ipfrs_tensorlogic/
gpu.rs

1//! GPU Execution Backend (Stub for Future Integration)
2//!
3//! This module provides a framework for GPU-accelerated computation graph execution.
4//! Currently implements stubs that will be filled in when CUDA/OpenCL/Vulkan
5//! integration is added.
6//!
7//! ## Future Integration Points
8//!
9//! - CUDA support via cuda-sys or cudarc
10//! - OpenCL support via opencl3
11//! - Vulkan compute support via vulkano or ash
12//! - Metal support for Apple Silicon
13//! - ROCm support for AMD GPUs
14
15use std::collections::HashMap;
16use thiserror::Error;
17
18/// Errors that can occur during GPU operations
19#[derive(Debug, Error)]
20pub enum GpuError {
21    #[error("GPU not available")]
22    NotAvailable,
23
24    #[error("Unsupported GPU operation: {0}")]
25    UnsupportedOperation(String),
26
27    #[error("GPU memory allocation failed: {0}")]
28    AllocationFailed(String),
29
30    #[error("Kernel compilation failed: {0}")]
31    CompilationFailed(String),
32
33    #[error("Kernel execution failed: {0}")]
34    ExecutionFailed(String),
35
36    #[error("Data transfer failed: {0}")]
37    TransferFailed(String),
38}
39
40/// GPU device types
41#[derive(Debug, Clone, Copy, PartialEq, Eq)]
42pub enum GpuBackend {
43    /// NVIDIA CUDA
44    Cuda,
45    /// OpenCL (cross-platform)
46    OpenCL,
47    /// Vulkan Compute
48    Vulkan,
49    /// Apple Metal
50    Metal,
51    /// AMD ROCm
52    Rocm,
53}
54
55/// GPU device information
56#[derive(Debug, Clone)]
57pub struct GpuDevice {
58    /// Device ID
59    pub id: usize,
60    /// Device name
61    pub name: String,
62    /// Backend type
63    pub backend: GpuBackend,
64    /// Total memory in bytes
65    pub total_memory: usize,
66    /// Available memory in bytes
67    pub available_memory: usize,
68    /// Compute capability (backend-specific)
69    pub compute_capability: String,
70    /// Number of compute units
71    pub compute_units: usize,
72}
73
74impl GpuDevice {
75    /// Create a new GPU device descriptor
76    pub fn new(id: usize, name: String, backend: GpuBackend) -> Self {
77        Self {
78            id,
79            name,
80            backend,
81            total_memory: 0,
82            available_memory: 0,
83            compute_capability: "unknown".to_string(),
84            compute_units: 0,
85        }
86    }
87
88    /// Check if device has sufficient memory
89    pub fn has_memory(&self, required: usize) -> bool {
90        self.available_memory >= required
91    }
92
93    /// Get memory utilization as a percentage
94    pub fn memory_utilization(&self) -> f32 {
95        if self.total_memory == 0 {
96            return 0.0;
97        }
98        let used = self.total_memory - self.available_memory;
99        (used as f32 / self.total_memory as f32) * 100.0
100    }
101}
102
103/// GPU buffer for storing tensor data
104#[derive(Debug)]
105pub struct GpuBuffer {
106    /// Buffer ID
107    #[allow(dead_code)]
108    id: usize,
109    /// Size in bytes
110    size: usize,
111    /// Backend-specific handle (opaque)
112    #[allow(dead_code)]
113    handle: Option<u64>,
114}
115
116impl GpuBuffer {
117    /// Create a new GPU buffer (stub)
118    pub fn new(size: usize) -> Result<Self, GpuError> {
119        // Stub: Would allocate GPU memory here
120        Ok(Self {
121            id: 0,
122            size,
123            handle: None,
124        })
125    }
126
127    /// Get buffer size
128    pub fn size(&self) -> usize {
129        self.size
130    }
131
132    /// Upload data to GPU (stub)
133    pub fn upload(&mut self, _data: &[f32]) -> Result<(), GpuError> {
134        // Stub: Would transfer data to GPU here
135        Err(GpuError::NotAvailable)
136    }
137
138    /// Download data from GPU (stub)
139    pub fn download(&self, _data: &mut [f32]) -> Result<(), GpuError> {
140        // Stub: Would transfer data from GPU here
141        Err(GpuError::NotAvailable)
142    }
143}
144
145/// GPU kernel for executing operations
146#[derive(Debug)]
147pub struct GpuKernel {
148    /// Kernel name
149    name: String,
150    /// Compiled kernel handle
151    #[allow(dead_code)]
152    handle: Option<u64>,
153}
154
155impl GpuKernel {
156    /// Compile a kernel from source (stub)
157    pub fn compile(_name: &str, _source: &str) -> Result<Self, GpuError> {
158        // Stub: Would compile kernel source here
159        Err(GpuError::NotAvailable)
160    }
161
162    /// Execute the kernel (stub)
163    pub fn execute(
164        &self,
165        _inputs: &[&GpuBuffer],
166        _outputs: &mut [&mut GpuBuffer],
167        _workgroup_size: (usize, usize, usize),
168    ) -> Result<(), GpuError> {
169        // Stub: Would launch kernel here
170        Err(GpuError::NotAvailable)
171    }
172
173    /// Get kernel name
174    pub fn name(&self) -> &str {
175        &self.name
176    }
177}
178
179/// GPU executor for computation graphs
180pub struct GpuExecutor {
181    /// Selected device
182    device: Option<GpuDevice>,
183    /// Compiled kernels
184    kernels: HashMap<String, GpuKernel>,
185    /// Buffer pool
186    buffers: Vec<GpuBuffer>,
187}
188
189impl GpuExecutor {
190    /// Create a new GPU executor
191    pub fn new() -> Self {
192        Self {
193            device: None,
194            kernels: HashMap::new(),
195            buffers: Vec::new(),
196        }
197    }
198
199    /// Select a GPU device
200    pub fn select_device(&mut self, device: GpuDevice) {
201        self.device = Some(device);
202    }
203
204    /// List available GPU devices (stub)
205    pub fn list_devices() -> Result<Vec<GpuDevice>, GpuError> {
206        // Stub: Would enumerate GPUs here
207        Ok(Vec::new())
208    }
209
210    /// Check if GPU is available
211    pub fn is_available(&self) -> bool {
212        self.device.is_some()
213    }
214
215    /// Get current device
216    pub fn device(&self) -> Option<&GpuDevice> {
217        self.device.as_ref()
218    }
219
220    /// Allocate a buffer on GPU
221    pub fn allocate_buffer(&mut self, size: usize) -> Result<usize, GpuError> {
222        let buffer = GpuBuffer::new(size)?;
223        let id = self.buffers.len();
224        self.buffers.push(buffer);
225        Ok(id)
226    }
227
228    /// Free a buffer
229    pub fn free_buffer(&mut self, id: usize) {
230        if id < self.buffers.len() {
231            // Stub: Would free GPU memory here
232            self.buffers.remove(id);
233        }
234    }
235
236    /// Compile and cache a kernel
237    pub fn compile_kernel(&mut self, name: &str, source: &str) -> Result<(), GpuError> {
238        let kernel = GpuKernel::compile(name, source)?;
239        self.kernels.insert(name.to_string(), kernel);
240        Ok(())
241    }
242
243    /// Execute a computation graph on GPU (stub)
244    pub fn execute_graph(
245        &mut self,
246        _graph: &crate::ComputationGraph,
247    ) -> Result<HashMap<String, Vec<f32>>, GpuError> {
248        // Stub: Would execute graph on GPU here
249        Err(GpuError::NotAvailable)
250    }
251
252    /// Get number of compiled kernels
253    pub fn kernel_count(&self) -> usize {
254        self.kernels.len()
255    }
256
257    /// Get number of allocated buffers
258    pub fn buffer_count(&self) -> usize {
259        self.buffers.len()
260    }
261}
262
263impl Default for GpuExecutor {
264    fn default() -> Self {
265        Self::new()
266    }
267}
268
269/// GPU memory manager for optimal allocation
270pub struct GpuMemoryManager {
271    /// Total memory budget
272    total_memory: usize,
273    /// Currently allocated memory
274    allocated: usize,
275    /// Allocation tracking
276    allocations: HashMap<usize, usize>,
277}
278
279impl GpuMemoryManager {
280    /// Create a new memory manager
281    pub fn new(total_memory: usize) -> Self {
282        Self {
283            total_memory,
284            allocated: 0,
285            allocations: HashMap::new(),
286        }
287    }
288
289    /// Allocate memory
290    pub fn allocate(&mut self, size: usize) -> Result<usize, GpuError> {
291        if self.allocated + size > self.total_memory {
292            return Err(GpuError::AllocationFailed(
293                "Insufficient GPU memory".to_string(),
294            ));
295        }
296
297        let id = self.allocations.len();
298        self.allocations.insert(id, size);
299        self.allocated += size;
300        Ok(id)
301    }
302
303    /// Free memory
304    pub fn free(&mut self, id: usize) {
305        if let Some(size) = self.allocations.remove(&id) {
306            self.allocated -= size;
307        }
308    }
309
310    /// Get available memory
311    pub fn available(&self) -> usize {
312        self.total_memory - self.allocated
313    }
314
315    /// Get memory utilization
316    pub fn utilization(&self) -> f32 {
317        (self.allocated as f32 / self.total_memory as f32) * 100.0
318    }
319}
320
321#[cfg(test)]
322mod tests {
323    use super::*;
324
325    #[test]
326    fn test_gpu_device() {
327        let device = GpuDevice::new(0, "Test GPU".to_string(), GpuBackend::Cuda);
328        assert_eq!(device.id, 0);
329        assert_eq!(device.name, "Test GPU");
330        assert_eq!(device.backend, GpuBackend::Cuda);
331    }
332
333    #[test]
334    fn test_gpu_device_memory() {
335        let mut device = GpuDevice::new(0, "Test".to_string(), GpuBackend::Cuda);
336        device.total_memory = 1000;
337        device.available_memory = 600;
338
339        assert!(device.has_memory(500));
340        assert!(!device.has_memory(700));
341        assert_eq!(device.memory_utilization(), 40.0);
342    }
343
344    #[test]
345    fn test_gpu_executor() {
346        let executor = GpuExecutor::new();
347        assert!(!executor.is_available());
348        assert_eq!(executor.kernel_count(), 0);
349        assert_eq!(executor.buffer_count(), 0);
350    }
351
352    #[test]
353    fn test_gpu_executor_with_device() {
354        let mut executor = GpuExecutor::new();
355        let device = GpuDevice::new(0, "Test".to_string(), GpuBackend::Cuda);
356
357        executor.select_device(device);
358        assert!(executor.is_available());
359        assert_eq!(executor.device().unwrap().id, 0);
360    }
361
362    #[test]
363    fn test_gpu_buffer_creation() {
364        // This will fail since GPU is not actually available
365        let result = GpuBuffer::new(1024);
366        // In stub mode, buffer creation succeeds but operations fail
367        assert!(result.is_ok());
368    }
369
370    #[test]
371    fn test_memory_manager() {
372        let mut manager = GpuMemoryManager::new(1000);
373
374        let id1 = manager.allocate(400).unwrap();
375        assert_eq!(manager.available(), 600);
376        assert_eq!(manager.utilization(), 40.0);
377
378        let id2 = manager.allocate(300).unwrap();
379        assert_eq!(manager.available(), 300);
380
381        // Should fail - not enough memory
382        assert!(manager.allocate(400).is_err());
383
384        manager.free(id1);
385        assert_eq!(manager.available(), 700);
386
387        manager.free(id2);
388        assert_eq!(manager.available(), 1000);
389    }
390
391    #[test]
392    fn test_list_devices() {
393        // In stub mode, no devices are available
394        let devices = GpuExecutor::list_devices().unwrap();
395        assert_eq!(devices.len(), 0);
396    }
397}