1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
// BSD 2-Clause License
//
// Copyright (c) 2019, 2020 Alasdair Armstrong
// Copyright (c) 2020 Brian Campbell
//
// All rights reserved.
// 
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
// met:
// 
// 1. Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
// 
// 2. Redistributions in binary form must reproduce the above copyright
// notice, this list of conditions and the following disclaimer in the
// documentation and/or other materials provided with the distribution.
// 
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
// HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

//! This module implements the core of the symbolic execution engine.

use crossbeam::deque::{Injector, Steal, Stealer, Worker};
use crossbeam::queue::SegQueue;
use crossbeam::thread;
use std::collections::HashMap;
use std::mem;
use std::sync::mpsc;
use std::sync::mpsc::{Receiver, Sender};
use std::sync::{Arc, Mutex, RwLock};
use std::thread::sleep;
use std::time::{Duration, Instant};

use crate::concrete::BV;
use crate::error::ExecError;
use crate::ir::*;
use crate::log;
use crate::memory::Memory;
use crate::primop;
use crate::probe;
use crate::smt::*;
use crate::zencode;

/// Create a Symbolic value of a specified type. Can return a concrete value if the type only
/// permits a single value, such as for the unit type or the zero-length bitvector type (which is
/// ideal because SMT solvers don't allow zero-length bitvectors). Compound types like structs will
/// be a concrete structure with symbolic values for each field. Returns the `NoSymbolicType` error
/// if the type cannot be represented in the SMT solver.
fn symbolic<B: BV>(ty: &Ty<Name>, shared_state: &SharedState<B>, solver: &mut Solver<B>) -> Result<Val<B>, ExecError> {
    let smt_ty = match ty {
        Ty::Unit => return Ok(Val::Unit),
        Ty::Bits(0) => return Ok(Val::Bits(B::zeros(0))),

        Ty::I64 => smtlib::Ty::BitVec(64),
        Ty::I128 => smtlib::Ty::BitVec(128),
        Ty::Bits(sz) => smtlib::Ty::BitVec(*sz),
        Ty::Bool => smtlib::Ty::Bool,
        Ty::Bit => smtlib::Ty::BitVec(1),

        Ty::Struct(name) => {
            if let Some(field_types) = shared_state.structs.get(name) {
                let field_values = field_types
                    .iter()
                    .map(|(f, ty)| match symbolic(ty, shared_state, solver) {
                        Ok(value) => Ok((*f, value)),
                        Err(error) => Err(error),
                    })
                    .collect::<Result<_, _>>()?;
                return Ok(Val::Struct(field_values));
            } else {
                let name = zencode::decode(shared_state.symtab.to_str(*name));
                return Err(ExecError::Unreachable(format!("Struct {} does not appear to exist!", name)));
            }
        }

        Ty::Enum(name) => {
            let enum_size = shared_state.enums.get(name).unwrap().len();
            let enum_id = solver.get_enum(enum_size);
            return solver.declare_const(smtlib::Ty::Enum(enum_id)).into();
        }

        Ty::FixedVector(sz, ty) => {
            let values = (0..*sz).map(|_| symbolic(ty, shared_state, solver)).collect::<Result<_, _>>()?;
            return Ok(Val::Vector(values));
        }

        // Some things we just can't represent symbolically, but we can continue in the hope that
        // they never actually get used.
        _ => return Ok(Val::Poison),
    };

    solver.declare_const(smt_ty).into()
}

#[derive(Clone)]
struct LocalState<'ir, B> {
    vars: Bindings<'ir, B>,
    regs: Bindings<'ir, B>,
    lets: Bindings<'ir, B>,
}

/// Gets a value from a variable `Bindings` map. Note that this function is set up to handle the
/// following case:
///
/// ```Sail
/// var x;
/// x = 3;
/// ```
///
/// When we declare a variable it has the value `UVal::Uninit(ty)` where `ty` is its type. When
/// that variable is first accessed it'll be initialized to a symbolic value in the SMT solver if it
/// is still uninitialized. This means that in the above code, because `x` is immediately assigned
/// the value 3, no interaction with the SMT solver will occur.
fn get_and_initialize<'ir, B: BV>(
    v: Name,
    vars: &mut Bindings<'ir, B>,
    shared_state: &SharedState<'ir, B>,
    solver: &mut Solver<B>,
) -> Result<Option<Val<B>>, ExecError> {
    Ok(match vars.get(&v) {
        Some(UVal::Uninit(ty)) => {
            let sym = symbolic(ty, shared_state, solver)?;
            vars.insert(v, UVal::Init(sym.clone()));
            Some(sym)
        }
        Some(UVal::Init(value)) => Some(value.clone()),
        None => None,
    })
}

fn get_id_and_initialize<'ir, B: BV>(
    id: Name,
    local_state: &mut LocalState<'ir, B>,
    shared_state: &SharedState<'ir, B>,
    solver: &mut Solver<B>,
    accessor: &mut Vec<Accessor>,
) -> Result<Val<B>, ExecError> {
    Ok(match get_and_initialize(id, &mut local_state.vars, shared_state, solver)? {
        Some(value) => value,
        None => match get_and_initialize(id, &mut local_state.regs, shared_state, solver)? {
            Some(value) => {
                let symbol = zencode::decode(shared_state.symtab.to_str(id));
                // HACK: Don't store the entire TLB in the trace
                if symbol != "_TLB" {
                    // log!(log::VERBOSE, &format!("Reading register: {} {:?}", symbol, value));
                    solver.add_event(Event::ReadReg(id, accessor.to_vec(), value.clone()));
                }
                value
            }
            None => match get_and_initialize(id, &mut local_state.lets, shared_state, solver)? {
                Some(value) => value,
                None => match shared_state.enum_members.get(&id) {
                    Some((member, enum_size)) => {
                        let enum_id = solver.get_enum(*enum_size);
                        Val::Enum(EnumMember { enum_id, member: *member })
                    }
                    None => panic!("Symbol {} ({:?}) not found", zencode::decode(shared_state.symtab.to_str(id)), id),
                },
            },
        },
    })
}

fn get_loc_and_initialize<'ir, B: BV>(
    loc: &Loc<Name>,
    local_state: &mut LocalState<'ir, B>,
    shared_state: &SharedState<'ir, B>,
    solver: &mut Solver<B>,
    accessor: &mut Vec<Accessor>,
) -> Result<Val<B>, ExecError> {
    Ok(match loc {
        Loc::Id(id) => get_id_and_initialize(*id, local_state, shared_state, solver, accessor)?,
        Loc::Field(loc, field) => {
            accessor.push(Accessor::Field(*field));
            if let Val::Struct(members) = get_loc_and_initialize(loc, local_state, shared_state, solver, accessor)? {
                match members.get(field) {
                    Some(field_value) => field_value.clone(),
                    None => panic!("No field"),
                }
            } else {
                panic!("Struct expression did not evaluate to a struct")
            }
        }
        _ => panic!("Cannot get_loc_and_initialize"),
    })
}

fn eval_exp_with_accessor<'ir, B: BV>(
    exp: &Exp<Name>,
    local_state: &mut LocalState<'ir, B>,
    shared_state: &SharedState<'ir, B>,
    solver: &mut Solver<B>,
    accessor: &mut Vec<Accessor>,
) -> Result<Val<B>, ExecError> {
    use Exp::*;
    Ok(match exp {
        Id(id) => get_id_and_initialize(*id, local_state, shared_state, solver, accessor)?,

        I64(i) => Val::I64(*i),
        I128(i) => Val::I128(*i),
        Unit => Val::Unit,
        Bool(b) => Val::Bool(*b),
        // The parser only returns 64-bit or less bitvectors
        Bits(bv) => Val::Bits(B::new(bv.lower_u64(), bv.len())),
        String(s) => Val::String(s.clone()),

        Undefined(ty) => symbolic(ty, shared_state, solver)?,

        Call(op, args) => {
            let args: Vec<Val<B>> =
                args.iter().map(|arg| eval_exp(arg, local_state, shared_state, solver)).collect::<Result<_, _>>()?;
            match op {
                Op::Lt => primop::op_lt(args[0].clone(), args[1].clone(), solver)?,
                Op::Gt => primop::op_gt(args[0].clone(), args[1].clone(), solver)?,
                Op::Lteq => primop::op_lteq(args[0].clone(), args[1].clone(), solver)?,
                Op::Gteq => primop::op_gteq(args[0].clone(), args[1].clone(), solver)?,
                Op::Eq => primop::op_eq(args[0].clone(), args[1].clone(), solver)?,
                Op::Neq => primop::op_neq(args[0].clone(), args[1].clone(), solver)?,
                Op::Add => primop::op_add(args[0].clone(), args[1].clone(), solver)?,
                Op::Sub => primop::op_sub(args[0].clone(), args[1].clone(), solver)?,
                Op::Bvnot => primop::not_bits(args[0].clone(), solver)?,
                Op::Bvor => primop::or_bits(args[0].clone(), args[1].clone(), solver)?,
                Op::Bvxor => primop::xor_bits(args[0].clone(), args[1].clone(), solver)?,
                Op::Bvand => primop::and_bits(args[0].clone(), args[1].clone(), solver)?,
                Op::Bvadd => primop::add_bits(args[0].clone(), args[1].clone(), solver)?,
                Op::Bvsub => primop::sub_bits(args[0].clone(), args[1].clone(), solver)?,
                Op::Bvaccess => primop::vector_access(args[0].clone(), args[1].clone(), solver)?,
                Op::Concat => primop::append(args[0].clone(), args[1].clone(), solver)?,
                Op::Not => primop::not_bool(args[0].clone(), solver)?,
                Op::And => primop::and_bool(args[0].clone(), args[1].clone(), solver)?,
                Op::Or => primop::or_bool(args[0].clone(), args[1].clone(), solver)?,
                Op::Slice(len) => primop::op_slice(args[0].clone(), args[1].clone(), *len, solver)?,
                Op::SetSlice => primop::op_set_slice(args[0].clone(), args[1].clone(), args[2].clone(), solver)?,
                Op::Unsigned(_) => primop::op_unsigned(args[0].clone(), solver)?,
                Op::Signed(_) => primop::op_signed(args[0].clone(), solver)?,
                Op::Head => primop::op_head(args[0].clone(), solver)?,
                Op::Tail => primop::op_tail(args[0].clone(), solver)?,
            }
        }

        Kind(ctor_a, exp) => {
            let v = eval_exp(exp, local_state, shared_state, solver)?;
            match v {
                Val::Ctor(ctor_b, _) => Val::Bool(*ctor_a != ctor_b),
                _ => return Err(ExecError::Type("Kind check on non-constructor")),
            }
        }

        Unwrap(ctor_a, exp) => {
            let v = eval_exp(exp, local_state, shared_state, solver)?;
            match v {
                Val::Ctor(ctor_b, v) => {
                    if *ctor_a == ctor_b {
                        *v
                    } else {
                        return Err(ExecError::Type("Constructors did not match in unwrap"));
                    }
                }
                _ => return Err(ExecError::Type("Tried to unwrap non-constructor")),
            }
        }

        Field(exp, field) => {
            accessor.push(Accessor::Field(*field));
            if let Val::Struct(struct_value) = eval_exp_with_accessor(exp, local_state, shared_state, solver, accessor)?
            {
                match struct_value.get(field) {
                    Some(field_value) => field_value.clone(),
                    None => panic!("No field"),
                }
            } else {
                panic!("Struct expression did not evaluate to a struct")
            }
        }

        Ref(reg) => Val::Ref(*reg),

        _ => panic!("Could not evaluate expression {:?}", exp),
    })
}

fn eval_exp<'ir, B: BV>(
    exp: &Exp<Name>,
    local_state: &mut LocalState<'ir, B>,
    shared_state: &SharedState<'ir, B>,
    solver: &mut Solver<B>,
) -> Result<Val<B>, ExecError> {
    eval_exp_with_accessor(exp, local_state, shared_state, solver, &mut Vec::new())
}

fn assign_with_accessor<'ir, B: BV>(
    loc: &Loc<Name>,
    v: Val<B>,
    local_state: &mut LocalState<'ir, B>,
    shared_state: &SharedState<'ir, B>,
    solver: &mut Solver<B>,
    accessor: &mut Vec<Accessor>,
) -> Result<(), ExecError> {
    match loc {
        Loc::Id(id) => {
            if local_state.vars.contains_key(id) || *id == RETURN {
                local_state.vars.insert(*id, UVal::Init(v));
            } else if local_state.lets.contains_key(id) {
                local_state.lets.insert(*id, UVal::Init(v));
            } else {
                let symbol = zencode::decode(shared_state.symtab.to_str(*id));
                // HACK: Don't store the entire TLB in the trace
                if symbol != "_TLB" {
                    solver.add_event(Event::WriteReg(*id, accessor.to_vec(), v.clone()))
                }
                local_state.regs.insert(*id, UVal::Init(v));
            }
        }

        Loc::Field(loc, field) => {
            let mut accessor = Vec::new();
            accessor.push(Accessor::Field(*field));
            if let Val::Struct(field_values) =
                get_loc_and_initialize(loc, local_state, shared_state, solver, &mut accessor)?
            {
                // As a sanity test, check that the field exists.
                match field_values.get(field) {
                    Some(_) => {
                        let mut field_values = field_values.clone();
                        field_values.insert(*field, v);
                        assign_with_accessor(
                            loc,
                            Val::Struct(field_values),
                            local_state,
                            shared_state,
                            solver,
                            &mut accessor,
                        )?;
                    }
                    None => panic!("Invalid field assignment"),
                }
            } else {
                panic!(
                    "Cannot assign struct to non-struct {:?}.{:?} ({:?})",
                    loc,
                    field,
                    get_loc_and_initialize(loc, local_state, shared_state, solver, &mut accessor)
                )
            }
        }

        Loc::Addr(loc) => {
            if let Val::Ref(reg) = get_loc_and_initialize(loc, local_state, shared_state, solver, accessor)? {
                assign_with_accessor(&Loc::Id(reg), v, local_state, shared_state, solver, accessor)?
            } else {
                panic!("Cannot get address of non-reference {:?}", loc)
            }
        }
    };
    Ok(())
}

fn assign<'ir, B: BV>(
    tid: usize,
    loc: &Loc<Name>,
    v: Val<B>,
    local_state: &mut LocalState<'ir, B>,
    shared_state: &SharedState<'ir, B>,
    solver: &mut Solver<B>,
) -> Result<(), ExecError> {
    let id = loc.id();
    if shared_state.probes.contains(&id) {
        let mut symbol = String::from(shared_state.symtab.to_str(id));
        if symbol.starts_with('z') {
            symbol = zencode::decode(&symbol);
        }
        log_from!(tid, log::PROBE, &format!("Assigning {}[{:?}] <- {:?}", symbol, id, v))
    }

    assign_with_accessor(loc, v, local_state, shared_state, solver, &mut Vec::new())
}

/// The callstack is implemented as a closure that restores the
/// caller's stack frame. It additionally takes the shared state as
/// input also to avoid ownership issues when creating the closure.
type Stack<'ir, B> = Option<
    Arc<
        dyn 'ir
            + Send
            + Sync
            + Fn(Val<B>, &mut LocalFrame<'ir, B>, &SharedState<'ir, B>, &mut Solver<B>) -> Result<(), ExecError>,
    >,
>;

/// A `Frame` is an immutable snapshot of the program state while it
/// is being symbolically executed.
pub struct Frame<'ir, B> {
    pc: usize,
    forks: u32,
    backjumps: u32,
    local_state: Arc<LocalState<'ir, B>>,
    memory: Arc<Memory<B>>,
    instrs: &'ir [Instr<Name, B>],
    stack_vars: Arc<Vec<Bindings<'ir, B>>>,
    stack_call: Stack<'ir, B>,
}

/// A `LocalFrame` is a mutable frame which is used by a currently
/// executing thread. It is turned into an immutable `Frame` when the
/// control flow forks on a choice, which can be shared by threads.
pub struct LocalFrame<'ir, B> {
    pc: usize,
    forks: u32,
    backjumps: u32,
    local_state: LocalState<'ir, B>,
    memory: Memory<B>,
    instrs: &'ir [Instr<Name, B>],
    stack_vars: Vec<Bindings<'ir, B>>,
    stack_call: Stack<'ir, B>,
}

pub fn unfreeze_frame<'ir, B: BV>(frame: &Frame<'ir, B>) -> LocalFrame<'ir, B> {
    LocalFrame {
        pc: frame.pc,
        forks: frame.forks,
        backjumps: frame.backjumps,
        local_state: (*frame.local_state).clone(),
        memory: (*frame.memory).clone(),
        instrs: frame.instrs,
        stack_vars: (*frame.stack_vars).clone(),
        stack_call: frame.stack_call.clone(),
    }
}

pub fn freeze_frame<'ir, B: BV>(frame: &LocalFrame<'ir, B>) -> Frame<'ir, B> {
    Frame {
        pc: frame.pc,
        forks: frame.forks,
        backjumps: frame.backjumps,
        local_state: Arc::new(frame.local_state.clone()),
        memory: Arc::new(frame.memory.clone()),
        instrs: frame.instrs,
        stack_vars: Arc::new(frame.stack_vars.clone()),
        stack_call: frame.stack_call.clone(),
    }
}

impl<'ir, B: BV> LocalFrame<'ir, B> {
    pub fn vars_mut(&mut self) -> &mut Bindings<'ir, B> {
        &mut self.local_state.vars
    }

    pub fn vars(&self) -> &Bindings<'ir, B> {
        &self.local_state.vars
    }

    pub fn regs_mut(&mut self) -> &mut Bindings<'ir, B> {
        &mut self.local_state.regs
    }

    pub fn regs(&self) -> &Bindings<'ir, B> {
        &self.local_state.regs
    }

    pub fn add_regs(&mut self, regs: &Bindings<'ir, B>) -> &mut Self {
        for (k, v) in regs.iter() {
            self.local_state.regs.insert(*k, v.clone());
        }
        self
    }

    pub fn lets_mut(&mut self) -> &mut Bindings<'ir, B> {
        &mut self.local_state.lets
    }

    pub fn lets(&self) -> &Bindings<'ir, B> {
        &self.local_state.lets
    }

    pub fn add_lets(&mut self, lets: &Bindings<'ir, B>) -> &mut Self {
        for (k, v) in lets.iter() {
            self.local_state.lets.insert(*k, v.clone());
        }
        self
    }

    pub fn get_exception(&self) -> Option<(&Val<B>, &str)> {
        if let Some(UVal::Init(Val::Bool(true))) = self.lets().get(&HAVE_EXCEPTION) {
            if let Some(UVal::Init(val)) = self.lets().get(&CURRENT_EXCEPTION) {
                let loc = match self.lets().get(&THROW_LOCATION) {
                    Some(UVal::Init(Val::String(s))) => s,
                    Some(UVal::Init(_)) => "location has wrong type",
                    _ => "missing location",
                };
                Some((val, loc))
            } else {
                None
            }
        } else {
            None
        }
    }

    pub fn memory(&self) -> &Memory<B> {
        &self.memory
    }

    pub fn memory_mut(&mut self) -> &mut Memory<B> {
        &mut self.memory
    }

    pub fn set_memory(&mut self, memory: Memory<B>) -> &mut Self {
        self.memory = memory;
        self
    }

    pub fn new(args: &[(Name, &'ir Ty<Name>)], vals: Option<&[Val<B>]>, instrs: &'ir [Instr<Name, B>]) -> Self {
        let mut vars = HashMap::new();
        match vals {
            Some(vals) => {
                for ((id, _), val) in args.iter().zip(vals) {
                    vars.insert(*id, UVal::Init(val.clone()));
                }
            }
            None => {
                for (id, ty) in args {
                    vars.insert(*id, UVal::Uninit(ty));
                }
            }
        }

        let mut lets = HashMap::new();
        lets.insert(HAVE_EXCEPTION, UVal::Init(Val::Bool(false)));
        lets.insert(CURRENT_EXCEPTION, UVal::Uninit(&Ty::Union(SAIL_EXCEPTION)));
        lets.insert(THROW_LOCATION, UVal::Uninit(&Ty::String));
        lets.insert(NULL, UVal::Init(Val::List(Vec::new())));

        let regs = HashMap::new();

        LocalFrame {
            pc: 0,
            forks: 0,
            backjumps: 0,
            local_state: LocalState { vars, regs, lets },
            memory: Memory::new(),
            instrs,
            stack_vars: Vec::new(),
            stack_call: None,
        }
    }

    pub fn new_call(
        &self,
        args: &[(Name, &'ir Ty<Name>)],
        vals: Option<&[Val<B>]>,
        instrs: &'ir [Instr<Name, B>],
    ) -> Self {
        let mut new_frame = LocalFrame::new(args, vals, instrs);
        new_frame.forks = self.forks;
        new_frame.local_state.regs = self.local_state.regs.clone();
        new_frame.local_state.lets = self.local_state.lets.clone();
        new_frame.memory = self.memory.clone();
        new_frame
    }

    pub fn task_with_checkpoint(&self, task_id: usize, checkpoint: Checkpoint<B>) -> Task<'ir, B> {
        Task { id: task_id, frame: freeze_frame(&self), checkpoint, fork_cond: None }
    }
    pub fn task(&self, task_id: usize) -> Task<'ir, B> {
        self.task_with_checkpoint(task_id, Checkpoint::new())
    }
}

fn push_call_stack<'ir, B: BV>(frame: &mut LocalFrame<'ir, B>) {
    let mut vars = Box::new(HashMap::new());
    mem::swap(&mut *vars, frame.vars_mut());
    frame.stack_vars.push(*vars)
}

fn pop_call_stack<'ir, B: BV>(frame: &mut LocalFrame<'ir, B>) {
    if let Some(mut vars) = frame.stack_vars.pop() {
        mem::swap(&mut vars, frame.vars_mut())
    }
}

#[derive(Copy, Clone, Debug)]
struct Timeout {
    start_time: Instant,
    duration: Option<Duration>,
}

impl Timeout {
    fn unlimited() -> Self {
        Timeout { start_time: Instant::now(), duration: None }
    }

    fn timed_out(&self) -> bool {
        self.duration.is_some() && self.start_time.elapsed() > self.duration.unwrap()
    }
}

fn run<'ir, B: BV>(
    tid: usize,
    task_id: usize,
    timeout: Timeout,
    queue: &Worker<Task<'ir, B>>,
    frame: &Frame<'ir, B>,
    shared_state: &SharedState<'ir, B>,
    solver: &mut Solver<B>,
) -> Result<(Val<B>, LocalFrame<'ir, B>), ExecError> {
    let mut frame = unfreeze_frame(frame);
    loop {
        if frame.pc >= frame.instrs.len() {
            // Currently this happens when evaluating letbindings.
            log_from!(tid, log::VERBOSE, "Fell from end of instruction list");
            return Ok((Val::Unit, frame));
        }

        if timeout.timed_out() {
            return Err(ExecError::Timeout);
        }

        match &frame.instrs[frame.pc] {
            Instr::Decl(v, ty) => {
                //let symbol = zencode::decode(shared_state.symtab.to_str(*v));
                //log_from!(tid, log::VERBOSE, &format!("{}", symbol));
                frame.vars_mut().insert(*v, UVal::Uninit(ty));
                frame.pc += 1;
            }

            Instr::Init(var, _, exp) => {
                let value = eval_exp(exp, &mut frame.local_state, shared_state, solver)?;
                frame.vars_mut().insert(*var, UVal::Init(value));
                frame.pc += 1;
            }

            Instr::Jump(exp, target, loc) => {
                let value = eval_exp(exp, &mut frame.local_state, shared_state, solver)?;
                match value {
                    Val::Symbolic(v) => {
                        use smtlib::Def::*;
                        use smtlib::Exp::*;

                        let test_true = Var(v);
                        let test_false = Not(Box::new(Var(v)));
                        let can_be_true = solver.check_sat_with(&test_true).is_sat()?;
                        let can_be_false = solver.check_sat_with(&test_false).is_sat()?;

                        if can_be_true && can_be_false {
                            // Trace which asserts are assocated with each fork in the trace, so we
                            // can turn a set of traces into a tree later
                            log_from!(tid, log::FORK, loc);
                            solver.add_event(Event::Fork(frame.forks, v, loc.clone()));
                            frame.forks += 1;

                            let point = checkpoint(solver);
                            let frozen = Frame { pc: frame.pc + 1, ..freeze_frame(&frame) };
                            queue.push(Task {
                                id: task_id,
                                frame: frozen,
                                checkpoint: point,
                                fork_cond: Some(Assert(test_false)),
                            });
                            solver.add(Assert(test_true));
                            frame.pc = *target
                        } else if can_be_true {
                            solver.add(Assert(test_true));
                            frame.pc = *target
                        } else if can_be_false {
                            solver.add(Assert(test_false));
                            frame.pc += 1
                        } else {
                            return Err(ExecError::Dead);
                        }
                    }
                    Val::Bool(jump) => {
                        if jump {
                            frame.pc = *target
                        } else {
                            frame.pc += 1
                        }
                    }
                    _ => {
                        return Err(ExecError::Type("Jump on non boolean"));
                    }
                }
            }

            Instr::Goto(target) => frame.pc = *target,

            Instr::Copy(loc, exp) => {
                let value = eval_exp(exp, &mut frame.local_state, shared_state, solver)?;
                assign(tid, loc, value, &mut frame.local_state, shared_state, solver)?;
                frame.pc += 1;
            }

            Instr::PrimopUnary(loc, f, arg) => {
                let arg = eval_exp(arg, &mut frame.local_state, shared_state, solver)?;
                let value = f(arg, solver)?;
                assign(tid, loc, value, &mut frame.local_state, shared_state, solver)?;
                frame.pc += 1;
            }

            Instr::PrimopBinary(loc, f, arg1, arg2) => {
                let arg1 = eval_exp(arg1, &mut frame.local_state, shared_state, solver)?;
                let arg2 = eval_exp(arg2, &mut frame.local_state, shared_state, solver)?;
                let value = f(arg1, arg2, solver)?;
                assign(tid, loc, value, &mut frame.local_state, shared_state, solver)?;
                frame.pc += 1;
            }

            Instr::PrimopVariadic(loc, f, args) => {
                let args = args
                    .iter()
                    .map(|arg| eval_exp(arg, &mut frame.local_state, shared_state, solver))
                    .collect::<Result<_, _>>()?;
                let value = f(args, solver, &mut frame)?;
                assign(tid, loc, value, &mut frame.local_state, shared_state, solver)?;
                frame.pc += 1;
            }

            Instr::Call(loc, _, f, args) => {
                match shared_state.functions.get(&f) {
                    None => {
                        if *f == INTERNAL_VECTOR_INIT && args.len() == 1 {
                            let arg = eval_exp(&args[0], &mut frame.local_state, shared_state, solver)?;
                            match loc {
                                Loc::Id(v) => match (arg, frame.vars().get(v)) {
                                    (Val::I64(len), Some(UVal::Uninit(Ty::Vector(_)))) => assign(
                                        tid,
                                        loc,
                                        Val::Vector(vec![Val::Poison; len as usize]),
                                        &mut frame.local_state,
                                        shared_state,
                                        solver,
                                    )?,
                                    _ => return Err(ExecError::Type("internal_vector_init")),
                                },
                                _ => return Err(ExecError::Type("internal_vector_init")),
                            };
                            frame.pc += 1
                        } else if *f == INTERNAL_VECTOR_UPDATE {
                            frame.pc += 1
                        } else if *f == SAIL_EXIT {
                            return Err(ExecError::Exit);
                        } else if *f == REG_DEREF && args.len() == 1 {
                            if let Val::Ref(reg) = eval_exp(&args[0], &mut frame.local_state, shared_state, solver)? {
                                match get_and_initialize(reg, frame.regs_mut(), shared_state, solver)? {
                                    Some(value) => {
                                        solver.add_event(Event::ReadReg(reg, Vec::new(), value.clone()));
                                        assign(tid, loc, value, &mut frame.local_state, shared_state, solver)?
                                    }
                                    None => return Err(ExecError::Type("reg_deref")),
                                }
                            } else {
                                return Err(ExecError::Type("reg_deref (not a register)"));
                            };
                            frame.pc += 1
                        } else if shared_state.union_ctors.contains(f) {
                            assert!(args.len() == 1);
                            let arg = eval_exp(&args[0], &mut frame.local_state, shared_state, solver)?;
                            assign(
                                tid,
                                loc,
                                Val::Ctor(*f, Box::new(arg)),
                                &mut frame.local_state,
                                shared_state,
                                solver,
                            )?;
                            frame.pc += 1
                        } else {
                            let symbol = zencode::decode(shared_state.symtab.to_str(*f));
                            panic!("Attempted to call non-existent function {} ({:?})", symbol, *f)
                        }
                    }

                    Some((params, _, instrs)) => {
                        let mut args = args
                            .iter()
                            .map(|arg| eval_exp(arg, &mut frame.local_state, shared_state, solver))
                            .collect::<Result<Vec<Val<B>>, _>>()?;

                        if shared_state.probes.contains(f) {
                            let symbol = zencode::decode(shared_state.symtab.to_str(*f));
                            log_from!(tid, log::PROBE, &format!("Calling {}[{:?}]({:?})", symbol, f, &args));
                            probe::args_info(tid, &args, shared_state, solver)
                        }

                        let caller_pc = frame.pc;
                        let caller_instrs = frame.instrs;
                        let caller_stack_call = frame.stack_call.clone();
                        push_call_stack(&mut frame);

                        // Set up a closure to restore our state when
                        // the function we call returns
                        frame.stack_call = Some(Arc::new(move |ret, frame, shared_state, solver| {
                            pop_call_stack(frame);
                            frame.pc = caller_pc + 1;
                            frame.instrs = caller_instrs;
                            frame.stack_call = caller_stack_call.clone();
                            assign(tid, &loc.clone(), ret, &mut frame.local_state, shared_state, solver)
                        }));

                        for (i, arg) in args.drain(..).enumerate() {
                            frame.vars_mut().insert(params[i].0, UVal::Init(arg));
                        }
                        frame.pc = 0;
                        frame.instrs = instrs;
                    }
                }
            }

            Instr::End => match frame.vars().get(&RETURN) {
                None => panic!("Reached end without assigning to return"),
                Some(value) => {
                    let value = match value {
                        UVal::Uninit(ty) => symbolic(ty, shared_state, solver)?,
                        UVal::Init(value) => value.clone(),
                    };
                    let caller = match &frame.stack_call {
                        None => return Ok((value, frame)),
                        Some(caller) => Arc::clone(caller),
                    };
                    (*caller)(value, &mut frame, shared_state, solver)?
                }
            },

            // The idea beind the Monomorphize operation is it takes a
            // bitvector identifier, and if that identifer has a
            // symbolic value, then it uses the SMT solver to find all
            // the possible values for that bitvector and case splits
            // (i.e. forks) on them. This allows us to guarantee that
            // certain bitvectors are non-symbolic, at the cost of
            // increasing the number of paths.
            Instr::Monomorphize(id) => {
                let val = get_id_and_initialize(*id, &mut frame.local_state, shared_state, solver, &mut Vec::new())?;
                if let Val::Symbolic(v) = val {
                    use smtlib::Def::*;
                    use smtlib::Exp::*;
                    use smtlib::Ty::*;

                    let point = checkpoint(solver);

                    let len = solver.length(v).ok_or_else(|| ExecError::Type("_monomorphize"))?;

                    // For the variable v to appear in the model, there must be some assertion that references it
                    let sym = solver.declare_const(BitVec(len));
                    solver.assert_eq(Var(v), Var(sym));

                    if solver.check_sat().is_unsat()? {
                        return Err(ExecError::Dead);
                    }

                    let (result, size) = {
                        let mut model = Model::new(solver);
                        log_from!(tid, log::FORK, format!("Model: {:?}", model));
                        match model.get_var(v) {
                            Ok(Some(Bits64(result, size))) => (result, size),
                            // __monomorphize should have a 'n <= 64 constraint in Sail
                            Ok(Some(_)) => return Err(ExecError::Type("__monomorphize")),
                            Ok(None) => return Err(ExecError::Z3Error(format!("No value for variable v{}", v))),
                            Err(error) => return Err(error),
                        }
                    };

                    let loc = format!("Fork @ monomorphizing v{}", v);
                    log_from!(tid, log::FORK, loc);
                    solver.add_event(Event::Fork(frame.forks, v, loc.clone()));
                    frame.forks += 1;

                    queue.push(Task {
                        id: task_id,
                        frame: freeze_frame(&frame),
                        checkpoint: point,
                        fork_cond: Some(Assert(Neq(Box::new(Var(v)), Box::new(Bits64(result, size))))),
                    });

                    assign(
                        tid,
                        &Loc::Id(*id),
                        Val::Bits(B::new(result, size)),
                        &mut frame.local_state,
                        shared_state,
                        solver,
                    )?;
                }
                frame.pc += 1
            }

            // Arbitrary means return any value. It is used in the
            // Sail->C compilation for exceptional control flow paths
            // to avoid compiler warnings (which would also be UB in
            // C++ compilers). The value should never be used, so we
            // return Val::Poison here.
            Instr::Arbitrary => {
                let caller = match &frame.stack_call {
                    None => return Ok((Val::Poison, frame)),
                    Some(caller) => Arc::clone(caller),
                };
                (*caller)(Val::Poison, &mut frame, shared_state, solver)?
            }

            Instr::Failure => return Err(ExecError::MatchFailure),
        }
    }
}

/// A collector is run on the result of each path found via symbolic execution through the code. It
/// takes the result of the execution, which is either a combination of the return value and local
/// state at the end of the execution or an error, as well as the shared state and the SMT solver
/// state associated with that execution. It build a final result for all the executions by
/// collecting the results into a type R, protected by a lock.
pub type Collector<'ir, B, R> = dyn 'ir
    + Sync
    + Fn(usize, usize, Result<(Val<B>, LocalFrame<'ir, B>), ExecError>, &SharedState<'ir, B>, Solver<B>, &R) -> ();

/// A `Task` is a suspended point in the symbolic execution of a
/// program. It consists of a frame, which is a snapshot of the
/// program variables, a checkpoint which allows us to reconstruct the
/// SMT solver state, and finally an option SMTLIB definiton which is
/// added to the solver state when the task is resumed.
pub struct Task<'ir, B> {
    id: usize,
    frame: Frame<'ir, B>,
    checkpoint: Checkpoint<B>,
    fork_cond: Option<smtlib::Def>,
}

/// Start symbolically executing a Task using just the current thread, collecting the results using
/// the given collector.
pub fn start_single<'ir, B: BV, R>(
    task: Task<'ir, B>,
    shared_state: &SharedState<'ir, B>,
    collected: &R,
    collector: &Collector<'ir, B, R>,
) {
    let queue = Worker::new_lifo();
    queue.push(task);
    while let Some(task) = queue.pop() {
        let cfg = Config::new();
        cfg.set_param_value("model", "true");
        let ctx = Context::new(cfg);
        let mut solver = Solver::from_checkpoint(&ctx, task.checkpoint);
        if let Some(def) = task.fork_cond {
            solver.add(def)
        };
        let result = run(0, task.id, Timeout::unlimited(), &queue, &task.frame, shared_state, &mut solver);
        collector(0, task.id, result, shared_state, solver, collected)
    }
}

fn find_task<T>(local: &Worker<T>, global: &Injector<T>, stealers: &RwLock<Vec<Stealer<T>>>) -> Option<T> {
    let stealers = stealers.read().unwrap();
    local.pop().or_else(|| {
        std::iter::repeat_with(|| {
            let stolen: Steal<T> = stealers.iter().map(|s| s.steal()).collect();
            stolen.or_else(|| global.steal_batch_and_pop(local))
        })
        .find(|s| !s.is_retry())
        .and_then(|s| s.success())
    })
}

fn do_work<'ir, B: BV, R>(
    tid: usize,
    timeout: Timeout,
    queue: &Worker<Task<'ir, B>>,
    task: Task<'ir, B>,
    shared_state: &SharedState<'ir, B>,
    collected: &R,
    collector: &Collector<'ir, B, R>,
) {
    let cfg = Config::new();
    let ctx = Context::new(cfg);
    let mut solver = Solver::from_checkpoint(&ctx, task.checkpoint);
    if let Some(def) = task.fork_cond {
        solver.add(def)
    };
    let result = run(tid, task.id, timeout, queue, &task.frame, shared_state, &mut solver);
    collector(tid, task.id, result, shared_state, solver, collected)
}

enum Response {
    Poke,
    Kill,
}

#[derive(Clone)]
enum Activity {
    Idle(usize, Sender<Response>),
    Busy(usize),
}

/// Start symbolically executing a Task across `num_threads` new threads, collecting the results
/// using the given collector.
pub fn start_multi<'ir, B: BV, R>(
    num_threads: usize,
    timeout: Option<u64>,
    tasks: Vec<Task<'ir, B>>,
    shared_state: &SharedState<'ir, B>,
    collected: Arc<R>,
    collector: &Collector<'ir, B, R>,
) where
    R: Send + Sync,
{
    let timeout = Timeout { start_time: Instant::now(), duration: timeout.map(Duration::from_secs) };

    let (tx, rx): (Sender<Activity>, Receiver<Activity>) = mpsc::channel();
    let global: Arc<Injector<Task<B>>> = Arc::new(Injector::<Task<B>>::new());
    let stealers: Arc<RwLock<Vec<Stealer<Task<B>>>>> = Arc::new(RwLock::new(Vec::new()));

    for task in tasks {
        global.push(task);
    }

    thread::scope(|scope| {
        for tid in 0..num_threads {
            // When a worker is idle, it reports that to the main orchestrating thread, which can
            // then 'poke' it to wait it up via a channel, which will cause the worker to try to
            // steal some work, or the main thread can kill the worker.
            let (poke_tx, poke_rx): (Sender<Response>, Receiver<Response>) = mpsc::channel();
            let thread_tx = tx.clone();
            let global = global.clone();
            let stealers = stealers.clone();
            let collected = collected.clone();

            scope.spawn(move |_| {
                let q = Worker::new_lifo();
                {
                    let mut stealers = stealers.write().unwrap();
                    stealers.push(q.stealer());
                }
                loop {
                    if let Some(task) = find_task(&q, &global, &stealers) {
                        log_from!(tid, log::VERBOSE, "Working");
                        thread_tx.send(Activity::Busy(tid)).unwrap();
                        do_work(tid, timeout, &q, task, &shared_state, collected.as_ref(), collector);
                        while let Some(task) = find_task(&q, &global, &stealers) {
                            do_work(tid, timeout, &q, task, &shared_state, collected.as_ref(), collector)
                        }
                    };
                    thread_tx.send(Activity::Idle(tid, poke_tx.clone())).unwrap();
                    match poke_rx.recv().unwrap() {
                        Response::Poke => (),
                        Response::Kill => break,
                    }
                }
            });
        }

        // Figuring out when to exit is a little complex. We start with only a few threads able to
        // work because we haven't actually explored any of the state space, so all the other
        // workers start idle and repeatedly try to steal work. There may be points when workers
        // have no work, but we want them to become active again if more work becomes available. We
        // therefore want to exit only when 1) all threads are idle, 2) we've told all the threads
        // to steal some work, and 3) all the threads fail to do so and remain idle.
        let mut current_activity = vec![0; num_threads];
        let mut last_messages = vec![Activity::Busy(0); num_threads];
        loop {
            loop {
                match rx.try_recv() {
                    Ok(Activity::Busy(tid)) => {
                        last_messages[tid] = Activity::Busy(tid);
                        current_activity[tid] = 0;
                    }
                    Ok(Activity::Idle(tid, poke)) => {
                        last_messages[tid] = Activity::Idle(tid, poke);
                        current_activity[tid] += 1;
                    }
                    Err(_) => break,
                }
            }
            let mut quiescent = true;
            for idleness in &current_activity {
                if *idleness < 2 {
                    quiescent = false
                }
            }
            if quiescent {
                for message in &last_messages {
                    match message {
                        Activity::Idle(_tid, poke) => poke.send(Response::Kill).unwrap(),
                        Activity::Busy(tid) => panic!("Found busy thread {} when quiescent", tid),
                    }
                }
                break;
            }
            for message in &last_messages {
                match message {
                    Activity::Idle(tid, poke) => {
                        poke.send(Response::Poke).unwrap();
                        current_activity[*tid] = 1;
                    }
                    Activity::Busy(_) => (),
                }
            }
            sleep(Duration::from_millis(1))
        }
    })
    .unwrap();
}

/// This `Collector` is used for boolean Sail functions. It returns
/// true via the mutex if all reachable paths through the program are
/// unsatisfiable, which implies that the function always returns
/// true.
pub fn all_unsat_collector<'ir, B: BV>(
    tid: usize,
    _: usize,
    result: Result<(Val<B>, LocalFrame<'ir, B>), ExecError>,
    _: &SharedState<'ir, B>,
    mut solver: Solver<B>,
    collected: &Mutex<bool>,
) {
    match result {
        Ok(value) => match value {
            (Val::Symbolic(v), _) => {
                use smtlib::Def::*;
                use smtlib::Exp::*;
                solver.add(Assert(Not(Box::new(Var(v)))));
                if solver.check_sat() != SmtResult::Unsat {
                    log_from!(tid, log::VERBOSE, "Got sat");
                    let mut b = collected.lock().unwrap();
                    *b &= false
                } else {
                    log_from!(tid, log::VERBOSE, "Got unsat")
                }
            }
            (Val::Bool(true), _) => log_from!(tid, log::VERBOSE, "Got true"),
            (Val::Bool(false), _) => {
                log_from!(tid, log::VERBOSE, "Got false");
                let mut b = collected.lock().unwrap();
                *b &= false
            }
            (value, _) => log_from!(tid, log::VERBOSE, &format!("Got value {:?}", value)),
        },
        Err(err) => match err {
            ExecError::Dead => log_from!(tid, log::VERBOSE, "Dead"),
            _ => {
                log_from!(tid, log::VERBOSE, &format!("Got error, {:?}", err));
                let mut b = collected.lock().unwrap();
                *b &= false
            }
        },
    }
}

pub type TraceQueue<B> = SegQueue<Result<(usize, Vec<Event<B>>), String>>;

pub type TraceResultQueue<B> = SegQueue<Result<(usize, bool, Vec<Event<B>>), String>>;

pub fn trace_collector<'ir, B: BV>(
    _: usize,
    task_id: usize,
    result: Result<(Val<B>, LocalFrame<'ir, B>), ExecError>,
    _: &SharedState<'ir, B>,
    solver: Solver<B>,
    collected: &TraceQueue<B>,
) {
    use crate::simplify::simplify;

    match result {
        Ok(_) | Err(ExecError::Exit) => {
            let mut events = simplify(solver.trace());
            collected.push(Ok((task_id, events.drain(..).map({ |ev| ev.clone() }).collect())))
        }
        Err(ExecError::Dead) => (),
        Err(err) => collected.push(Err(format!("Error {:?}", err))),
    }
}

pub fn trace_result_collector<'ir, B: BV>(
    _: usize,
    task_id: usize,
    result: Result<(Val<B>, LocalFrame<'ir, B>), ExecError>,
    _: &SharedState<'ir, B>,
    solver: Solver<B>,
    collected: &TraceResultQueue<B>,
) {
    use crate::simplify::simplify;

    match result {
        Ok((Val::Bool(result), _)) => {
            let mut events = simplify(solver.trace());
            collected.push(Ok((task_id, result, events.drain(..).map({ |ev| ev.clone() }).collect())))
        }
        Ok((val, _)) => collected.push(Err(format!("Unexpected footprint return value: {:?}", val))),
        Err(ExecError::Dead) => (),
        Err(err) => collected.push(Err(format!("Error {:?}", err))),
    }
}

pub fn footprint_collector<'ir, B: BV>(
    _: usize,
    task_id: usize,
    result: Result<(Val<B>, LocalFrame<'ir, B>), ExecError>,
    _: &SharedState<'ir, B>,
    solver: Solver<B>,
    collected: &TraceQueue<B>,
) {
    use crate::simplify::simplify;

    match result {
        // Footprint function returns true on traces we need to consider as part of the footprint
        Ok((Val::Bool(true), _)) => {
            let mut events = simplify(solver.trace());
            collected.push(Ok((task_id, events.drain(..).map({ |ev| ev.clone() }).collect())))
        }
        // If it returns false or unit, we ignore that trace
        Ok((Val::Bool(false), _)) => (),
        // Anything else is an error!
        Ok((val, _)) => collected.push(Err(format!("Unexpected footprint return value: {:?}", val))),

        Err(ExecError::Dead) => (),
        Err(err) => collected.push(Err(format!("Error {:?}", err))),
    }
}