1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
/*
 * Copyright (c) 2018-2020 Thomas Kramer.
 *
 * This file is part of LibrEDA 
 * (see https://codeberg.org/libreda/iron-shapes).
 *
 * This program is free software: you can redistribute it and/or modify
 * it under the terms of the GNU Affero General Public License as
 * published by the Free Software Foundation, either version 3 of the
 * License, or (at your option) any later version.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU Affero General Public License for more details.
 *
 * You should have received a copy of the GNU Affero General Public License
 * along with this program. If not, see <http://www.gnu.org/licenses/>.
 */

//! A point string is a finite sequence of points.

use crate::point::Point;
use crate::edge::Edge;
use crate::rect::Rect;

use crate::CoordinateType;

use crate::traits::{MapPointwise, TryCastCoord};
pub use crate::traits::TryBoundingBox;

use std::iter::FromIterator;
use std::slice::Iter;

use num_traits::{Float, NumCast};

/// A point string is a finite sequence of points.
/// TODO: Implement `Deref` for accessing the list of points.
#[derive(Clone, Debug, PartialEq, Eq, Hash)]
#[cfg_attr(feature = "serde", derive(Serialize, Deserialize))]
pub struct PointString<T: CoordinateType> {
    /// The points defining this point string.
    pub points: Vec<Point<T>>
}

impl<T: CoordinateType> PointString<T> {
    /// Create new point string by taking vertices from a type that implements `Into<PointString<T>>`.
    pub fn new<I>(i: I) -> Self
        where I: Into<Self> {
        i.into()
    }

    /// Get the number of vertices.
    pub fn len(&self) -> usize {
        self.points.len()
    }

    /// Shortcut for `self.points.iter()`.
    pub fn iter(&self) -> Iter<Point<T>> {
        self.points.iter()
    }

    /// Get the sequence of edges of the point string starting from the first point to the last.
    /// # Examples
    ///
    /// ```
    /// use iron_shapes::point_string::PointString;
    /// use iron_shapes::edge::Edge;
    /// let coords = vec![(0, 0), (1, 0), (2, 0)];
    ///
    /// let point_string = PointString::new(coords);
    ///
    /// let edges: Vec<_> = point_string.edges().collect();
    ///
    /// assert_eq!(edges, vec![Edge::new((0, 0), (1, 0)), Edge::new((1, 0), (2, 0))]);
    /// ```
    pub fn edges(&self) -> impl Iterator<Item=Edge<T>> + '_ {
        self.iter()
            .zip(self.iter().skip(1))
            .map(|(a, b)| Edge::new(a, b))
    }

    /// Same as `edges` but in reverse order.
    /// Get the sequence of edges of the point string starting from the last point to the first.
    /// # Examples
    ///
    /// ```
    /// use iron_shapes::point_string::PointString;
    /// use iron_shapes::edge::Edge;
    /// let coords = vec![(0, 0), (1, 0), (2, 0)];
    ///
    /// let point_string = PointString::new(coords);
    ///
    /// let edges: Vec<_> = point_string.edges_reversed().collect();
    ///
    /// assert_eq!(edges, vec![Edge::new((2, 0), (1, 0)), Edge::new((1, 0), (0, 0))]);
    /// ```
    pub fn edges_reversed(&self) -> impl Iterator<Item=Edge<T>> + '_ {
        self.iter().rev()
            .zip(self.iter().rev().skip(1))
            .map(|(a, b)| Edge::new(a, b))
    }
}

impl<T: CoordinateType + NumCast> PointString<T> {
    /// Compute geometrical length of the path defined by the point string.
    /// # Examples
    ///
    /// ```
    /// use iron_shapes::point_string::PointString;
    /// let coords = vec![(0, 0), (1, 0), (2, 0)];
    ///
    /// let point_string = PointString::new(coords);
    ///
    /// assert_eq!(point_string.path_length::<f64>(), 2.0);
    /// ```
    pub fn path_length<F: Float>(&self) -> F {
        self.iter()
            .zip(self.iter().skip(1))
            .map(|(a, b)| a.distance(b))
            .fold(F::zero(), |a, b| a + b)
    }
}

impl<T: CoordinateType + NumCast, Dst: CoordinateType + NumCast> TryCastCoord<T, Dst> for PointString<T> {
    type Output = PointString<Dst>;

    fn try_cast(&self) -> Option<Self::Output> {
        let new_points: Option<Vec<_>> = self.points.iter()
            .map(|p| p.try_cast())
            .collect();

        new_points.map(|p| PointString::new(p))
    }
}

/// Create a point string from something that can be turned into an iterator of values convertible to [`Point`]s.
impl<I, T, P> From<I> for PointString<T>
    where T: CoordinateType,
          I: IntoIterator<Item=P>,
          Point<T>: From<P>
{
    fn from(iter: I) -> Self {
        let points: Vec<Point<T>> = iter.into_iter().map(
            |x| x.into()
        ).collect();

        PointString { points }
    }
}
//
// /// Create a point string from a [`Vec`] of values convertible to [`Point`]s.
// impl<'a, T, P> From<&'a Vec<P>> for PointString<T>
//     where T: CoordinateType,
//           Point<T>: From<&'a P>
// {
//     fn from(vec: &'a Vec<P>) -> Self {
//         let points: Vec<Point<T>> = vec.into_iter().map(
//             |x| x.into()
//         ).collect();
//
//         PointString { points }
//     }
// }
//
// /// Create a point string from a [`Vec`] of values convertible to [`Point`]s.
// impl<T, P> From<Vec<P>> for PointString<T>
//     where T: CoordinateType,
//           Point<T>: From<P>
// {
//     fn from(vec: Vec<P>) -> Self {
//         let points: Vec<Point<T>> = vec.into_iter().map(
//             |x| x.into()
//         ).collect();
//
//         PointString { points }
//     }
// }
//

/// Create a point string from a iterator of values convertible to [`Point`]s.
impl<T, P> FromIterator<P> for PointString<T>
    where T: CoordinateType,
          P: Into<Point<T>>
{
    fn from_iter<I>(iter: I) -> Self
        where I: IntoIterator<Item=P>
    {
        let points: Vec<Point<T>> = iter.into_iter().map(
            |x| x.into()
        ).collect();

        PointString { points }
    }
}

impl<T> MapPointwise<T> for PointString<T>
    where T: CoordinateType {
    fn transform<F: Fn(Point<T>) -> Point<T>>(&self, tf: F) -> Self {
        let points = self.points.iter()
            .map(|&p| tf(p))
            .collect();

        PointString {
            points
        }
    }
}

impl<T> TryBoundingBox<T> for PointString<T>
    where T: CoordinateType {
    /// Compute the bounding box of all the points in this string.
    /// Returns `None` if the string is empty.
    /// # Examples
    ///
    /// ```
    /// use iron_shapes::point_string::PointString;
    /// use iron_shapes::traits::TryBoundingBox;
    /// use iron_shapes::rect::Rect;
    /// let coords = vec![(0, 0), (1, 0), (2, 1), (-1, -3)];
    ///
    /// let point_string = PointString::new(coords);
    ///
    /// assert_eq!(point_string.try_bounding_box(), Some(Rect::new((2, 1), (-1, -3))));
    /// ```
    fn try_bounding_box(&self) -> Option<Rect<T>> {
        if self.points.is_empty() {
            None
        } else {
            let mut x_min = self.points[0].x;
            let mut x_max = x_min;
            let mut y_min = self.points[0].y;
            let mut y_max = y_min;

            for p in self.iter().skip(1) {
                let (x, y) = p.into();
                if x < x_min {
                    x_min = x;
                }
                if x > x_max {
                    x_max = x;
                }
                if y < y_min {
                    y_min = y;
                }
                if y > y_max {
                    y_max = y;
                }
            }

            Some(Rect::new((x_min, y_min), (x_max, y_max)))
        }
    }
}