iregex_automata/nfa/
mod.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
use btree_range_map::{AnyRange, RangeMap, RangeSet};
use educe::Educe;
use range_traits::{Enum, Measure};
use std::{
	collections::{BTreeMap, BTreeSet, HashSet},
	hash::Hash,
	ops::Bound,
};

use crate::{dfa::DetTransitions, Automaton, Class, Map, Token, DFA};

use super::token_set_intersection;

mod tags;
pub use tags::{TaggedNFA, Tags};

#[derive(Debug)]
pub struct TooManyStates;

/// State builder.
pub trait StateBuilder<T, Q, C = ()> {
	type Error;

	fn next_state(&mut self, nfa: &mut NFA<Q, T>, class: C) -> Result<Q, Self::Error>;

	fn class_of(&self, q: &Q) -> Option<&C>;
}

impl<'a, T, Q, C, S: StateBuilder<T, Q, C>> StateBuilder<T, Q, C> for &'a mut S {
	type Error = S::Error;

	fn next_state(&mut self, nfa: &mut NFA<Q, T>, class: C) -> Result<Q, Self::Error> {
		S::next_state(*self, nfa, class)
	}

	fn class_of(&self, q: &Q) -> Option<&C> {
		S::class_of(*self, q)
	}
}

pub struct U32StateBuilder<C> {
	states: Vec<C>,
	limit: u32,
}

impl<C> U32StateBuilder<C> {
	pub fn new() -> Self {
		Self::default()
	}
}

impl<C> Default for U32StateBuilder<C> {
	fn default() -> Self {
		U32StateBuilder {
			states: Vec::new(),
			limit: u32::MAX,
		}
	}
}

impl<T, C> StateBuilder<T, u32, C> for U32StateBuilder<C> {
	type Error = TooManyStates;

	fn next_state(&mut self, nfa: &mut NFA<u32, T>, class: C) -> Result<u32, Self::Error> {
		let q = self.states.len() as u32;
		self.states.push(class);
		if self.states.len() as u32 > self.limit {
			Err(TooManyStates)
		} else {
			nfa.add_state(q);
			Ok(q)
		}
	}

	fn class_of(&self, q: &u32) -> Option<&C> {
		self.states.get(*q as usize)
	}
}

pub trait BuildNFA<T = char, Q = u32, C = (), G = ()>
where
	T: Clone,
	Q: Ord,
	C: Class<T>,
{
	fn build_nfa<S: StateBuilder<T, Q, C>>(
		&self,
		mut state_builder: S,
		class: C,
	) -> Result<TaggedNFA<Q, T, G>, S::Error> {
		let mut nfa = NFA::new();
		let mut tags = Tags::new();
		let (a, bs) = self.build_nfa_from(&mut state_builder, &mut nfa, &mut tags, &class)?;
		nfa.add_initial_state(a);
		for (_, b) in bs.into_entries() {
			nfa.add_final_state(b);
		}

		Ok(TaggedNFA::new(nfa, tags))
	}

	fn build_nfa_from<S: StateBuilder<T, Q, C>>(
		&self,
		state_builder: &mut S,
		nfa: &mut NFA<Q, T>,
		tags: &mut Tags<Q, G>,
		class: &C,
	) -> Result<(Q, C::Map<Q>), S::Error>;
}

/// Nondeterministic state transitions.
pub type Transitions<T, Q> = BTreeMap<Option<RangeSet<T>>, BTreeSet<Q>>;

/// Nondeterministic finite automaton.
#[derive(Debug, Clone, Educe)]
#[educe(PartialEq(bound(Q: PartialEq, T: Measure + Enum)), Eq, PartialOrd, Ord, Hash)]
#[cfg_attr(feature = "serde", derive(serde::Serialize))]
pub struct NFA<Q = u32, T = char> {
	transitions: BTreeMap<Q, Transitions<T, Q>>,
	initial_states: BTreeSet<Q>,
	final_states: BTreeSet<Q>,
}

impl<T, Q> Default for NFA<Q, T> {
	fn default() -> Self {
		Self {
			transitions: BTreeMap::new(),
			initial_states: BTreeSet::new(),
			final_states: BTreeSet::new(),
		}
	}
}

impl<T, Q> NFA<Q, T> {
	/// Create a new empty nondeterministic finite automaton.
	pub fn new() -> Self {
		Self::default()
	}

	/// Returns the set of initial states.
	pub fn initial_states(&self) -> &BTreeSet<Q> {
		&self.initial_states
	}

	/// Returns the set of final states.
	pub fn final_states(&self) -> &BTreeSet<Q> {
		&self.final_states
	}

	/// Returns the set of final states.
	pub fn states(&self) -> impl Iterator<Item = &Q> {
		self.transitions.keys()
	}

	/// Returns an iterator over the transitions.
	pub fn transitions(&self) -> std::collections::btree_map::Iter<Q, Transitions<T, Q>> {
		self.transitions.iter()
	}
}

impl<T, Q: Ord> NFA<Q, T> {
	/// Get the successors of the given state.
	pub fn successors(&self, q: &Q) -> Successors<T, Q> {
		Successors::new(self.transitions.get(q))
	}

	/// Adds the given state into the automaton, even if it is not the source
	/// or destination of any transition.
	pub fn add_state(&mut self, q: Q) {
		self.transitions.entry(q).or_default();
	}

	/// Checks if the given state is an initial state.
	pub fn is_initial_state(&self, q: &Q) -> bool {
		self.initial_states.contains(q)
	}

	/// Sets the given state as an initial state.
	pub fn add_initial_state(&mut self, q: Q) -> bool {
		self.initial_states.insert(q)
	}

	/// Checks if the given state is a final state.
	pub fn is_final_state(&self, q: &Q) -> bool {
		self.final_states.contains(q)
	}

	/// Adds a final state to the automaton.
	pub fn add_final_state(&mut self, q: Q) -> bool {
		self.final_states.insert(q)
	}
}

impl<T: Token, Q: Ord> NFA<Q, T> {
	pub fn singleton(
		list: impl IntoIterator<Item = T>,
		mut next_state: impl FnMut(Option<usize>) -> Q,
	) -> Self
	where
		Q: Clone,
	{
		let mut result = Self::new();

		let mut q = next_state(None);
		result.add_initial_state(q.clone());

		for (i, item) in list.into_iter().enumerate() {
			let r = next_state(Some(i));
			let mut label = RangeSet::new();
			label.insert(AnyRange::new(Bound::Included(item), Bound::Included(item)));
			result.add(q, Some(label), r.clone());
			q = r;
		}

		result
	}

	pub fn simple_loop(state: Q, label: RangeSet<T>) -> Self
	where
		Q: Clone,
	{
		let mut result = Self::new();
		result.add(state.clone(), Some(label), state.clone());
		result.add_initial_state(state.clone());
		result.add_final_state(state);
		result
	}

	/// Adds the given transition to the automaton.
	pub fn add(&mut self, source: Q, label: Option<RangeSet<T>>, target: Q)
	where
		Q: Clone,
	{
		self.add_state(target.clone());
		self.transitions
			.entry(source)
			.or_default()
			.entry(label)
			.or_default()
			.insert(target);
	}

	/// Checks if this automaton can recognize the empty string.
	pub fn recognizes_empty(&self) -> bool {
		let mut stack: Vec<_> = self.initial_states.iter().collect();
		let mut visited = BTreeSet::new();

		while let Some(q) = stack.pop() {
			if visited.insert(q) {
				if self.is_final_state(q) {
					return true;
				}

				if let Some(transitions) = self.transitions.get(q) {
					if let Some(successors) = transitions.get(&None) {
						stack.extend(successors)
					}
				}
			}
		}

		false
	}

	/// Checks if this automaton recognizes exactly one string.
	pub fn is_singleton(&self) -> bool {
		if self.initial_states.len() > 1 {
			return false;
		}

		if let Some(mut q) = self.initial_states.first() {
			while let Some(q_transitions) = self.transitions.get(q) {
				if q_transitions.len() > 1 {
					return false;
				}

				match q_transitions.first_key_value() {
					Some((label, r)) => {
						if r.len() > 1 {
							return false;
						}

						match r.first() {
							Some(r) => match label {
								Some(range) if T::is_one(range.len()) => q = r,
								_ => return false,
							},
							None => break,
						}
					}
					None => break,
				}
			}
		}

		true
	}

	/// Returns the string recognized by this automaton if it is a singleton
	/// automaton (it recognizes exactly one string).
	///
	/// Returns `None` if this automaton recognizes no string, or more than one
	/// string.
	pub fn to_singleton(&self) -> Option<Vec<T>>
	where
		Q: Hash,
	{
		let mut q = Automaton::initial_state(self)?;

		let mut result = Vec::new();
		loop {
			if Automaton::is_final_state(self, &q) {
				for label in q.labels(self) {
					for range in label {
						if range.first().is_some() {
							return None;
						}
					}
				}

				break Some(result);
			} else {
				let mut token = None;

				for label in q.labels(self) {
					for range in label {
						if let Some(t) = range.first() {
							let last = range.last().unwrap();
							if t != last {
								return None;
							}

							if let Some(u) = token.replace(t) {
								if u != t {
									return None;
								}
							}
						}
					}
				}

				match token {
					Some(token) => {
						q = Automaton::next_state(self, q, token)?;
						result.push(token)
					}
					None => break None,
				}
			}
		}
	}

	/// Checks if the language recognized by this automaton is finite.
	pub fn is_finite(&self) -> bool {
		let mut stack: Vec<&Q> = self.initial_states.iter().collect();

		let mut visited = BTreeSet::new();
		while let Some(q) = stack.pop() {
			if !visited.insert(q) {
				return false;
			}

			stack.extend(self.successors(q).map(|(_, r)| r).flatten());
		}

		true
	}

	/// Checks if the language recognized by this automaton is infinite.
	pub fn is_infinite(&self) -> bool {
		!self.is_finite()
	}

	/// Checks if every state reachable from any initial state satisfies the
	/// given predicate.
	pub fn is_always(&self, predicate: impl Fn(&Q) -> bool) -> bool {
		let mut stack: Vec<&Q> = self.initial_states.iter().collect();

		let mut visited = BTreeSet::new();
		while let Some(q) = stack.pop() {
			if visited.insert(q) {
				if !predicate(&q) {
					return false;
				}

				stack.extend(self.successors(q).map(|(_, r)| r).flatten());
			}
		}

		true
	}

	/// Checks that for any length `n`, the set of states reachable by any word
	/// of length `n` satisfies the given predicate.
	pub fn is_always_concurrently(&self, predicate: impl Fn(&BTreeSet<&Q>) -> bool) -> bool {
		let mut stack: Vec<BTreeSet<&Q>> = vec![self.initial_states.iter().collect()];

		let mut visited = BTreeSet::new();
		while let Some(state_set) = stack.pop() {
			if visited.insert(state_set.clone()) {
				if !predicate(&state_set) {
					return false;
				}

				let successors = state_set.into_iter().flat_map(|q| {
					self.successors(q)
						.filter_map(|(label, r)| if label.is_some() { Some(r) } else { None })
						.flatten()
				});

				stack.push(self.modulo_epsilon_state(successors));
			}
		}

		true
	}

	/// Checks iff the language of this automaton is all the words made up of
	/// the given alphabet.
	pub fn is_universal(&self, alphabet: RangeSet<T>) -> bool {
		self.is_always_concurrently(|states| {
			let mut set = RangeSet::new();

			for q in states {
				for (l, _) in self.successors(q) {
					if let Some(l) = l {
						for &range in l {
							set.insert(range);
						}
					}
				}
			}

			set == alphabet
		})
	}

	pub fn is_eventually(&self, predicate: impl Fn(&Q) -> bool) -> bool {
		!self.is_always(|q| !predicate(q))
	}

	fn modulo_epsilon_state<'a>(&'a self, qs: impl IntoIterator<Item = &'a Q>) -> BTreeSet<&'a Q> {
		let mut states = BTreeSet::new();
		let mut stack: Vec<_> = qs.into_iter().collect();

		while let Some(q) = stack.pop() {
			if states.insert(q) {
				// add states reachable trough epsilon-transitions.
				if let Some(transitions) = self.transitions.get(q) {
					if let Some(epsilon_qs) = transitions.get(&None) {
						for t in epsilon_qs {
							stack.push(t)
						}
					}
				}
			}
		}

		states
	}

	fn determinize_transitions_for(
		&self,
		states: &BTreeSet<&Q>,
	) -> BTreeMap<AnyRange<T>, BTreeSet<&Q>> {
		let mut map = RangeMap::new();

		for q in states {
			if let Some(transitions) = self.transitions.get(q) {
				for (label, targets) in transitions {
					if let Some(label) = label {
						for range in label.iter() {
							debug_assert!(!range.is_empty());

							map.update(
								*range,
								|current_target_states_opt: Option<&BTreeSet<&Q>>| {
									let mut current_target_states = match current_target_states_opt
									{
										Some(current_target_states) => {
											current_target_states.clone()
										}
										None => BTreeSet::new(),
									};

									for q in targets {
										current_target_states
											.extend(self.modulo_epsilon_state(Some(q)));
									}

									Some(current_target_states)
								},
							);

							assert!(map.get(range.first().unwrap()).is_some());
						}
					}
				}
			}
		}

		let mut simplified_map = BTreeMap::new();

		for (range, set) in map {
			debug_assert!(!range.is_empty());
			simplified_map.insert(range, set);
		}

		simplified_map
	}

	/// Turns this NFA into a DFA.
	pub fn determinize<'a, R>(
		&'a self,
		mut f: impl FnMut(&BTreeSet<&'a Q>) -> R,
	) -> DFA<R, AnyRange<T>>
	where
		R: Clone + Ord + Hash,
	{
		let mut transitions = BTreeMap::new();

		// create the initial deterministic state.
		let initial_state = self.modulo_epsilon_state(&self.initial_states);
		let mut final_states = BTreeSet::new();

		let mut visited_states = HashSet::new();
		let mut stack = vec![initial_state.clone()];
		while let Some(det_q) = stack.pop() {
			let r = f(&det_q);
			if visited_states.insert(r.clone()) {
				if det_q.iter().any(|q| self.final_states.contains(q)) {
					final_states.insert(r.clone());
				}

				let map = self.determinize_transitions_for(&det_q);

				let mut r_map = BTreeMap::new();
				for (label, next_det_q) in map {
					r_map.insert(label, f(&next_det_q));
					stack.push(next_det_q)
				}

				transitions.insert(r, r_map);
			}
		}

		DFA::from_parts(
			f(&initial_state),
			final_states,
			DetTransitions::from(transitions),
		)
	}

	/// Adds the given `other` automaton to `self`, mapping the other automaton
	/// states in the process.
	pub fn mapped_union<R>(&mut self, other: NFA<R, T>, f: impl Fn(R) -> Q) {
		for (q, transitions) in other.transitions {
			let this_transitions = self.transitions.entry(f(q)).or_default();
			for (label, targets) in transitions {
				this_transitions
					.entry(label)
					.or_default()
					.extend(targets.into_iter().map(&f));
			}
		}

		self.initial_states
			.extend(other.initial_states.into_iter().map(&f));
		self.final_states
			.extend(other.final_states.into_iter().map(f));
	}

	/// Adds the given `other` automaton to `self`.
	pub fn union<R>(&mut self, other: NFA<Q, T>) {
		self.mapped_union(other, |q| q)
	}

	/// Computes the product between `self` and `other`.
	///
	/// The input function `f` computes the product between two states.
	pub fn product<'a, 'b, R, S>(
		&'a self,
		other: &'b NFA<R, T>,
		mut f: impl FnMut(&'a Q, &'b R) -> S,
	) -> NFA<S, T>
	where
		R: Ord,
		S: Clone + Ord + Hash,
	{
		let mut result = NFA::new();

		let mut stack = Vec::with_capacity(self.initial_states.len() * other.initial_states.len());
		for a in &self.initial_states {
			for b in &other.initial_states {
				let q = f(a, b);
				stack.push((q.clone(), a, b));
				result.add_initial_state(q);
			}
		}

		let mut visited = HashSet::new();
		while let Some((q, a, b)) = stack.pop() {
			if visited.insert(q.clone()) {
				if self.is_final_state(a) && other.is_final_state(b) {
					result.add_final_state(q.clone());
				}

				let transitions = result.transitions.entry(q).or_default();

				for (a_label, a_successors) in self.successors(a) {
					match a_label {
						Some(a_label) => {
							for (b_label, b_successors) in other.successors(b) {
								if let Some(b_label) = b_label {
									let label = token_set_intersection(a_label, b_label);
									if !label.is_empty() {
										let successors =
											transitions.entry(Some(label)).or_default();

										for sa in a_successors {
											for sb in b_successors {
												let s = f(sa, sb);
												stack.push((s.clone(), sa, sb));
												successors.insert(s);
											}
										}
									}
								}
							}
						}
						None => {
							if let Some(b_successors) =
								other.transitions.get(b).and_then(|s| s.get(&None))
							{
								let successors = transitions.entry(None).or_default();

								for sa in a_successors {
									for sb in b_successors {
										let s = f(sa, sb);
										stack.push((s.clone(), sa, sb));
										successors.insert(s);
									}
								}
							}
						}
					}
				}
			}
		}

		result
	}
}

#[cfg(feature = "serde")]
impl<'de, Q, T> serde::Deserialize<'de> for NFA<Q, T>
where
	Q: Clone + Ord + serde::Deserialize<'de>,
	T: Clone + Ord + Enum + Measure + serde::Deserialize<'de>,
{
	fn deserialize<D>(deserializer: D) -> Result<Self, D::Error>
	where
		D: serde::Deserializer<'de>,
	{
		#[derive(serde::Deserialize)]
		#[serde(
			bound = "Q: serde::Deserialize<'de> + Ord, T: serde::Deserialize<'de> + Ord + Enum + Measure + Clone"
		)]
		pub struct Inner<Q, T> {
			transitions: BTreeMap<Q, Transitions<T, Q>>,
			initial_states: BTreeSet<Q>,
			final_states: BTreeSet<Q>,
		}

		let mut inner: Inner<Q, T> = Inner::deserialize(deserializer)?;

		for q in &inner.initial_states {
			inner.transitions.entry(q.clone()).or_default();
		}

		for q in &inner.final_states {
			inner.transitions.entry(q.clone()).or_default();
		}

		Ok(Self {
			transitions: inner.transitions,
			initial_states: inner.initial_states,
			final_states: inner.final_states,
		})
	}
}

/// Iterator over the successors of a given state in a [`NFA`].
pub struct Successors<'a, T, Q> {
	inner: Option<std::collections::btree_map::Iter<'a, Option<RangeSet<T>>, BTreeSet<Q>>>,
}

impl<'a, T, Q> Successors<'a, T, Q> {
	pub fn new(map: Option<&'a BTreeMap<Option<RangeSet<T>>, BTreeSet<Q>>>) -> Self {
		Self {
			inner: map.map(|map| map.iter()),
		}
	}
}

impl<'a, T, Q> Iterator for Successors<'a, T, Q> {
	type Item = (&'a Option<RangeSet<T>>, &'a BTreeSet<Q>);

	fn next(&mut self) -> Option<Self::Item> {
		self.inner.as_mut().and_then(|inner| inner.next())
	}
}

impl<T: Token, Q: Ord + Hash> Automaton<T> for NFA<Q, T> {
	type State<'a> = VisitingState<'a, Q> where Self: 'a;

	fn initial_state(&self) -> Option<Self::State<'_>> {
		let mut stack = Vec::new();
		let mut states = HashSet::new();

		for r in &self.initial_states {
			states.insert(r);
			stack.push(r);
		}

		// epsilon-closure.
		while let Some(q) = stack.pop() {
			if let Some(q_transitions) = self.transitions.get(q) {
				if let Some(targets) = q_transitions.get(&None) {
					for r in targets {
						if states.insert(r) {
							stack.push(r);
						}
					}
				}
			}
		}

		if states.is_empty() {
			None
		} else {
			Some(VisitingState {
				states,
				next_states: HashSet::new(),
				stack,
			})
		}
	}

	fn next_state<'a>(
		&'a self,
		VisitingState {
			mut states,
			mut next_states,
			mut stack,
		}: Self::State<'a>,
		token: T,
	) -> Option<Self::State<'_>> {
		for &q in &states {
			if let Some(q_transitions) = self.transitions.get(q) {
				for (label, targets) in q_transitions {
					if let Some(label) = label {
						if label.contains(token) {
							for r in targets {
								if next_states.insert(r) {
									stack.push(r);
								}
							}
						}
					}
				}
			}
		}

		// epsilon-closure.
		while let Some(q) = stack.pop() {
			if let Some(q_transitions) = self.transitions.get(q) {
				if let Some(targets) = q_transitions.get(&None) {
					for r in targets {
						if next_states.insert(r) {
							stack.push(r);
						}
					}
				}
			}
		}

		if next_states.is_empty() {
			None
		} else {
			states.clear();
			Some(VisitingState {
				states: next_states,
				next_states: states,
				stack,
			})
		}
	}

	fn is_final_state<'a>(&'a self, VisitingState { states, .. }: &Self::State<'a>) -> bool {
		for &q in states {
			if self.final_states.contains(q) {
				return true;
			}
		}

		false
	}
}

pub struct VisitingState<'a, Q> {
	states: HashSet<&'a Q>,
	next_states: HashSet<&'a Q>,
	stack: Vec<&'a Q>,
}

impl<'a, Q: Ord> VisitingState<'a, Q> {
	pub fn labels<'b, T>(&'b self, aut: &'b NFA<Q, T>) -> impl 'b + Iterator<Item = &RangeSet<T>> {
		self.states.iter().flat_map(|q| {
			aut.transitions
				.get(*q)
				.map(|q_transitions| q_transitions.keys().filter_map(Option::as_ref))
				.into_iter()
				.flatten()
		})
	}
}

#[cfg(test)]
mod tests {
	use btree_range_map::generic::RangeSet;

	use super::NFA;
	use crate::any_char;

	#[test]
	fn is_finite() {
		let aut = NFA::singleton("foo".chars(), |q| q);
		assert!(aut.is_finite())
	}

	#[test]
	fn is_infinite() {
		let aut = NFA::simple_loop(0, any_char());
		assert!(aut.is_infinite())
	}

	#[test]
	fn is_universal() {
		let aut1 = NFA::simple_loop(0, any_char());
		assert!(aut1.is_universal(any_char()));

		let mut label = RangeSet::new();
		label.insert('a');
		assert!(!aut1.is_universal(label));

		let aut2 = NFA::singleton("foo".chars(), |q| q);
		assert!(!aut2.is_universal(any_char()))
	}
}