1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
// SPDX-License-Identifier: MIT
// Copyright 2023 IROX Contributors
//

//!
//! Formatting structs and traits
//!

use core::fmt::{Display, Formatter};
extern crate alloc;
#[allow(unused_imports)]
use crate::f64::FloatExt;
use alloc::string::String;

///
/// Variant of the `format!` macro that doesn't require `std::io::Write`
#[macro_export]
macro_rules! format {
    ($($arg:tt)*) => {{
        extern crate alloc;
        use alloc::string::String;
        use core::fmt::Write;

        let mut val = String::new();
        val.write_fmt(format_args!($($arg)*)).expect("a formatting trait implementation returned an error");
        val
    }};
}

///
/// This struct allows you to print a specific number of digits before the decimal point,
/// and after the decimal point.
///
/// This exists because the base format trait allows you to specify a width and a precision.
/// However, in a fractional number, the width applies to the WHOLE number, including the fractional
/// component, and doesn't zero-pad effectively.
///
/// * The first parameter is the number of zero-padded digits before the decimal point.
/// * The second parameter is the number of zero-padded digits after the decimal point.
///
/// # Example:
/// ```
/// use irox_tools::fmt::DecimalFormatF64;
/// assert_eq!("00.1235", format!("{}", DecimalFormatF64(2,4,0.1234567)));
/// ```
pub struct DecimalFormatF64(pub usize, pub usize, pub f64);

impl Display for DecimalFormatF64 {
    fn fmt(&self, f: &mut Formatter<'_>) -> core::fmt::Result {
        let mut base = self.2.trunc();
        let width = self.0;
        let prec = self.1;
        let powi = 10_u64.pow(self.1 as u32) as f64;
        let mut val = (self.2.fract().abs() * powi).round();
        if val >= powi {
            base += 1.;
            val -= powi;
        }
        let val = val as u64;
        write!(f, "{base:0width$}.{val:0prec$}")
    }
}

///
/// This struct allows you to print a specific number of digits before the decimal point,
/// and after the decimal point.
///
/// This exists because the base format trait allows you to specify a width and a precision.
/// However, in a fractional number, the width applies to the WHOLE number, including the fractional
/// component, and doesn't zero-pad effectively.
///
/// * The first parameter is the number of zero-padded digits before the decimal point.
/// * The second parameter is the number of zero-padded digits after the decimal point.
///
/// # Example:
/// ```
/// use irox_tools::fmt::DecimalFormatF32;
/// assert_eq!("00.1235", format!("{}", DecimalFormatF32(2,4,0.1234567)));
/// ```
pub struct DecimalFormatF32(pub usize, pub usize, pub f32);

impl Display for DecimalFormatF32 {
    fn fmt(&self, f: &mut Formatter<'_>) -> core::fmt::Result {
        let mut base = self.2.trunc();
        let width = self.0;
        let prec = self.1;
        let powi = 10_u64.pow(self.1 as u32) as f32;
        let mut val = (self.2.fract().abs() * powi).round();
        if val >= powi {
            base += 1.;
            val -= powi;
        }
        let val = val as u64;
        write!(f, "{base:0width$}.{val:0prec$}")
    }
}

///
/// This struct allows you to print a specific number of digits before the decimal point,
/// and after the decimal point.
///
/// This exists because the base format trait allows you to specify a width and a precision.
/// However, in a fractional number, the width applies to the WHOLE number, including the fractional
/// component, and doesn't zero-pad effectively.
///
/// * The first parameter is the number of zero-padded digits before the decimal point.
/// * The second parameter is the number of zero-padded digits after the decimal point.
///
/// # Example:
/// ```
/// use irox_tools::fmt::DecimalFormat;
/// let fmt = DecimalFormat::new(2,4);
///
/// assert_eq!("00.1235", fmt.format_f64(0.1234567));
/// ```
pub struct DecimalFormat {
    width: usize,
    precision: usize,
}

impl DecimalFormat {
    pub fn new(width: usize, precision: usize) -> Self {
        Self { width, precision }
    }

    ///
    /// Formats the specified [`f64`] using this formatter.
    ///
    /// # Example:
    /// ```
    /// use irox_tools::fmt::DecimalFormat;
    /// let fmt = DecimalFormat::new(2,4);
    ///
    /// assert_eq!("00.1235", fmt.format_f64(0.1234567));
    /// ```
    pub fn format_f64(&self, val: f64) -> String {
        format!("{}", DecimalFormatF64(self.width, self.precision, val))
    }

    ///
    /// Formats the specified [`f32`] using this formatter.
    ///
    /// # Example:
    /// ```
    /// use irox_tools::fmt::DecimalFormat;
    /// let fmt = DecimalFormat::new(2,4);
    ///
    /// assert_eq!("00.1235", fmt.format_f32(0.1234567));
    /// ```
    pub fn format_f32(&self, val: f32) -> String {
        format!("{}", DecimalFormatF32(self.width, self.precision, val))
    }
}

#[cfg(test)]
mod tests {
    use crate::fmt::DecimalFormatF64;

    #[test]
    pub fn test() {
        let val = 0.1234567;
        assert_eq!("00.1235", format!("{}", DecimalFormatF64(2, 4, val)));

        assert_eq!("0.123", format!("{}", DecimalFormatF64(0, 3, val)));
        assert_eq!("0.123", format!("{}", DecimalFormatF64(1, 3, val)));
        assert_eq!("00.123", format!("{}", DecimalFormatF64(2, 3, val)));
        assert_eq!("00.12346", format!("{}", DecimalFormatF64(2, 5, val)));
        assert_eq!("00.123457", format!("{}", DecimalFormatF64(2, 6, val)));
        assert_eq!("00.1234567", format!("{}", DecimalFormatF64(2, 7, val)));
        assert_eq!("00.12345670", format!("{}", DecimalFormatF64(2, 8, val)));
        assert_eq!("00.123456700", format!("{}", DecimalFormatF64(2, 9, val)));
        assert_eq!(
            "000.1234567000",
            format!("{}", DecimalFormatF64(3, 10, val))
        );
    }

    #[test]
    pub fn test2() {
        assert_eq!("1.0", format!("{}", DecimalFormatF64(1, 0, 0.98)));
        assert_eq!("1.0", format!("{}", DecimalFormatF64(1, 1, 0.98)));
        assert_eq!("0.98", format!("{}", DecimalFormatF64(1, 2, 0.98)));
        assert_eq!("0.980", format!("{}", DecimalFormatF64(1, 3, 0.98)));
        assert_eq!("0.950", format!("{}", DecimalFormatF64(1, 3, 0.95)));
        assert_eq!("0.940", format!("{}", DecimalFormatF64(1, 3, 0.94)));
        assert_eq!("0.94", format!("{}", DecimalFormatF64(1, 2, 0.94)));
        assert_eq!("0.9", format!("{}", DecimalFormatF64(1, 1, 0.94)));
        assert_eq!("1.0", format!("{}", DecimalFormatF64(1, 0, 0.94)));

        assert_eq!("0.999", format!("{}", DecimalFormatF64(1, 3, 0.999)));
        assert_eq!("0.9990", format!("{}", DecimalFormatF64(1, 4, 0.999)));
        assert_eq!("1.00", format!("{}", DecimalFormatF64(1, 2, 0.999)));

        assert_eq!("-21.30", format!("{}", DecimalFormatF64(2, 2, -21.3)));
        assert_eq!("-21.3", format!("{}", DecimalFormatF64(2, 1, -21.3)));
        assert_eq!("-21.0", format!("{}", DecimalFormatF64(2, 0, -21.3)));
    }
}