1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
use std::collections::VecDeque;
use std::io;
use std::io::{Read, Write};
use std_streams::StdStreams;

/// Simulated handles for the standard input streams of a process.
///
/// Simulated input can be provided using
/// [`write_input()`](std_streams/struct.SimulatedStdStreams.html#method.write_input), and output
/// can be observed using [`read_output()`](std_streams/struct.SimulatedStdStreams.html#method.read_output)
/// and [`read_error()`](std_streams/struct.SimulatedStdStreams.html#method.read_error).
#[derive(Default)]
pub struct SimulatedStdStreams {
    inputs: ChunkPipe,
    output: Vec<u8>,
    error: Vec<u8>,
}

impl SimulatedStdStreams {
    /// Creates a new `SimulatedStdStreams`.
    pub fn new() -> SimulatedStdStreams {
        SimulatedStdStreams {
            inputs: ChunkPipe::new(),
            output: Vec::new(),
            error: Vec::new(),
        }
    }

    /// Writes the provided buffer to the queue of buffers to be used when input is requested
    /// using [`StdStreams::input()`].
    ///
    /// In particular, this method does NOT append data to a continuous buffer which is consumed
    /// by [`StdStreams::input()`]; rather, it enqueues a buffer which will be used for a SINGLE
    /// call to [`StdStreams::input()`]. The buffer is then discarded, regardless of how much of it
    /// was (or was not) read.
    ///
    /// This enables precise control over the length of data returned from a call to
    /// [`StdStreams::input()`].
    ///
    /// [`StdStreams::input()`]: trait.StdStreams.html#tymethod.input
    ///
    /// ## Example
    ///
    /// ```
    /// use io_providers::{StdStreams, SimulatedStdStreams};
    ///
    /// let mut streams = SimulatedStdStreams::new();
    /// streams.write_input("foo".as_bytes());
    /// streams.write_input("bar".as_bytes());
    /// // The first read on `streams.input()` will read from "foo"
    /// // The second read on `streams.input()` will read from "bar"
    /// ```
    pub fn write_input(&mut self, input: &[u8]) {
        self.inputs.write_all(input).unwrap();
    }

    /// Gets the data which has been written to the output stream.
    ///
    /// ## Example
    ///
    /// ```
    /// use std::io::Write;
    /// use io_providers::{StdStreams, SimulatedStdStreams};
    ///
    /// let mut streams = SimulatedStdStreams::new();
    /// writeln!(streams.output(), "test1");
    /// write!(streams.output(), "test2");
    /// assert_eq!("test1\ntest2", ::std::str::from_utf8(streams.read_output()).unwrap());
    /// ```
    pub fn read_output(&self) -> &[u8] {
        &self.output[..]
    }

    /// Gets the data which has been written to the error stream.
    ///
    /// ## Example
    ///
    /// ```
    /// use std::io::Write;
    /// use io_providers::{StdStreams, SimulatedStdStreams};
    ///
    /// let mut streams = SimulatedStdStreams::new();
    /// writeln!(streams.error(), "test1");
    /// write!(streams.error(), "test2");
    /// assert_eq!("test1\ntest2", ::std::str::from_utf8(streams.read_error()).unwrap());
    /// ```
    pub fn read_error(&self) -> &[u8] {
        &self.error[..]
    }
}

impl StdStreams for SimulatedStdStreams {
    fn input(&mut self) -> &mut Read {
        &mut self.inputs
    }

    fn output(&mut self) -> &mut Write {
        &mut self.output
    }

    fn error(&mut self) -> &mut Write {
        &mut self.error
    }
}

/// A `Read` and `Write` implementer where data is written in chunks and each read consumes a
/// single chunk.
#[derive(Default)]
struct ChunkPipe {
    items: VecDeque<Vec<u8>>,
}

impl ChunkPipe {
    /// Creates a new, empty `ChunkPipe`.
    pub fn new() -> ChunkPipe {
        ChunkPipe {
            items: VecDeque::new(),
        }
    }
}

impl Read for ChunkPipe {
    fn read(&mut self, buf: &mut [u8]) -> io::Result<usize> {
        if let Some(item) = self.items.pop_front() {
            io::Cursor::new(item).read(buf)
        } else {
            Ok(0)
        }
    }
}

impl Write for ChunkPipe {
    fn write(&mut self, buf: &[u8]) -> io::Result<usize> {
        let mut vec = Vec::new();
        let result = vec.write(buf);
        self.items.push_back(vec);
        result
    }

    fn flush(&mut self) -> io::Result<()> {
        Ok(())
    }
}

#[cfg(test)]
#[allow(non_snake_case)]
mod tests {
    use super::{ChunkPipe, SimulatedStdStreams, StdStreams};
    use std::io::{Read, Write};

    #[test]
    fn chunk_pipe__no_writes__reads_successfully() {
        let mut buf: Vec<u8> = vec![0; 8];
        let mut pipe = ChunkPipe::new();
        pipe.write(&[]).unwrap();

        let result = pipe.read(&mut buf);
        assert_eq!(0, result.unwrap());
    }

    #[test]
    fn chunk_pipe__one_write__reads_successfully() {
        let data = vec![1, 2, 3];
        let mut buf1 = vec![0; 4];
        let mut buf2 = vec![0; 4];
        let mut pipe = ChunkPipe::new();

        pipe.write(&data[..]).unwrap();
        let result1 = pipe.read(&mut buf1).unwrap();
        let result2 = pipe.read(&mut buf2).unwrap();

        assert_eq!(data.len(), result1);
        assert_eq!(vec![1, 2, 3, 0], buf1);
        assert_eq!(0, result2);
    }

    #[test]
    fn chunk_pipe__two_writes__reads_successfully() {
        let data1 = vec![1, 2, 3];
        let data2 = vec![4, 5, 6, 7];
        let mut buf1 = vec![0; 4];
        let mut buf2 = vec![0; 3];
        let mut buf3 = vec![0; 3];
        let mut pipe = ChunkPipe::new();

        pipe.write(&data1[..]).unwrap();
        let result1 = pipe.read(&mut buf1).unwrap();
        pipe.write(&data2[..]).unwrap();
        let result2 = pipe.read(&mut buf2).unwrap();
        let result3 = pipe.read(&mut buf3).unwrap();

        assert_eq!(data1.len(), result1);
        assert_eq!(vec![1, 2, 3, 0], buf1);
        assert_eq!(buf2.len(), result2);
        assert_eq!(vec![4, 5, 6], buf2);
        assert_eq!(0, result3);
    }

    #[test]
    fn provider__empty_input__length_zero_read() {
        let mut provider = SimulatedStdStreams::new();
        let mut buf = vec![0; 4];

        let result = provider.input().read(&mut buf).unwrap();

        assert_eq!(0, result);
    }

    #[test]
    fn provider__write_and_read_input__success() {
        let mut provider = SimulatedStdStreams::new();
        let expected = "test";
        let mut actual = String::new();
        let mut buf = vec![0; 4];

        provider.write_input(expected.as_bytes());
        let result = provider.input().read_to_string(&mut actual).unwrap();

        assert_eq!(expected.len(), result);
        assert_eq!(expected, actual);

        let result = provider.input().read(&mut buf).unwrap();
        assert_eq!(0, result);
    }

    #[test]
    fn provider__two_input_writes__two_reads() {
        let mut provider = SimulatedStdStreams::new();
        let (expected1, expected2) = (vec![1, 2, 3], vec![4, 5, 6]);
        let (mut actual1, mut actual2) = (vec![0; 3], vec![0; 3]);

        provider.write_input(&expected1[..]);
        provider.write_input(&expected2[..]);
        let result1 = provider.input().read(&mut actual1).unwrap();
        let result2 = provider.input().read(&mut actual2).unwrap();

        assert_eq!(expected1.len(), result1);
        assert_eq!(expected1, actual1);
        assert_eq!(expected2.len(), result2);
        assert_eq!(expected2, actual2);
    }

    #[test]
    fn provider__write_read_output__success() {
        let mut provider = SimulatedStdStreams::new();

        let result1 = provider.output().write(&[1, 2]).unwrap();
        let result2 = provider.output().write(&[3, 4]).unwrap();
        let actual = provider.read_output();

        assert_eq!(2, result1);
        assert_eq!(2, result2);
        assert_eq!(&[1, 2, 3, 4], actual);
    }

    #[test]
    fn provider__write_read_error__success() {
        let mut provider = SimulatedStdStreams::new();

        let result1 = provider.error().write(&[1, 2]).unwrap();
        let result2 = provider.error().write(&[3, 4]).unwrap();
        let actual = provider.read_error();

        assert_eq!(2, result1);
        assert_eq!(2, result2);
        assert_eq!(&[1, 2, 3, 4], actual);
    }
}