1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344
//! Specifications for individual ranges within a blob, and for ranges for a
//! collection and its children.
use std::fmt;
use bao_tree::ChunkNum;
use range_collections::{RangeSet2, RangeSetRef};
use serde::{Deserialize, Serialize};
use smallvec::{smallvec, SmallVec};
/// A chunk range specification.
///
/// this is a sequence of spans, where the first span is considered false, and each subsequent span is alternating.
///
/// Examples:
/// The range 10..33 would be encoded as `[10, 23]`
/// The empty range would be encoded as the empty array `[]`
/// A full interval .. would be encoded as `[0]`
/// A half open interval 15.. would be encoded as `[15]`
///
/// All values except for the first one must be non-zero. The first value may be zero.
/// Values are bao chunk numbers, not byte offsets.
///
/// This is a SmallVec so we can avoid allocations for the very common case of a single chunk range.
#[derive(Deserialize, Serialize, PartialEq, Eq, Clone)]
#[repr(transparent)]
pub struct RangeSpec(SmallVec<[u64; 2]>);
impl RangeSpec {
/// Create a new range spec from a range set
pub fn new(ranges: impl AsRef<RangeSetRef<ChunkNum>>) -> Self {
let ranges = ranges.as_ref().boundaries();
let mut res = SmallVec::new();
if let Some((start, rest)) = ranges.split_first() {
let mut prev = start.0;
res.push(prev);
for v in rest {
res.push(v.0 - prev);
prev = v.0;
}
}
Self(res)
}
/// An empty range spec
pub const EMPTY: Self = Self(SmallVec::new_const());
/// Create a range spec that covers the entire range
pub fn all() -> Self {
Self(smallvec![0])
}
/// Check if this range spec is empty
pub fn is_empty(&self) -> bool {
self.0.is_empty()
}
/// Check if this range spec covers all values
pub fn is_all(&self) -> bool {
self.0.len() == 1 && self.0[0] == 0
}
/// Convert a range set from this range spec
pub fn to_chunk_ranges(&self) -> RangeSet2<ChunkNum> {
// this is zero allocation for single ranges
// todo: optimize this in range collections
let mut ranges = RangeSet2::empty();
let mut current = ChunkNum(0);
let mut on = false;
for &width in self.0.iter() {
let next = current + width;
if on {
ranges |= RangeSet2::from(current..next);
}
current = next;
on = !on;
}
if on {
ranges |= RangeSet2::from(current..);
}
ranges
}
}
impl fmt::Debug for RangeSpec {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
if f.alternate() {
f.debug_list()
.entries(self.to_chunk_ranges().iter())
.finish()
} else if self.is_all() {
write!(f, "all")
} else if self.is_empty() {
write!(f, "empty")
} else {
f.debug_list().entries(self.0.iter()).finish()
}
}
}
/// A compressed sequence of range specs
///
/// Examples:
///
/// All child ranges: `[(0, [0])]` starting at offset 0, all offsets (see above)
/// First chunk of all children: `[(0, [0, 1])]` starting at offset 0, chunk range 0..1
/// All of child 1234: `[(1234, [0]), [1, []]]`.
/// First 33 chunks of child 5678: `[(5678, [0, 33]), (1, [])]`.
/// Chunks 10 to 30 of child 6789: `[(6789, [10, 20]), (1, [])]`.
/// No child ranges: `[]`
///
/// This is a smallvec so that we can avoid allocations in the common case of a single child range.
#[derive(Deserialize, Serialize, Debug, PartialEq, Eq, Clone)]
#[repr(transparent)]
pub struct RangeSpecSeq(SmallVec<[(u64, RangeSpec); 2]>);
impl RangeSpecSeq {
#[allow(dead_code)]
/// An empty range spec sequence
///
/// When iterated, will return an empty range forever
pub const fn empty() -> Self {
Self(SmallVec::new_const())
}
/// If this range seq describes a range for a single item, returns the offset
/// and range spec for that item
pub fn single(&self) -> Option<(u64, &RangeSpec)> {
// we got two elements,
// the first element starts at offset 0,
// and the second element is empty
if self.0.len() != 2 {
return None;
}
let (fst_ofs, fst_val) = &self.0[0];
let (snd_ofs, snd_val) = &self.0[1];
if *fst_ofs == 0 && *snd_ofs == 1 && snd_val.is_empty() {
Some((*fst_ofs, fst_val))
} else {
None
}
}
/// A complete range spec sequence
///
/// When iterated, will return a full range forever
pub fn all() -> Self {
Self(smallvec![(0, RangeSpec::all())])
}
/// Create a new range spec sequence from a sequence of range sets
pub fn new(children: impl IntoIterator<Item = RangeSet2<ChunkNum>>) -> Self {
let mut prev = RangeSet2::empty();
let mut count = 0;
let mut res = SmallVec::new();
for v in children
.into_iter()
.chain(std::iter::once(RangeSet2::empty()))
{
if v == prev {
count += 1;
} else {
res.push((count, RangeSpec::new(&v)));
prev = v;
count = 1;
}
}
Self(res)
}
/// An infinite iterator of range specs
pub fn iter(&self) -> RequestRangeSpecIter<'_> {
let before_first = self.0.get(0).map(|(c, _)| *c).unwrap_or_default();
RequestRangeSpecIter {
current: &EMPTY_RANGE_SPEC,
count: before_first,
remaining: &self.0,
}
}
/// An iterator over non empty range specs
///
/// This iterator is infinite if the range spec is infinite
pub fn iter_non_empty(&self) -> NonEmptyRequestRangeSpecIter<'_> {
NonEmptyRequestRangeSpecIter::new(self.iter())
}
}
static EMPTY_RANGE_SPEC: RangeSpec = RangeSpec::EMPTY;
/// An infinite iterator of range specs
///
/// default is what to use if the children of this RequestRangeSpec are empty.
#[derive(Debug)]
pub struct RequestRangeSpecIter<'a> {
/// current value
current: &'a RangeSpec,
/// number of times to emit current before grabbing next value
/// if remaining is empty, this is ignored and current is emitted forever
count: u64,
/// remaining ranges
remaining: &'a [(u64, RangeSpec)],
}
impl<'a> RequestRangeSpecIter<'a> {
pub fn new(ranges: &'a [(u64, RangeSpec)]) -> Self {
let before_first = ranges.get(0).map(|(c, _)| *c).unwrap_or_default();
RequestRangeSpecIter {
current: &EMPTY_RANGE_SPEC,
count: before_first,
remaining: ranges,
}
}
/// True if we are at the end of the iterator
///
/// This does not mean that the iterator is terminated, it just means that
/// it will repeat the same value forever.
pub fn is_at_end(&self) -> bool {
self.count == 0 && self.remaining.is_empty()
}
}
impl<'a> Iterator for RequestRangeSpecIter<'a> {
type Item = &'a RangeSpec;
fn next(&mut self) -> Option<Self::Item> {
Some(loop {
break if self.count > 0 {
// emit current value count times
self.count -= 1;
self.current
} else if let Some(((_, new), rest)) = self.remaining.split_first() {
// get next current value, new count, and set remaining
self.current = new;
self.count = rest.get(0).map(|(c, _)| *c).unwrap_or_default();
self.remaining = rest;
continue;
} else {
// no more values, just repeat current forever
self.current
};
})
}
}
/// An infinite iterator of range specs
///
/// default is what to use if the children of this RequestRangeSpec are empty.
#[derive(Debug)]
pub struct NonEmptyRequestRangeSpecIter<'a> {
inner: RequestRangeSpecIter<'a>,
count: u64,
}
impl<'a> NonEmptyRequestRangeSpecIter<'a> {
fn new(inner: RequestRangeSpecIter<'a>) -> Self {
Self { inner, count: 0 }
}
}
impl<'a> Iterator for NonEmptyRequestRangeSpecIter<'a> {
type Item = (u64, &'a RangeSpec);
fn next(&mut self) -> Option<Self::Item> {
loop {
// unwrapping is safe because we know that the inner iterator will never terminate
let curr = self.inner.next().unwrap();
let count = self.count;
// increase count in any case until we are at the end of possible u64 values
// we are unlikely to ever reach this limit.
self.count = self.count.checked_add(1)?;
// yield only if the current value is non-empty
if !curr.is_empty() {
break Some((count, curr));
} else if self.inner.is_at_end() {
// terminate instead of looping until we run out of u64 values
break None;
}
}
}
}
#[cfg(test)]
mod tests {
use std::ops::Range;
use super::*;
use bao_tree::ChunkNum;
use proptest::prelude::*;
use range_collections::RangeSet2;
fn ranges(value_range: Range<u64>) -> impl Strategy<Value = RangeSet2<ChunkNum>> {
prop::collection::vec((value_range.clone(), value_range), 0..16).prop_map(|v| {
let mut res = RangeSet2::empty();
for (a, b) in v {
let start = a.min(b);
let end = a.max(b);
res |= RangeSet2::from(ChunkNum(start)..ChunkNum(end));
}
res
})
}
fn range_spec_seq_roundtrip_impl(ranges: &[RangeSet2<ChunkNum>]) -> Vec<RangeSet2<ChunkNum>> {
let spec = RangeSpecSeq::new(ranges.iter().cloned());
spec.iter()
.map(|x| x.to_chunk_ranges())
.take(ranges.len())
.collect::<Vec<_>>()
}
#[test]
fn range_spec_seq_roundtrip_cases() {
for case in [
vec![0..1, 0..0],
vec![1..2, 1..2, 1..2],
vec![1..2, 1..2, 2..3, 2..3],
] {
let case = case
.iter()
.map(|x| RangeSet2::from(ChunkNum(x.start)..ChunkNum(x.end)))
.collect::<Vec<_>>();
let expected = case.clone();
let actual = range_spec_seq_roundtrip_impl(&case);
assert_eq!(expected, actual);
}
}
proptest! {
#[test]
fn range_spec_roundtrip(ranges in ranges(0..1000)) {
let spec = RangeSpec::new(&ranges);
let ranges2 = spec.to_chunk_ranges();
prop_assert_eq!(ranges, ranges2);
}
#[test]
fn range_spec_seq_roundtrip(ranges in proptest::collection::vec(ranges(0..100), 0..10)) {
let expected = ranges.clone();
let actual = range_spec_seq_roundtrip_impl(&ranges);
prop_assert_eq!(expected, actual);
}
}
}