1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
use std::num::NonZeroUsize;
use crate::trie::patricia::RadixTrie;
use crate::trie::lctrie::LevelCompressedTrie;
use crate::prefix::*;

#[cfg(feature = "graphviz")] pub use crate::trie::graphviz::DotWriter;
#[cfg(feature = "graphviz")] use std::fmt::Display;
use crate::trie::common::Leaf;

/// A set of Ip prefixes based on a radix binary trie
#[derive(Clone)]
pub struct RTrieSet<P: IpPrefix>(pub(crate) RadixTrie<P,()>);

/// Convenient alias for radix trie set of Ipv4 prefixes
pub type Ipv4RTrieSet = RTrieSet<Ipv4Prefix>;
/// Convenient alias for radix trie set of Ipv6 prefixes
pub type Ipv6RTrieSet = RTrieSet<Ipv6Prefix>;

/// A set of Ip prefixes based on a level-compressed trie
pub struct LCTrieSet<P: IpPrefix>(pub(crate) LevelCompressedTrie<P,()>);

/// Convenient alias for LC-Trie set of Ipv4 prefixes
pub type Ipv4LCTrieSet = LCTrieSet<Ipv4Prefix>;
/// Convenient alias for LC-Trie set of Ipv6 prefixes
pub type Ipv6LCTrieSet = LCTrieSet<Ipv6Prefix>;

impl<P:IpPrefix> RTrieSet<P>
{
    /// Creates a new set which contains the root prefix.
    #[inline]
    pub fn new() -> Self { Self::with_capacity(1000) }

    /// Creates a new set with an initial capacity.
    ///
    /// The returned set already contains the root prefix.
    #[inline]
    pub fn with_capacity(capacity:usize) -> Self { Self(RadixTrie::new((), capacity)) }

    /// Returns the size of the set.
    ///
    /// Notice that it never equals zero since the top prefix is
    /// always present in the set.
    #[inline]
    #[allow(clippy::len_without_is_empty)]
    pub fn len(&self) -> NonZeroUsize { self.0.len() }

    /// Compress this Patricia trie in a LC-Trie.
    ///
    /// For lookup algorithms, a Patricia trie performs unit bit checking and LC-Trie
    /// performs multi bits checking. So the last one is more performant but it
    /// cannot be modified (no insertion or removal operations are provided).
    #[inline]
    pub fn compress(self) -> LCTrieSet<P> { LCTrieSet(LevelCompressedTrie::new(self.0)) }

    /// Inserts a new element in the set.
    ///
    /// If the specified element already exists in the set, `false` is returned.
    ///
    /// # Example
    /// ```
    /// #  use iptrie::*;
    /// use std::net::Ipv4Addr;
    ///
    /// let addr = Ipv4Addr::new(1,1,1,1);
    /// let mut trie = Ipv4RTrieSet::new();
    ///
    /// let ip20 = Ipv4Prefix::new(addr, 20).unwrap();
    /// let ip22 = Ipv4Prefix::new(addr, 22).unwrap();
    ///
    /// assert_eq!( trie.insert(ip20), true);
    /// assert_eq!( trie.insert(ip22), true);
    /// assert_eq!( trie.insert(ip20), false);
    /// ```
    #[inline]
    pub fn insert(&mut self, k: P) -> bool
    {
        self.0.insert(k,()).is_none()
    }

    /// Checks if an element is present (exact match).
    ///
    /// # Example
    /// ```
    /// #  use iptrie::*;
    /// use std::net::Ipv4Addr;
    ///
    /// let addr = Ipv4Addr::new(1,1,1,1);
    ///
    /// let ip20 = Ipv4Prefix::new(addr, 20).unwrap();
    /// let ip22 = Ipv4Prefix::new(addr, 22).unwrap();
    /// let ip24 = Ipv4Prefix::new(addr, 24).unwrap();
    ///
    /// let trie = Ipv4RTrieSet::from_iter([ip20,ip24]);
    ///
    /// assert_eq!( trie.contains(&ip20), true);
    /// assert_eq!( trie.contains(&ip22), false);
    /// assert_eq!( trie.contains(&ip24), true);
    /// ```
    #[inline]
    pub fn contains<Q>(&self, k: &Q) -> bool
        where
            Q: IpPrefix<Addr=P::Addr>,
            P: IpPrefixCovering<Q>
    {
        self.0.get(k).is_some()
    }

    /// Removes a previously inserted prefix (exact match).
    ///
    /// Returns `false` is the element was not present in the set
    /// and `true` if the removal is effective.
    ///
    /// # Example
    /// ```
    /// #  use iptrie::*;
    /// use std::net::Ipv4Addr;
    ///
    /// let addr = Ipv4Addr::new(1,1,1,1);
    ///
    /// let ip20 = Ipv4Prefix::new(addr, 20).unwrap();
    /// let ip22 = Ipv4Prefix::new(addr, 22).unwrap();
    ///
    /// let mut trie = Ipv4RTrieSet::from_iter([ip20,ip22]);
    ///
    /// assert_eq!( trie.contains(&ip20), true);
    /// assert_eq!(trie.remove(&ip20), true);
    /// assert_eq!(trie.remove(&ip20), false);
    ///
    /// assert_eq!( trie.contains(&ip22), true);
    /// assert_eq!( trie.contains(&ip20), false);
    /// ```
    #[inline]
    pub fn remove<Q>(&mut self, k: &Q) -> bool
        where
            Q: IpPrefix<Addr=P::Addr>,
            P: IpPrefixCovering<Q>
    {
        self.0.remove(k).is_some()
    }

    /// Adds a prefix to the set, replacing the existing one, if any (exact match performed).
    /// Returns the replaced value.
    ///
    /// # Example
    /// ```
    /// # use iptrie::*;
    /// use std::net::Ipv4Addr;
    /// use ipnet::Ipv4Net;
    /// let mut trie = RTrieSet::new();
    ///
    /// let addr1 = Ipv4Addr::new(1,1,1,1);;
    /// let addr2 = Ipv4Addr::new(1,1,1,2);;
    /// let ip20 = Ipv4Net::new(addr1, 20).unwrap();
    /// let ip20b = Ipv4Net::new(addr2, 20).unwrap();
    ///
    /// trie.insert(ip20);
    /// assert_eq!(trie.get(&ip20).unwrap().to_string(), "1.1.1.1/20".to_string());
    ///
    /// assert_eq!(trie.insert(ip20b), false);
    /// assert_eq!(trie.get(&ip20).unwrap().to_string(), "1.1.1.1/20".to_string());
    ///
    /// assert_eq!(trie.replace(ip20b), Some(ip20));
    /// assert_eq!(trie.get(&ip20).unwrap().to_string(), "1.1.1.2/20".to_string());
    /// ```
    #[inline]
    pub fn replace(&mut self, k: P) -> Option<P>
    {
        self.0.replace(k,()).map(|l| *l.prefix())
    }


    /// Gets the value associated with an exact match of the key.
    ///
    /// To access to the longest prefix match, use [`Self::lookup`].
    ///
    /// To get a mutable access to a value, use [`Self::get_mut`].
    ///
    /// # Example
    /// ```
    /// # use iptrie::*;
    /// use std::net::Ipv4Addr;
    /// use ipnet::Ipv4Net;
    /// let mut trie = RTrieSet::new();
    ///
    /// let addr1 = Ipv4Addr::new(1,1,1,1);;
    /// let addr2 = Ipv4Addr::new(1,1,1,2);;
    /// let ip20 = Ipv4Net::new(addr1, 20).unwrap();
    /// let ip20b = Ipv4Net::new(addr2, 20).unwrap();
    ///
    /// trie.insert(ip20);
    /// assert_eq!(trie.get(&ip20).unwrap().to_string(), "1.1.1.1/20".to_string());
    ///
    /// trie.insert(ip20b);
    /// assert_eq!(trie.get(&ip20).unwrap().to_string(), "1.1.1.1/20".to_string());
    /// ```
    #[inline]
    pub fn get<Q>(&self, k: &Q) -> Option<&P>
        where
            Q: IpPrefix<Addr=P::Addr>,
            P: IpPrefixCovering<Q>
    { self.0.get(k).map(|(k,_)| k) }


    /// Gets the longest prefix which matches the given key.
    ///
    /// As the top prefix always matches, it never fails.
    ///
    /// To access to the exact prefix match, use [`Self::get`].
    ///
    /// # Example
    /// ```
    /// # use iptrie::*;
    /// use std::net::Ipv4Addr;
    /// let mut trie = Ipv4RTrieSet::new();
    ///
    /// let addr = Ipv4Addr::new(1,1,1,1);;
    /// let ip20 = Ipv4Prefix::new(addr, 20).unwrap();
    /// let ip22 = Ipv4Prefix::new(addr, 22).unwrap();
    /// let ip24 = Ipv4Prefix::new(addr, 24).unwrap();
    ///
    /// trie.insert(ip20);
    /// trie.insert(ip24);
    ///
    /// assert_eq!( trie.lookup(&ip20), &ip20);
    /// assert_eq!( trie.lookup(&ip22), &ip20);
    /// assert_eq!( trie.lookup(&ip24), &ip24);
    ///
    /// assert_eq!( trie.lookup(&addr), &ip24);
    /// ```
    #[inline]
    pub fn lookup<Q>(&self, k: &Q) -> &P
        where
            Q: IpPrefix<Addr=P::Addr>,
            P: IpPrefixCovering<Q>
    {
        self.0.lookup(k).0
    }

    /// Iterates over all the prefixes of this set.
    #[inline]
    pub fn iter(&self) -> impl Iterator<Item=&P> + '_ {
        self.0.leaves.0.iter().map(Leaf::prefix)
    }
}

impl<P:IpPrefix> Default for RTrieSet<P>
{
    #[inline]
    fn default() -> Self {
        Self::new()
    }
}

impl<P:IpPrefix> Extend<P> for RTrieSet<P>
{
    fn extend<I: IntoIterator<Item=P>>(&mut self, iter: I)
    {
        iter.into_iter().for_each(| item | { self.insert(item); } )
    }
}

impl<P:IpPrefix> FromIterator<P> for RTrieSet<P>
{
    fn from_iter<I:IntoIterator<Item=P>>(iter: I) -> Self
    {
        let mut trieset = Self::default();
        trieset.extend(iter);
        trieset
    }
}

impl<P:IpPrefix> LCTrieSet<P>
{
    /// Returns the size of the set.
    ///
    /// Notice that it never equals zero since the top prefix is
    /// always present in the set.
    #[inline]
    #[allow(clippy::len_without_is_empty)]
    pub fn len(&self) -> NonZeroUsize { self.0.len() }

    /// Checks if an element is present (exact match).
    ///
    /// # Example
    /// ```
    /// #  use iptrie::*;
    /// use std::net::Ipv4Addr;
    ///
    /// let addr = Ipv4Addr::new(1,1,1,1);
    ///
    /// let ip20 = Ipv4Prefix::new(addr, 20).unwrap();
    /// let ip22 = Ipv4Prefix::new(addr, 22).unwrap();
    /// let ip24 = Ipv4Prefix::new(addr, 24).unwrap();
    ///
    /// let trie = Ipv4RTrieSet::from_iter([ip20,ip24]);
    /// let lctrie = trie.compress();
    ///
    /// assert_eq!( lctrie.contains(&ip20), true);
    /// assert_eq!( lctrie.contains(&ip22), false);
    /// assert_eq!( lctrie.contains(&ip24), true);
    /// ```
    #[inline]
    pub fn contains<Q>(&self, k: &Q) -> bool
        where
            Q: IpPrefix<Addr=P::Addr>,
            P: IpPrefixCovering<Q>+PartialEq<Q>
    {
        self.0.get(k).is_some()
    }

    /// Gets the value associated with an exact match of the key.
    ///
    /// To access to the longest prefix match, use [`Self::lookup`].
    ///
    /// To get a mutable access to a value, use [`Self::get_mut`].
    ///
    /// # Example
    /// ```
    /// # use iptrie::*;
    /// use std::net::Ipv4Addr;
    /// let mut trie = RTrieMap::with_root(42);
    ///
    /// let addr = Ipv4Addr::new(1,1,1,1);;
    /// let ip20 = Ipv4Prefix::new(addr, 20).unwrap();
    /// let ip22 = Ipv4Prefix::new(addr, 22).unwrap();
    /// let ip24 = Ipv4Prefix::new(addr, 24).unwrap();
    ///
    /// trie.insert(ip24, 24);
    /// trie.insert(ip20, 20);
    ///
    /// let lctrie = trie.compress();
    ///
    /// assert_eq!( lctrie.get(&ip24), Some(&24));
    /// assert_eq!( lctrie.get(&ip22), None);
    /// assert_eq!( lctrie.get(&ip20), Some(&20));
    /// ```
    #[inline]
    pub fn get<Q>(&self, k: &Q) -> Option<&P>
        where
            Q: IpPrefix<Addr=P::Addr>,
            P: IpPrefixCovering<Q>
    { self.0.get(k).map(|(k,_)| k) }


    /// Gets the longest prefix which matches the given key.
    ///
    /// As the top prefix always matches, it never fails.
    ///
    /// To access to the exact prefix match, use [`Self::get`].
    ///
    /// # Example
    /// ```
    /// # use iptrie::*;
    /// use std::net::Ipv4Addr;
    /// let mut trie = Ipv4RTrieSet::new();
    ///
    /// let addr = Ipv4Addr::new(1,1,1,1);;
    /// let ip20 = Ipv4Prefix::new(addr, 20).unwrap();
    /// let ip22 = Ipv4Prefix::new(addr, 22).unwrap();
    /// let ip24 = Ipv4Prefix::new(addr, 24).unwrap();
    ///
    /// trie.insert(ip20);
    /// trie.insert(ip24);
    ///
    /// let lctrie = trie.compress();
    ///
    /// assert_eq!( lctrie.lookup(&ip20), &ip20);
    /// assert_eq!( lctrie.lookup(&ip22), &ip20);
    /// assert_eq!( lctrie.lookup(&ip24), &ip24);
    ///
    /// assert_eq!( lctrie.lookup(&addr), &ip24);
    /// ```
    #[inline]
    pub fn lookup<Q>(&self, k: &Q) -> &P
        where
            Q: IpPrefix<Addr=P::Addr>,
            P: IpPrefixCovering<Q>
    {
        self.0.lookup(k).0
    }

    /// Iterates over all the prefixes of this set.
    #[inline]
    pub fn iter(&self) -> impl Iterator<Item=&P> + '_ {
        self.0.leaves.0.iter().map(Leaf::prefix)
    }
}

impl<P:IpPrefix> FromIterator<P> for LCTrieSet<P>
{
    fn from_iter<I:IntoIterator<Item=P>>(iter: I) -> Self
    {
        RTrieSet::from_iter(iter).compress()
    }
}


#[cfg(feature= "graphviz")]
impl<P:IpPrefix+Display> DotWriter for RTrieSet<P>
{
    fn write_dot(&self, dot: &mut dyn std::io::Write) -> std::io::Result<()> {
        self.0.write_dot(dot)
    }
}

#[cfg(feature= "graphviz")]
impl<P:IpPrefix+Display> DotWriter for LCTrieSet<P>
{
    fn write_dot(&self, dot: &mut dyn std::io::Write) -> std::io::Result<()> {
        self.0.write_dot(dot)
    }
}