Expand description
Tensor-aware block types for neural network data.
This module provides specialized types for storing and managing tensor data in a content-addressed manner. Tensors are the fundamental data structure in machine learning frameworks like PyTorch and TensorFlow.
§Example
use ipfrs_core::tensor::{TensorBlock, TensorDtype, TensorShape};
use bytes::Bytes;
// Create a 2x3 f32 tensor
let shape = TensorShape::new(vec![2, 3]);
let data = Bytes::from(vec![
0f32.to_le_bytes(), 1f32.to_le_bytes(),
2f32.to_le_bytes(), 3f32.to_le_bytes(),
4f32.to_le_bytes(), 5f32.to_le_bytes(),
].concat());
let tensor = TensorBlock::new(data, shape, TensorDtype::F32).unwrap();
assert_eq!(tensor.element_count(), 6);Structs§
- Tensor
Block - A content-addressed tensor block
- Tensor
Metadata - Tensor metadata
- Tensor
Shape - Tensor shape (dimensions)
Enums§
- Tensor
Dtype - Supported tensor data types