1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414
use std::num::NonZeroUsize;
use crate::trie::patricia::RadixTrie;
use crate::trie::lctrie::LevelCompressedTrie;
use crate::prefix::*;
#[cfg(feature = "graphviz")] pub use crate::trie::graphviz::DotWriter;
#[cfg(feature = "graphviz")] use std::fmt::Display;
use crate::trie::common::Leaf;
/// A set of Ip prefixes based on a radix binary trie
#[derive(Clone)]
pub struct RTrieSet<P: IpPrefix>(pub(crate) RadixTrie<P,()>);
/// Convenient alias for radix trie set of Ipv4 prefixes
pub type Ipv4RTrieSet = RTrieSet<Ipv4Prefix>;
/// Convenient alias for radix trie set of Ipv6 prefixes
pub type Ipv6RTrieSet = RTrieSet<Ipv6Prefix>;
/// A set of Ip prefixes based on a level-compressed trie
pub struct LCTrieSet<P: IpPrefix>(pub(crate) LevelCompressedTrie<P,()>);
/// Convenient alias for LC-Trie set of Ipv4 prefixes
pub type Ipv4LCTrieSet = LCTrieSet<Ipv4Prefix>;
/// Convenient alias for LC-Trie set of Ipv6 prefixes
pub type Ipv6LCTrieSet = LCTrieSet<Ipv6Prefix>;
impl<P:IpPrefix> RTrieSet<P>
{
/// Creates a new set which contains the root prefix.
#[inline]
pub fn new() -> Self { Self::with_capacity(1000) }
/// Creates a new set with an initial capacity.
///
/// The returned set already contains the root prefix.
#[inline]
pub fn with_capacity(capacity:usize) -> Self { Self(RadixTrie::new((), capacity)) }
/// Returns the size of the set.
///
/// Notice that it never equals zero since the top prefix is
/// always present in the set.
#[inline]
#[allow(clippy::len_without_is_empty)]
pub fn len(&self) -> NonZeroUsize { self.0.len() }
/// Compress this Patricia trie in a LC-Trie.
///
/// For lookup algorithms, a Patricia trie performs unit bit checking and LC-Trie
/// performs multi bits checking. So the last one is more performant but it
/// cannot be modified (no insertion or removal operations are provided).
#[inline]
pub fn compress(self) -> LCTrieSet<P> { LCTrieSet(LevelCompressedTrie::new(self.0)) }
/// Inserts a new element in the set.
///
/// If the specified element already exists in the set, `false` is returned.
///
/// # Example
/// ```
/// # use iptrie::*;
/// use std::net::Ipv4Addr;
///
/// let addr = Ipv4Addr::new(1,1,1,1);
/// let mut trie = Ipv4RTrieSet::new();
///
/// let ip20 = Ipv4Prefix::new(addr, 20).unwrap();
/// let ip22 = Ipv4Prefix::new(addr, 22).unwrap();
///
/// assert_eq!( trie.insert(ip20), true);
/// assert_eq!( trie.insert(ip22), true);
/// assert_eq!( trie.insert(ip20), false);
/// ```
#[inline]
pub fn insert(&mut self, k: P) -> bool
{
self.0.insert(k,()).is_none()
}
/// Checks if an element is present (exact match).
///
/// # Example
/// ```
/// # use iptrie::*;
/// use std::net::Ipv4Addr;
///
/// let addr = Ipv4Addr::new(1,1,1,1);
///
/// let ip20 = Ipv4Prefix::new(addr, 20).unwrap();
/// let ip22 = Ipv4Prefix::new(addr, 22).unwrap();
/// let ip24 = Ipv4Prefix::new(addr, 24).unwrap();
///
/// let trie = Ipv4RTrieSet::from_iter([ip20,ip24]);
///
/// assert_eq!( trie.contains(&ip20), true);
/// assert_eq!( trie.contains(&ip22), false);
/// assert_eq!( trie.contains(&ip24), true);
/// ```
#[inline]
pub fn contains<Q>(&self, k: &Q) -> bool
where
Q: IpPrefix<Addr=P::Addr>,
P: IpPrefixCovering<Q>
{
self.0.get(k).is_some()
}
/// Removes a previously inserted prefix (exact match).
///
/// Returns `false` is the element was not present in the set
/// and `true` if the removal is effective.
///
/// # Example
/// ```
/// # use iptrie::*;
/// use std::net::Ipv4Addr;
///
/// let addr = Ipv4Addr::new(1,1,1,1);
///
/// let ip20 = Ipv4Prefix::new(addr, 20).unwrap();
/// let ip22 = Ipv4Prefix::new(addr, 22).unwrap();
///
/// let mut trie = Ipv4RTrieSet::from_iter([ip20,ip22]);
///
/// assert_eq!( trie.contains(&ip20), true);
/// assert_eq!(trie.remove(&ip20), true);
/// assert_eq!(trie.remove(&ip20), false);
///
/// assert_eq!( trie.contains(&ip22), true);
/// assert_eq!( trie.contains(&ip20), false);
/// ```
#[inline]
pub fn remove<Q>(&mut self, k: &Q) -> bool
where
Q: IpPrefix<Addr=P::Addr>,
P: IpPrefixCovering<Q>
{
self.0.remove(k).is_some()
}
/// Adds a prefix to the set, replacing the existing one, if any (exact match performed).
/// Returns the replaced value.
///
/// # Example
/// ```
/// # use iptrie::*;
/// use std::net::Ipv4Addr;
/// use ipnet::Ipv4Net;
/// let mut trie = RTrieSet::new();
///
/// let addr1 = Ipv4Addr::new(1,1,1,1);;
/// let addr2 = Ipv4Addr::new(1,1,1,2);;
/// let ip20 = Ipv4Net::new(addr1, 20).unwrap();
/// let ip20b = Ipv4Net::new(addr2, 20).unwrap();
///
/// trie.insert(ip20);
/// assert_eq!(trie.get(&ip20).unwrap().to_string(), "1.1.1.1/20".to_string());
///
/// assert_eq!(trie.insert(ip20b), false);
/// assert_eq!(trie.get(&ip20).unwrap().to_string(), "1.1.1.1/20".to_string());
///
/// assert_eq!(trie.replace(ip20b), Some(ip20));
/// assert_eq!(trie.get(&ip20).unwrap().to_string(), "1.1.1.2/20".to_string());
/// ```
#[inline]
pub fn replace(&mut self, k: P) -> Option<P>
{
self.0.replace(k,()).map(|l| *l.prefix())
}
/// Gets the value associated with an exact match of the key.
///
/// To access to the longest prefix match, use [`Self::lookup`].
///
/// To get a mutable access to a value, use [`Self::get_mut`].
///
/// # Example
/// ```
/// # use iptrie::*;
/// use std::net::Ipv4Addr;
/// use ipnet::Ipv4Net;
/// let mut trie = RTrieSet::new();
///
/// let addr1 = Ipv4Addr::new(1,1,1,1);;
/// let addr2 = Ipv4Addr::new(1,1,1,2);;
/// let ip20 = Ipv4Net::new(addr1, 20).unwrap();
/// let ip20b = Ipv4Net::new(addr2, 20).unwrap();
///
/// trie.insert(ip20);
/// assert_eq!(trie.get(&ip20).unwrap().to_string(), "1.1.1.1/20".to_string());
///
/// trie.insert(ip20b);
/// assert_eq!(trie.get(&ip20).unwrap().to_string(), "1.1.1.1/20".to_string());
/// ```
#[inline]
pub fn get<Q>(&self, k: &Q) -> Option<&P>
where
Q: IpPrefix<Addr=P::Addr>,
P: IpPrefixCovering<Q>
{ self.0.get(k).map(|(k,_)| k) }
/// Gets the longest prefix which matches the given key.
///
/// As the top prefix always matches, it never fails.
///
/// To access to the exact prefix match, use [`Self::get`].
///
/// # Example
/// ```
/// # use iptrie::*;
/// use std::net::Ipv4Addr;
/// let mut trie = Ipv4RTrieSet::new();
///
/// let addr = Ipv4Addr::new(1,1,1,1);;
/// let ip20 = Ipv4Prefix::new(addr, 20).unwrap();
/// let ip22 = Ipv4Prefix::new(addr, 22).unwrap();
/// let ip24 = Ipv4Prefix::new(addr, 24).unwrap();
///
/// trie.insert(ip20);
/// trie.insert(ip24);
///
/// assert_eq!( trie.lookup(&ip20), &ip20);
/// assert_eq!( trie.lookup(&ip22), &ip20);
/// assert_eq!( trie.lookup(&ip24), &ip24);
///
/// assert_eq!( trie.lookup(&addr), &ip24);
/// ```
#[inline]
pub fn lookup<Q>(&self, k: &Q) -> &P
where
Q: IpPrefix<Addr=P::Addr>,
P: IpPrefixCovering<Q>
{
self.0.lookup(k).0
}
/// Iterates over all the prefixes of this set.
#[inline]
pub fn iter(&self) -> impl Iterator<Item=&P> + '_ {
self.0.leaves.0.iter().map(Leaf::prefix)
}
}
impl<P:IpPrefix> Default for RTrieSet<P>
{
#[inline]
fn default() -> Self {
Self::new()
}
}
impl<P:IpPrefix> Extend<P> for RTrieSet<P>
{
fn extend<I: IntoIterator<Item=P>>(&mut self, iter: I)
{
iter.into_iter().for_each(| item | { self.insert(item); } )
}
}
impl<P:IpPrefix> FromIterator<P> for RTrieSet<P>
{
fn from_iter<I:IntoIterator<Item=P>>(iter: I) -> Self
{
let mut trieset = Self::default();
trieset.extend(iter);
trieset
}
}
impl<P:IpPrefix> LCTrieSet<P>
{
/// Returns the size of the set.
///
/// Notice that it never equals zero since the top prefix is
/// always present in the set.
#[inline]
#[allow(clippy::len_without_is_empty)]
pub fn len(&self) -> NonZeroUsize { self.0.len() }
/// Checks if an element is present (exact match).
///
/// # Example
/// ```
/// # use iptrie::*;
/// use std::net::Ipv4Addr;
///
/// let addr = Ipv4Addr::new(1,1,1,1);
///
/// let ip20 = Ipv4Prefix::new(addr, 20).unwrap();
/// let ip22 = Ipv4Prefix::new(addr, 22).unwrap();
/// let ip24 = Ipv4Prefix::new(addr, 24).unwrap();
///
/// let trie = Ipv4RTrieSet::from_iter([ip20,ip24]);
/// let lctrie = trie.compress();
///
/// assert_eq!( lctrie.contains(&ip20), true);
/// assert_eq!( lctrie.contains(&ip22), false);
/// assert_eq!( lctrie.contains(&ip24), true);
/// ```
#[inline]
pub fn contains<Q>(&self, k: &Q) -> bool
where
Q: IpPrefix<Addr=P::Addr>,
P: IpPrefixCovering<Q>+PartialEq<Q>
{
self.0.get(k).is_some()
}
/// Gets the value associated with an exact match of the key.
///
/// To access to the longest prefix match, use [`Self::lookup`].
///
/// To get a mutable access to a value, use [`Self::get_mut`].
///
/// # Example
/// ```
/// # use iptrie::*;
/// use std::net::Ipv4Addr;
/// let mut trie = RTrieMap::with_root(42);
///
/// let addr = Ipv4Addr::new(1,1,1,1);;
/// let ip20 = Ipv4Prefix::new(addr, 20).unwrap();
/// let ip22 = Ipv4Prefix::new(addr, 22).unwrap();
/// let ip24 = Ipv4Prefix::new(addr, 24).unwrap();
///
/// trie.insert(ip24, 24);
/// trie.insert(ip20, 20);
///
/// let lctrie = trie.compress();
///
/// assert_eq!( lctrie.get(&ip24), Some(&24));
/// assert_eq!( lctrie.get(&ip22), None);
/// assert_eq!( lctrie.get(&ip20), Some(&20));
/// ```
#[inline]
pub fn get<Q>(&self, k: &Q) -> Option<&P>
where
Q: IpPrefix<Addr=P::Addr>,
P: IpPrefixCovering<Q>
{ self.0.get(k).map(|(k,_)| k) }
/// Gets the longest prefix which matches the given key.
///
/// As the top prefix always matches, it never fails.
///
/// To access to the exact prefix match, use [`Self::get`].
///
/// # Example
/// ```
/// # use iptrie::*;
/// use std::net::Ipv4Addr;
/// let mut trie = Ipv4RTrieSet::new();
///
/// let addr = Ipv4Addr::new(1,1,1,1);;
/// let ip20 = Ipv4Prefix::new(addr, 20).unwrap();
/// let ip22 = Ipv4Prefix::new(addr, 22).unwrap();
/// let ip24 = Ipv4Prefix::new(addr, 24).unwrap();
///
/// trie.insert(ip20);
/// trie.insert(ip24);
///
/// let lctrie = trie.compress();
///
/// assert_eq!( lctrie.lookup(&ip20), &ip20);
/// assert_eq!( lctrie.lookup(&ip22), &ip20);
/// assert_eq!( lctrie.lookup(&ip24), &ip24);
///
/// assert_eq!( lctrie.lookup(&addr), &ip24);
/// ```
#[inline]
pub fn lookup<Q>(&self, k: &Q) -> &P
where
Q: IpPrefix<Addr=P::Addr>,
P: IpPrefixCovering<Q>
{
self.0.lookup(k).0
}
/// Iterates over all the prefixes of this set.
#[inline]
pub fn iter(&self) -> impl Iterator<Item=&P> + '_ {
self.0.leaves.0.iter().map(Leaf::prefix)
}
}
impl<P:IpPrefix> FromIterator<P> for LCTrieSet<P>
{
fn from_iter<I:IntoIterator<Item=P>>(iter: I) -> Self
{
RTrieSet::from_iter(iter).compress()
}
}
#[cfg(feature= "graphviz")]
impl<P:IpPrefix+Display> DotWriter for RTrieSet<P>
{
fn write_dot(&self, dot: &mut dyn std::io::Write) -> std::io::Result<()> {
self.0.write_dot(dot)
}
}
#[cfg(feature= "graphviz")]
impl<P:IpPrefix+Display> DotWriter for LCTrieSet<P>
{
fn write_dot(&self, dot: &mut dyn std::io::Write) -> std::io::Result<()> {
self.0.write_dot(dot)
}
}