reduce), expected);
prop_assert_eq!(dataset.iter().copied().reduce_ilp::<6>(reduce), expected);
}
#[test]
fn sum(dataset: Vec<u8>) {
let dataset = dataset.into_iter().map(|i| i as u64).collect::<Vec<_>>();
let expected = dataset.iter().copied().sum::<u64>();
prop_assert_eq!(dataset.iter().copied().sum_ilp::<1, u64>(), expected);
prop_assert_eq!(dataset.iter().copied().sum_ilp::<2, u64>(), expected);
prop_assert_eq!(dataset.iter().copied().sum_ilp::<3, u64>(), expected);
prop_assert_eq!(dataset.iter().copied().sum_ilp::<4, u64>(), expected);
prop_assert_eq!(dataset.iter().copied().sum_ilp::<5, u64>(), expected);
prop_assert_eq!(dataset.iter().copied().sum_ilp::<6, u64>(), expected);
}
#[test]
fn product(dataset: Vec<u8>) {
let dataset = dataset
.into_iter()
.map(|i| (i as f64 / 256.0) + 0.5)
.collect::<Vec<_>>();
let expected = dataset.iter().copied().product::<f64>();
let assert_close = |result: f64| Ok(prop_assert!((result - expected).abs() < 1e-6 * expected.abs()));
assert_close(dataset.iter().copied().product_ilp::<1, f64>())?;
assert_close(dataset.iter().copied().product_ilp::<2, f64>())?;
assert_close(dataset.iter().copied().product_ilp::<3, f64>())?;
assert_close(dataset.iter().copied().product_ilp::<4, f64>())?;
assert_close(dataset.iter().copied().product_ilp::<5, f64>())?;
assert_close(dataset.iter().copied().product_ilp::<6, f64>())?;
}
}
}