interprocess_docfix/os/unix/signal.rs
1//! Signal support for Unix-like systems.
2//!
3//! Signals in Unix are much more functional and versatile than ANSI C signals – there is simply much, much more of them. In addition to that, there is a special group of signals called "real-time signals" (more on those below).
4//!
5//! # Main signals
6//! The [`SignalType`] enumeration provides all standard signals as defined in POSIX.1-2001. More signal types may be added later, which is why exhaustively matching on it is not possible. It can be cheaply converted to a 32-bit integer, though. See its documentation for more on conversions.
7//!
8//! The `set_handler` function is used to create an association between a `SignalType` and a signal handling strategy.
9//!
10//! # Real-time signals
11//! In addition to usual signals, there's a special group of signals called "real-time signals". Those signals do not have fixed identifiers and are not generated by the system or kernel. Instead, they can only be sent between processes.
12//!
13//! # Signal-safe C functions
14//! Very few C functions can be called from a signal handler. Allocating memory, using the thread API and manipulating interval timers, for example, is prohibited in a signal handler. Calling a function which is not signal safe results in undefined behavior, i.e. memory unsafety. Rather than excluding certain specific functions, the POSIX specification only speicifies functions which *are* signal-safe. The following C functions are guaranteed to be safe to call from a signal handler:
15//! - `_Exit`
16//! - `_exit`
17//! - `abort`
18//! - `accept`
19//! - `access`
20//! - `aio_error`
21//! - `aio_return`
22//! - `aio_suspend`
23//! - `alarm`
24//! - `bind`
25//! - `cfgetispeed`
26//! - `cfgetospeed`
27//! - `cfsetispeed`
28//! - `cfsetospeed`
29//! - `chdir`
30//! - `chmod`
31//! - `chown`
32//! - `clock_gettime`
33//! - `close`
34//! - `connect`
35//! - `creat`
36//! - `dup`
37//! - `dup2`
38//! - `execle`
39//! - `execve`
40//! - `fchmod`
41//! - `fchown`
42//! - `fcntl`
43//! - `fdatasync`
44//! - `fork`
45//! - `fpathconf`
46//! - `fstat`
47//! - `fsync`
48//! - `ftruncate`
49//! - `getegid`
50//! - `geteuid`
51//! - `getgid`
52//! - `getgroups`
53//! - `getpeername`
54//! - `getpgrp`
55//! - `getpid`
56//! - `getppid`
57//! - `getsockname`
58//! - `getsockopt`
59//! - `getuid`
60//! - `kill`
61//! - `link`
62//! - `listen`
63//! - `lseek`
64//! - `lstat`
65//! - `mkdir`
66//! - `mkfifo`
67//! - `open`
68//! - `pathconf`
69//! - `pause`
70//! - `pipe`
71//! - `poll`
72//! - `posix_trace_event`
73//! - `pselect`
74//! - `raise`
75//! - `read`
76//! - `readlink`
77//! - `recv`
78//! - `recvfrom`
79//! - `recvmsg`
80//! - `rename`
81//! - `rmdir`
82//! - `select`
83//! - `sem_post`
84//! - `send`
85//! - `sendmsg`
86//! - `sendto`
87//! - `setgid`
88//! - `setpgid`
89//! - `setsid`
90//! - `setsockopt`
91//! - `setuid`
92//! - `shutdown`
93//! - `sigaction`
94//! - `sigaddset`
95//! - `sigdelset`
96//! - `sigemptyset`
97//! - `sigfillset`
98//! - `sigismember`
99//! - `signal`
100//! - `sigpause`
101//! - `sigpending`
102//! - `sigprocmask`
103//! - `sigqueue`
104//! - `sigset`
105//! - `sigsuspend`
106//! - `sleep`
107//! - `sockatmark`
108//! - `socket`
109//! - `socketpair`
110//! - `stat`
111//! - `symlink`
112//! - `sysconf`
113//! - `tcdrain`
114//! - `tcflow`
115//! - `tcflush`
116//! - `tcgetattr`
117//! - `tcgetpgrp`
118//! - `tcsendbreak`
119//! - `tcsetattr`
120//! - `tcsetpgrp`
121//! - `time`
122//! - `timer_getoverrun`
123//! - `timer_gettime`
124//! - `timer_settime`
125//! - `times`
126//! - `umask`
127//! - `uname`
128//! - `unlink`
129//! - `utime`
130//! - `wait`
131//! - `waitpid`
132//! - `write`
133//!
134//! Many Rust crates, including the standard library, use signal-unsafe functions not on this list in safe code. For example, `Vec`, `Box` and `Rc`/`Arc` perform memory allocations, and `Mutex`/`RwLock` perform `pthread` calls. For this reason, creating a signal hook is an unsafe operation.
135//!
136//! [`SignalType`]: enum.SignalType.html " "
137
138use super::imports::*;
139use cfg_if::cfg_if;
140use std::{
141 convert::{TryFrom, TryInto},
142 error::Error,
143 fmt::{self, Display, Formatter},
144 io,
145 mem::zeroed,
146 panic, process,
147};
148use to_method::To;
149
150cfg_if! {
151 if #[cfg(any(
152 target_os = "linux",
153 target_os = "android",
154 ))] {
155 // don't care about LinuxThreads lmao
156 const SIGRTMIN: i32 = 34;
157 const SIGRTMAX: i32 = 64;
158 } else if #[cfg(target_os = "freebsd")] {
159 const SIGRTMIN: i32 = 65;
160 const SIGRTMAX: i32 = 126;
161 } else if #[cfg(target_os = "netbsd")] {
162 const SIGRTMIN: i32 = 33;
163 const SIGRTMAX: i32 = 63;
164 } else if #[cfg(target_os = "redox")] {
165 const SIGRTMIN: i32 = 27;
166 const SIGRTMAX: i32 = 31;
167 } else {
168 const SIGRTMIN: i32 = 1; // min is smaller than max so that the sloppy calculation works
169 const SIGRTMAX: i32 = 0;
170 }
171}
172
173/// Whether real-time signals are supported at all.
174///
175/// The platforms for which `interprocess` has explicit support for real-time signals are:
176/// - Linux
177/// - includes Android
178/// - FreeBSD
179/// - NetBSD
180/// - Redox
181pub const REALTIME_SIGNALS_SUPPORTED: bool = NUM_REALTIME_SIGNALS != 0;
182/// How many real-time signals are supported. Remember that real-time signals start from 0, so this number is higher than the highest possible real-time signal by 1.
183///
184/// Platform-specific values for this constant are:
185/// - **Linux** and **NetBSD**: 31
186/// - **FreeBSD**: 62
187/// - **Redox**: 5 (does not conform with POSIX)
188pub const NUM_REALTIME_SIGNALS: u32 = (SIGRTMAX - SIGRTMIN + 1) as u32;
189/// Returns `true` if the specified signal is a valid real-time signal value, `false` otherwise.
190#[allow(clippy::absurd_extreme_comparisons)] // For systems where there are no realtime signals
191pub const fn is_valid_rtsignal(rtsignal: u32) -> bool {
192 rtsignal < NUM_REALTIME_SIGNALS
193}
194
195/// The first field is the current method of handling a specific signal, the second one is the flags which were set for it.
196#[cfg(all(unix, feature = "signals"))]
197type HandlerAndFlags = (SignalHandler, i32);
198
199#[cfg(all(unix, feature = "signals"))]
200static HANDLERS: Lazy<RwLock<IntMap<HandlerAndFlags>>> = Lazy::new(|| RwLock::new(IntMap::new()));
201
202/// Installs the specified handler for the specified standard signal, using the default values for the flags.
203///
204/// See [`HandlerOptions`] builder if you'd like to customize the flags.
205///
206/// # Example
207/// ```no_run
208/// # fn main() -> Result<(), Box<dyn std::error::Error>> {
209/// # #[cfg(all(unix, feature = "signals"))] {
210/// use interprocess::os::unix::signal::{self, SignalType, SignalHandler};
211///
212/// let handler = unsafe {
213/// // Since signal handlers are restricted to a specific set of C functions, creating a
214/// // handler from an arbitrary function is unsafe because it might call a function
215/// // outside the list, and there's no real way to know that at compile time with the
216/// // current version of Rust. Since we're only using the write() system call here, this
217/// // is safe.
218/// SignalHandler::from_fn(|| {
219/// println!("You pressed Ctrl-C!");
220/// })
221/// };
222///
223/// // Install our handler for the KeyboardInterrupt signal type.
224/// signal::set_handler(SignalType::KeyboardInterrupt, handler)?;
225/// # }
226/// # Ok(()) }
227/// ```
228///
229/// [`HandlerOptions`]: struct.HandlerOptions.html " "
230pub fn set_handler(signal_type: SignalType, handler: SignalHandler) -> Result<(), SetHandlerError> {
231 HandlerOptions::for_signal(signal_type)
232 .set_new_handler(handler)
233 .set()
234}
235/// Installs the specified handler for the specified unsafe signal, using the default values for the flags.
236///
237/// See [`HandlerOptions`] builder if you'd like to customize the flags.
238///
239/// # Safety
240/// See the [`set_unsafe`] safety notes.
241///
242/// # Example
243/// ```no_run
244/// # fn main() -> Result<(), Box<dyn std::error::Error>> {
245/// # #[cfg(all(unix, feature = "signals"))] {
246/// use interprocess::os::unix::signal::{self, SignalType, SignalHandler};
247///
248/// let handler = unsafe {
249/// // Since signal handlers are restricted to a specific set of C functions, creating a
250/// // handler from an arbitrary function is unsafe because it might call a function
251/// // outside the list, and there's no real way to know that at compile time with the
252/// // current version of Rust. Since we're only using the write() system call here, this
253/// // is safe.
254/// SignalHandler::from_fn(|| {
255/// println!("Oh no, the motherboard broke!");
256/// std::process::abort();
257/// })
258/// };
259///
260/// unsafe {
261/// // Install our handler for the MemoryBusError signal type.
262/// signal::set_unsafe_handler(SignalType::MemoryBusError, handler)?;
263/// }
264/// # }
265/// # Ok(()) }
266/// ```
267///
268/// [`HandlerOptions`]: struct.HandlerOptions.html " "
269/// [`set_unsafe`]: struct.HandlerOptions.html#method.set_unsafe " "
270pub unsafe fn set_unsafe_handler(
271 signal_type: SignalType,
272 handler: SignalHandler,
273) -> Result<(), SetHandlerError> {
274 unsafe {
275 HandlerOptions::for_signal(signal_type)
276 .set_new_handler(handler)
277 .set_unsafe()
278 }
279}
280/// Installs the specified handler for the specified real-time signal, using the default values for the flags.
281///
282/// See [`HandlerOptions`] builder if you'd like to customize the flags.
283///
284/// # Example
285/// ```no_run
286/// # fn main() -> Result<(), Box<dyn std::error::Error>> {
287/// # #[cfg(all(unix, feature = "signals"))] {
288/// use interprocess::os::unix::signal::{self, SignalHandler};
289///
290/// let handler = unsafe {
291/// // Since signal handlers are restricted to a specific set of C functions, creating a
292/// // handler from an arbitrary function is unsafe because it might call a function
293/// // outside the list, and there's no real way to know that at compile time with the
294/// // current version of Rust. Since we're only using the write() system call here, this
295/// // is safe.
296/// SignalHandler::from_fn(|| {
297/// println!("You sent a real-time signal!");
298/// })
299/// };
300///
301/// // Install our handler for the real-time signal 0.
302/// signal::set_rthandler(0, handler)?;
303/// # }
304/// # Ok(()) }
305/// ```
306///
307/// [`HandlerOptions`]: struct.HandlerOptions.html " "
308pub fn set_rthandler(rtsignal: u32, handler: SignalHandler) -> Result<(), SetHandlerError> {
309 HandlerOptions::for_rtsignal(rtsignal)
310 .set_new_handler(handler)
311 .set()
312}
313
314unsafe fn install_hook(signum: i32, hook: usize, flags: i32) -> io::Result<()> {
315 let success = {
316 let [mut old_handler, mut new_handler] = unsafe {
317 // SAFETY: sigaction only consists of integers and therefore can
318 // contain an all-0 bit pattern
319 [zeroed::<sigaction>(); 2]
320 };
321 new_handler.sa_sigaction = hook;
322 new_handler.sa_flags = flags;
323 unsafe {
324 // SAFETY: all the pointers that are being passed come from references and only involve
325 // a single cast, which means that it's just a reference-to-pointer cast and not a
326 // pointer-to-pointer cast (the latter can cast any pointer to any other pointer, but
327 // you need two casts in order to convert a reference to a pointer to an arbitrary type)
328 libc::sigaction(signum, &new_handler as *const _, &mut old_handler as *mut _) != -1
329 }
330 };
331 if success {
332 Ok(())
333 } else {
334 Err(io::Error::last_os_error())
335 }
336}
337
338/// Options for installing a signal handler.
339///
340/// # Example
341/// ```no_run
342/// # fn main() -> Result<(), Box<dyn std::error::Error>> {
343/// # #[cfg(all(unix, feature = "signals"))] {
344/// use interprocess::os::unix::signal::{self, SignalType, SignalHandler};
345///
346/// let handler = unsafe {
347/// // Since signal handlers are restricted to a specific set of C functions, creating a
348/// // handler from an arbitrary function is unsafe because it might call a function
349/// // outside the list, and there's no real way to know that at compile time with the
350/// // current version of Rust. Since we're only using the write() system call here, this
351/// // is safe.
352/// SignalHandler::from_fn(|| {
353/// println!("You pressed Ctrl-C!");
354/// })
355/// };
356///
357/// // Let's use the builder to customize the signal handler:
358/// signal::HandlerOptions::for_signal(SignalType::KeyboardInterrupt)
359/// .set_new_handler(handler)
360/// .auto_reset_handler(true) // Let's remove the signal handler after it fires once.
361/// .system_call_restart(false) // Avoid restarting system calls and let them fail with the
362/// // Interrupted error type. There normally isn't a reason to
363/// // do this, but for the sake of the example, let's assume
364/// // that there is.
365/// .set()?; // Finalize the builder by installing the handler.
366/// # }
367/// # Ok(()) }
368/// ```
369#[derive(Copy, Clone, Debug, PartialEq, Eq)]
370#[must_use = "the signal handler is attached by calling `.set()`, which consumes the builder"]
371pub struct HandlerOptions {
372 signal: i32,
373 /// The handler to be set up. If `None`, the handler is not changed by the call.
374 pub handler: Option<SignalHandler>,
375 /// For the [`ChildProcessEvent`] signal, this option *disables* receiving the signal if it was generated because the child process was suspended (using any signal which suspends a process, such as [`Suspend`] or [`ForceSuspend`]) or [resumed][`Continue`].
376 ///
377 /// If enabled on a signal which is not [`ChildProcessEvent`], a panic is produced in debug builds when [`set`] is called; in release builds, the flag is simply ignored.
378 ///
379 /// [`ChildProcessEvent`]: enum.SignalType.html#variant.ChildProcessEvent " "
380 /// [`Suspend`]: enum.SignalType.html#variant.Suspend " "
381 /// [`ForceSuspend`]: enum.SignalType.html#variant.ForceSuspend " "
382 /// [`Continue`]: enum.SignalType.html#variant.Continue " "
383 /// [`set`]: #method.set " "
384 pub ignore_child_stop_events: bool,
385 /// Allow the signal handler to interrupt a previous invocation of itself. If disabled, the signal handler will disable its own signal when called and restore previous state when it finishes executing. If not, an infinite amount of signals can be received on top of each other, which is likely a stack overflow risk.
386 ///
387 /// If enabled but the handler is [set to use the default handling method][`Default`] from the OS, a panic is produced in debug builds when [`set`] is called; in release builds, the flag is simply ignored.
388 ///
389 /// [`Default`]: enum.SignalHandler.html#variant.Default " "
390 /// [`set`]: #method.set " "
391 pub recursive_handler: bool,
392 /// Automatically restart certain system calls instead of failing with the [`Interrupted`] error type. Some other system calls are not restarted with this function and may fail with [`Interrupted`] anyway. Consult your manual pages for more details.
393 ///
394 /// [`Interrupted`]: https://doc.rust-lang.org/std/io/enum.ErrorKind.html#variant.Interrupted " "
395 pub system_call_restart: bool,
396 /// Automatically reset the handler to the default handling method whenever it is executed.
397 ///
398 /// If enabled but the handler is [set to use the default handling method][`Default`] from the OS, a panic is produced in debug builds when [`set`] is called; in release builds, the flag is simply ignored.
399 ///
400 /// [`Default`]: enum.SignalHandler.html#variant.Default " "
401 /// [`set`]: #method.set " "
402 pub auto_reset_handler: bool,
403}
404impl HandlerOptions {
405 /// Creates a builder for a handler for the specified signal.
406 pub fn for_signal(signal: SignalType) -> Self {
407 Self {
408 signal: signal.into(),
409 handler: None,
410 ignore_child_stop_events: false,
411 recursive_handler: false,
412 system_call_restart: true,
413 auto_reset_handler: false,
414 }
415 }
416 /// Creates a builder for a handler for the specified real-time signal.
417 ///
418 /// # Panics
419 /// Guaranteed to panic if the specified real-time signal is outside the range of real-time signals supported by the OS. See [`NUM_REALTIME_SIGNALS`].
420 ///
421 /// [`NUM_REALTIME_SIGNALS`]: constant.NUM_REALTIME_SIGNALS.html " "
422 pub fn for_rtsignal(rtsignal: u32) -> Self {
423 assert!(
424 is_valid_rtsignal(rtsignal),
425 "invalid real-time signal value – check the NUM_REALTIME_SIGNALS constant to see how \
426 many are supported"
427 );
428 Self {
429 signal: rtsignal as i32,
430 handler: None,
431 ignore_child_stop_events: false,
432 recursive_handler: false,
433 system_call_restart: true,
434 auto_reset_handler: false,
435 }
436 }
437 /// Sets the handler for the signal to the specified value. If `None`, the old value is used.
438 pub fn set_new_handler(mut self, handler: impl Into<Option<SignalHandler>>) -> Self {
439 self.handler = handler.into();
440 self
441 }
442 /// Sets the [`ignore_child_stop_events`] flag to the specified value.
443 ///
444 /// [`ignore_child_stop_events`]: #structfield.ignore_child_stop_events " "
445 pub fn ignore_child_stop_events(mut self, ignore: impl Into<bool>) -> Self {
446 self.ignore_child_stop_events = ignore.into();
447 self
448 }
449 /// Sets the [`recursive_handler`] flag to the specified value.
450 ///
451 /// [`recursive_handler`]: #structfield.recursive_handler " "
452 pub fn recursive_handler(mut self, recursive: impl Into<bool>) -> Self {
453 self.recursive_handler = recursive.into();
454 self
455 }
456 /// Sets the [`system_call_restart`] flag to the specified value.
457 ///
458 /// [`system_call_restart`]: #structfield.system_call_restart " "
459 pub fn system_call_restart(mut self, restart: impl Into<bool>) -> Self {
460 self.system_call_restart = restart.into();
461 self
462 }
463 /// Sets the [`auto_reset_handler`] flag to the specified value.
464 ///
465 /// [`auto_reset_handler`]: #structfield.auto_reset_handler " "
466 pub fn auto_reset_handler(mut self, reset: impl Into<bool>) -> Self {
467 self.auto_reset_handler = reset.into();
468 self
469 }
470 /// Installs the signal handler.
471 pub fn set(self) -> Result<(), SetHandlerError> {
472 if let Ok(val) = SignalType::try_from(self.signal) {
473 if val.is_unsafe() {
474 return Err(SetHandlerError::UnsafeSignal);
475 }
476 }
477 unsafe { self.set_unsafe() }
478 }
479
480 /// Installs the signal handler, even if the signal being handled is unsafe.
481 ///
482 /// # Safety
483 /// The handler and all code that may or may not execute afterwards must be prepared for the aftermath of what might've caused the signal.
484 ///
485 /// [`SegmentationFault`] or [`BusError`] are most likely caused by undefined behavior invoked from Rust (the former is caused by dereferencing invalid memory, the latter is caused by dereferencing an incorrectly aligned pointer on ISAs like ARM which do not tolerate misaligned pointers), which means that the program is unsound and the only meaningful thing to do is to capture as much information as possible in a safe way – preferably using OS services to create a dump, rather than trying to read the program's global state, which might be irreversibly corrupted – and write the crash dump to some on-disk location.
486 ///
487 /// [`SegmentationFault`]: enum.SignalType.html#variant.SegmentationFault " "
488 /// [`BusError`]: enum.SignalType.html#variant.BusError " "
489 pub unsafe fn set_unsafe(self) -> Result<(), SetHandlerError> {
490 if let Ok(val) = SignalType::try_from(self.signal) {
491 if val.is_unblockable() {
492 return Err(SetHandlerError::UnblockableSignal(val));
493 }
494 } else if !is_valid_rtsignal(self.signal as u32) {
495 return Err(SetHandlerError::RealTimeSignalOutOfBounds {
496 attempted: self.signal as u32,
497 max: NUM_REALTIME_SIGNALS,
498 });
499 }
500 let handlers = HANDLERS.read();
501 let new_flags = self.flags_as_i32();
502 let mut need_to_upgrade_handle = false;
503 let need_to_install_hook =
504 if let Some((existing_handler, existing_flags)) = handlers.get(self.signal as u64) {
505 // This signal's handler was set before – check if we need to install new flags or if
506 // one is default and another isn't, which would mean that either that no hook was
507 // installed and we have to install one or there was one installed but we need to
508 // install the default hook explicitly.
509 let new_handler = self.handler.unwrap_or_default();
510 if new_handler != *existing_handler || new_flags != *existing_flags {
511 need_to_upgrade_handle = true;
512 true
513 } else {
514 let one_handler_is_default_and_another_isnt = (new_handler.is_default()
515 && !existing_handler.is_default())
516 || (!new_handler.is_default() && existing_handler.is_default());
517 *existing_flags != new_flags || one_handler_is_default_and_another_isnt
518 }
519 } else {
520 need_to_upgrade_handle = true;
521 !self.handler.unwrap_or_default().is_default()
522 };
523 drop(handlers);
524 if need_to_upgrade_handle {
525 let mut handlers = HANDLERS.write();
526 let signal_u64 = self.signal as u64;
527 handlers.remove(signal_u64);
528 handlers.insert(signal_u64, (self.handler.unwrap_or_default(), new_flags));
529 }
530 if need_to_install_hook {
531 let hook_val = match self.handler.unwrap_or_default() {
532 SignalHandler::Default => SIG_DFL,
533 _ => signal_receiver as usize,
534 };
535 unsafe {
536 // SAFETY: we're using a correct value for the hook
537 install_hook(self.signal, hook_val, new_flags)?
538 }
539 }
540 Ok(())
541 }
542
543 fn flags_as_i32(self) -> i32 {
544 if self.handler.unwrap_or_default().is_default() {
545 debug_assert!(
546 !self.recursive_handler,
547 "cannot use the recursive_handler flag with the default handling method",
548 );
549 }
550 if self.signal != SIGCHLD {
551 debug_assert!(
552 !self.ignore_child_stop_events,
553 "\
554cannot use the ignore_child_stop_events flag when the signal to be handled isn't \
555ChildProcessEvent",
556 );
557 }
558 let mut flags = 0;
559 if self.auto_reset_handler {
560 flags |= SA_RESETHAND;
561 }
562 if self.ignore_child_stop_events {
563 flags |= SA_NOCLDSTOP;
564 }
565 if self.recursive_handler {
566 flags |= SA_NODEFER;
567 }
568 if self.system_call_restart {
569 flags |= SA_RESTART;
570 }
571 flags
572 }
573}
574
575/// The error produced when setting a signal handler fails.
576#[derive(Debug)]
577#[cfg_attr(all(unix, feature = "signals"), derive(Error))]
578pub enum SetHandlerError {
579 /// An unsafe signal was attempted to be handled using `set` instead of `set_unsafe`.
580 #[cfg_attr(
581 all(unix, feature = "signals"),
582 error("an unsafe signal was attempted to be handled using `set` instead of `set_unsafe`")
583 )]
584 UnsafeSignal,
585 /// The signal which was attempted to be handled is not allowed to be handled by the POSIX specification. This can either be [`ForceSuspend`] or [`Kill`].
586 ///
587 /// [`Kill`]: enum.SignalType.html#variant.Kill " "
588 /// [`ForceSuspend`]: enum.SignalType.html#variant.ForceSuspend " "
589 #[cfg_attr(
590 all(unix, feature = "signals"),
591 error("the signal {:?} cannot be handled", .0),
592 )]
593 UnblockableSignal(SignalType),
594 /// The specified real-time signal is not available on this OS.
595 #[cfg_attr(
596 all(unix, feature = "signals"),
597 error(
598 "the real-time signal number {} is not available ({} is the highest possible)",
599 .attempted,
600 .max,
601 ),
602 )]
603 RealTimeSignalOutOfBounds {
604 /// The realtime signal which was attempted to be used.
605 attempted: u32,
606 /// The highest available realtime signal number.
607 max: u32,
608 },
609 /// An unexpected OS error ocurred during signal handler setup.
610 #[cfg_attr(
611 all(unix, feature = "signals"),
612 error("{}", .0),
613 )]
614 UnexpectedSystemCallFailure(#[cfg_attr(all(unix, feature = "signals"), from)] io::Error),
615}
616
617/// The actual hook which is passed to `sigaction` which dispatches signals according to the global handler map (the `HANDLERS` static).
618extern "C" fn signal_receiver(signum: i32) {
619 let catched = panic::catch_unwind(|| {
620 let handler_and_flags = {
621 let handlers = HANDLERS.read();
622 let val = handlers
623 .get(signum as u64)
624 .expect("unregistered signal passed by the OS to the shared receiver");
625 *val
626 };
627 match handler_and_flags.0 {
628 SignalHandler::Ignore => {}
629 SignalHandler::Hook(hook) => hook.inner()(),
630 SignalHandler::Default => unreachable!(
631 "signal receiver was unregistered but has been called by the OS anyway"
632 ),
633 }
634 if handler_and_flags.1 & SA_RESETHAND != 0 {
635 // If the signal is set to be reset to default handling, set the record accordingly.
636 let mut handlers = HANDLERS.write();
637 handlers.remove(signum as u64);
638 let handler_and_flags = (SignalHandler::Default, handler_and_flags.1);
639 handlers.insert(signum as u64, handler_and_flags);
640 }
641 });
642 // The panic hook already ran, so we only have to abort the process
643 catched.unwrap_or_else(|_| process::abort());
644}
645
646/// A signal handling method.
647#[derive(Copy, Clone, Debug, PartialEq, Eq)]
648pub enum SignalHandler {
649 /// Use the default behavior specified by POSIX.
650 Default,
651 /// Ignore the signal whenever it is received.
652 Ignore,
653 /// Call a function whenever the signal is received.
654 Hook(SignalHook),
655}
656impl SignalHandler {
657 /// Returns `true` for the [`Default`] variant, `false` otherwise.
658 ///
659 /// [`Default`]: #variant.Default.html " "
660 pub const fn is_default(self) -> bool {
661 matches!(self, Self::Default)
662 }
663 /// Returns `true` for the [`Ignore`] variant, `false` otherwise.
664 ///
665 /// [`Ignore`]: #variant.Ignore.html " "
666 pub const fn is_ignore(self) -> bool {
667 matches!(self, Self::Ignore)
668 }
669 /// Returns `true` for the [`Hook`] variant, `false` otherwise.
670 ///
671 /// [`Hook`]: #variant.Hook.html " "
672 pub const fn is_hook(self) -> bool {
673 matches!(self, Self::Hook(..))
674 }
675 /// Creates a handler which calls the specified function.
676 ///
677 /// # Safety
678 /// The function must not call any C functions which are not considered signal-safe. See the [module-level section on signal-safe C functions] for more.
679 ///
680 /// [module-level section on signal-safe C functions]: index.html#signal-safe-c-functions " "
681 pub unsafe fn from_fn(function: fn()) -> Self {
682 Self::Hook(unsafe { SignalHook::from_fn(function) })
683 }
684}
685impl Default for SignalHandler {
686 /// Returns [`SignalHandler::Default`].
687 ///
688 /// [`SignalHandler::Default`]: #variant.Default " "
689 fn default() -> Self {
690 Self::Default
691 }
692}
693impl From<SignalHook> for SignalHandler {
694 fn from(op: SignalHook) -> Self {
695 Self::Hook(op)
696 }
697}
698/// A function which can be used as a signal handler.
699#[repr(transparent)]
700#[derive(Copy, Clone, Debug, PartialEq, Eq)]
701pub struct SignalHook(fn());
702impl SignalHook {
703 /// Creates a hook which calls the specified function.
704 ///
705 /// # Safety
706 /// The function must not call any C functions which are not considered signal-safe. See the [module-level section on signal-safe C functions] for more.
707 ///
708 /// [module-level section on signal-safe C functions]: index.html#signal-safe-c-functions " "
709 pub unsafe fn from_fn(function: fn()) -> Self {
710 Self(function)
711 }
712 /// Returns the wrapped function.
713 pub fn inner(self) -> fn() {
714 self.0
715 }
716}
717impl From<SignalHook> for fn() {
718 fn from(op: SignalHook) -> Self {
719 op.0
720 }
721}
722
723/// Sends the specified signal to the specified process. If the specified signal is `None`, no signal is sent and only a privilege check is performed instead.
724///
725/// # Example
726/// ```no_run
727/// # fn main() -> Result<(), Box<dyn std::error::Error>> {
728/// # #[cfg(all(unix, feature = "signals"))] {
729/// use interprocess::os::unix::signal::{self, SignalType};
730/// use std::process;
731///
732/// // Send a Termination signal to the calling process.
733/// signal::send(SignalType::Termination, process::id())?;
734/// # }
735/// # Ok(()) }
736/// ```
737pub fn send(signal: impl Into<Option<SignalType>>, pid: impl Into<u32>) -> io::Result<()> {
738 let pid = pid
739 .to::<u32>()
740 .try_to::<i32>()
741 .unwrap_or_else(|_| panic!("process identifier out of range"));
742 debug_assert_ne!(
743 pid, 0,
744 "to send the signal to the process group of the calling process, use send_to_group instead"
745 );
746 let success = unsafe { libc::kill(signal.into().map_or(0, Into::into), pid) != -1 };
747 if success {
748 Ok(())
749 } else {
750 Err(io::Error::last_os_error())
751 }
752}
753/// Sends the specified real-time signal to the specified process. If the specified signal is `None`, no signal is sent and only a privilege check is performed instead.
754///
755/// # Example
756/// ```no_run
757/// # fn main() -> Result<(), Box<dyn std::error::Error>> {
758/// # #[cfg(all(unix, feature = "signals"))] {
759/// use interprocess::os::unix::signal::{self, SignalType};
760/// use std::process;
761///
762/// // Send a real-timne signal 0 to the calling process.
763/// signal::send_rt(0, process::id())?;
764/// # }
765/// # Ok(()) }
766/// ```
767pub fn send_rt(signal: impl Into<Option<u32>>, pid: impl Into<u32>) -> io::Result<()> {
768 let pid = pid
769 .to::<u32>()
770 .try_to::<i32>()
771 .unwrap_or_else(|_| panic!("process identifier out of range"));
772 debug_assert_ne!(
773 pid, 0,
774 "to send the signal to the process group of the calling process, use send_to_group instead"
775 );
776 let signal = signal.into().map_or(0, |val| {
777 assert!(is_valid_rtsignal(val), "invalid real-time signal");
778 val
779 }) as i32;
780 let success = unsafe { libc::kill(signal, pid) != -1 };
781 if success {
782 Ok(())
783 } else {
784 Err(io::Error::last_os_error())
785 }
786}
787/// Sends the specified signal to the specified process group. If the specified signal is `None`, no signal is sent and only a privilege check is performed instead.
788///
789/// # Example
790/// ```no_run
791/// # fn main() -> Result<(), Box<dyn std::error::Error>> {
792/// # #[cfg(all(unix, feature = "signals"))] {
793/// use interprocess::os::unix::signal::{self, SignalType};
794/// use std::process;
795///
796/// // Send a Termination signal to the process group of the calling process.
797/// signal::send_to_group(SignalType::Termination, 0_u32)?;
798/// # }
799/// # Ok(()) }
800/// ```
801pub fn send_to_group(signal: impl Into<Option<SignalType>>, pid: impl Into<u32>) -> io::Result<()> {
802 #[allow(clippy::neg_multiply)] // "it's more readable to just negate"? how about no
803 let pid = pid
804 .to::<u32>()
805 .try_to::<i32>()
806 .unwrap_or_else(|_| panic!("process group identifier out of range"))
807 * -1;
808 let success = unsafe { libc::kill(signal.into().map_or(0, Into::into), pid) != -1 };
809 if success {
810 Ok(())
811 } else {
812 Err(io::Error::last_os_error())
813 }
814}
815/// Sends the specified real-time signal to the specified process. If the specified signal is `None`, no signal is sent and only a privilege check is performed instead.
816///
817/// # Example
818/// ```no_run
819/// # fn main() -> Result<(), Box<dyn std::error::Error>> {
820/// # #[cfg(all(unix, feature = "signals"))] {
821/// use interprocess::os::unix::signal::{self, SignalType};
822/// use std::process;
823///
824/// // Send a real-timne signal 0 to the process group of the calling process.
825/// signal::send_rt(0_u32, 0_u32)?;
826/// # }
827/// # Ok(()) }
828/// ```
829pub fn send_rt_to_group(signal: impl Into<Option<u32>>, pid: impl Into<u32>) -> io::Result<()> {
830 #[allow(clippy::neg_multiply)]
831 let pid = pid
832 .to::<u32>()
833 .try_to::<i32>()
834 .unwrap_or_else(|_| panic!("process identifier out of range"))
835 * -1;
836 debug_assert_ne!(
837 pid, 0,
838 "to send the signal to the process group of the calling process, use send_to_group instead"
839 );
840 let signal = signal.into().map_or(0, |val| {
841 assert!(is_valid_rtsignal(val), "invalid real-time signal");
842 val
843 }) as i32;
844 let success = unsafe { libc::kill(signal, pid) != -1 };
845 if success {
846 Ok(())
847 } else {
848 Err(io::Error::last_os_error())
849 }
850}
851
852/// All standard signal types as defined in POSIX.1-2001.
853///
854/// The values can be safely and quickly converted to [`i32`]/[`u32`]. The reverse process involves safety checks, making sure that unknown signal values are never stored.
855///
856/// [`i32`]: https://doc.rust-lang.org/std/primitive.i32.html " "
857/// [`u32`]: https://doc.rust-lang.org/std/primitive.u32.html " "
858#[derive(Copy, Clone, Debug, PartialEq, Eq, Hash)]
859#[repr(i32)]
860#[non_exhaustive]
861pub enum SignalType {
862 /// `SIGHUP` – lost connection to controlling terminal. Opting out of this signal is recommended if the process does not need to stop after the user who started it logs out.
863 ///
864 /// *Default handler: process termination.*
865 #[cfg(any(doc, se_basic))]
866 Hangup = SIGHUP,
867 /// `SIGINT` – keyboard interrupt, usually sent by pressing `Ctrl`+`C` by the terminal. This signal is typically set to be ignored if the program runs an interactive interface: GUI/TUI, interactive shell (the Python shell, for example) or any other kind of interface which runs in a loop, as opposed to a command-line invocation of the program which reads its standard input or command-line arguments, performs a task and exits. If the interactive interface is running a lengthy operation, a good idea is to temporarily re-enable the signal and abort the lengthy operation if the signal is received, then disable it again.
868 ///
869 /// *Default handler: process termination.*
870 #[cfg(any(doc, se_basic))]
871 KeyboardInterrupt = SIGINT,
872 /// `SIGQUIT` – request to perform a core dump and quit, usually sent by pressing `Ctrl`+`\`. This signal normally should not be overriden or masked out – the core dump is performed automatically by the OS.
873 ///
874 /// *Default handler: process termination with a core dump.*
875 #[cfg(any(doc, se_basic))]
876 QuitAndDump = SIGQUIT,
877 /// `SIGILL` – illegal or malformed instruction exception, generated by the CPU whenever such an instruction is executed. This signal normally should not be overriden or masked out, since it likely means that the executable file or the memory of the process has been corrupted and further execution is a risk of invoking negative consequences.
878 ///
879 /// For reasons described above, **this signal is considered unsafe** – handling it requires using `set_unsafe_handler`.
880 ///
881 /// *Default handler: process termination with a core dump.*
882 #[cfg(any(doc, se_basic))]
883 IllegalInstruction = SIGILL,
884 /// `SIGABRT` – abnormal termination requested. This signal is typically invoked by the program itself, using [`std::process::abort`] or the equivalent C function; still, like any other signal, it can be sent from outside the process.
885 ///
886 /// *Default handler: process termination with a core dump.*
887 ///
888 /// [`std::process::abort`]: https://doc.rust-lang.org/std/process/fn.abort.html " "
889 #[cfg(any(doc, se_basic))]
890 Abort = SIGABRT,
891 /// `SIGFPE` – mathematical exception. This signal is generated whenever an undefined mathematical operation is performed – mainly integer division by zero.
892 ///
893 /// *Default handler: process termination with a core dump.*
894 #[cfg(any(doc, se_basic))]
895 MathException = SIGFPE,
896 /// `SIGKILL` – forced termination. This signal can only be sent using the usual signal sending procedures and, unlike most other signals, cannot be masked out or handled at all. The main purpose for this signal is to stop a program which has masked out all other signals for malicious purposes or has stuck in such a state because of a bug.
897 ///
898 /// *Default handler: process termination, **cannot be overriden or disabled**.*
899 #[cfg(any(doc, se_basic))]
900 Kill = SIGKILL,
901 /// `SIGSEGV` – invaid memory access. This signal is issued by the OS whenever the program tries to access an invalid memory location, such as the `NULL` pointer or simply an address outside the user-mode address space as established by the OS. The only case when this signal can be received by a Rust program is if memory unsafety occurs due to misuse of unsafe code. As such, it should normally not be masked out or handled, as it likely indicates a critical bug (soundness hole), executable file corruption or process memory corruption.
902 ///
903 /// For reasons described above, **this signal is considered unsafe** – handling it requires using `set_unsafe_handler`.
904 ///
905 /// *Default handler: process termination with a core dump.*
906 #[cfg(any(doc, se_basic))]
907 SegmentationFault = SIGSEGV,
908 /// `SIGPIPE` – invalid access to an [unnamed pipe]. This signal is issued by the OS whenever a program attempts to write to an unnamed pipe which has no readers connected to it. If unexpected, this might mean abnormal termination of the process which the pipe was used to communicate with.
909 ///
910 /// *Default handler: process termination.*
911 ///
912 /// [unnamed pipe]: ../../../unnamed_pipe/index.html " "
913 #[cfg(any(doc, se_basic))]
914 BrokenPipe = SIGPIPE,
915 /// `SIGALRM` – "alarm clock" signal. This signal is issued by the OS when the arranged amount of real (wall clock) time expires. This clock can be set using the [`alarm`] and [`setitimer`] system calls.
916 ///
917 /// *Default handler: process termination.*
918 ///
919 /// [`alarm`]: https://www.man7.org/linux/man-pages/man2/alarm.2.html " "
920 /// [`setitimer`]: https://www.man7.org/linux/man-pages/man2/setitimer.2.html " "
921 #[cfg(any(doc, se_basic))]
922 AlarmClock = SIGALRM,
923 /// `SIGTERM` – request for termination. This signal can only be sent using the usual signal sending procedures. Unlike [`KeyboardInterrupt`], this signal is not a request to break out of a lengthy operation, but rather to close the program as a whole. Signal handlers for this signal are expected to perform minimal cleanup and quick state save procedures and then exit.
924 ///
925 /// *Default handler: process termination.*
926 ///
927 /// [`KeyboardInterrupt`]: #variant.KeyboardInterrupt " "
928 #[cfg(any(doc, se_basic))]
929 Termination = SIGTERM,
930 /// `SIGUSR1` – user-defined signal 1. This signal, like [`UserSignal2`], does not have a predefined meaning and is not produced by the OS. For this reason, it is typically used for interprocess communication between two programs familiar with each other, or in language runtimes to signal certain events, such as externally activated immediate garbage collection.
931 ///
932 /// *Default handler: process termination.*
933 ///
934 /// [`UserSignal2`]: #variant.UserSignal2 " "
935 #[cfg(any(doc, se_full_posix_1990))]
936 #[cfg_attr( // se_full_posix_1990/se_base_posix_2001 templat
937 feature = "doc_cfg",
938 doc(cfg(not(target_os = "hermit"))),
939 )]
940 UserSignal1 = SIGUSR1,
941 /// `SIGUSR2` – user-defined signal 2. This signal is similar to [`UserSignal1`] and has the same properties, but is a distinct signal nonetheless.
942 ///
943 /// *Default handler: process termination.*
944 ///
945 /// [`UserSignal1`]: #variant.UserSignal1 " "
946 #[cfg(any(doc, se_full_posix_1990))]
947 #[cfg_attr( // se_full_posix_1990/se_base_posix_2001 templat
948 feature = "doc_cfg",
949 doc(cfg(not(target_os = "hermit"))),
950 )]
951 UserSignal2 = SIGUSR2,
952 /// `SIGCHLD` – child process suspended, resumed or terminated. This signal is issued by the OS whenever a child process is suspended/resumed or terminated by a signal or otherwise.
953 ///
954 /// *Default handler: ignore.*
955 #[cfg(any(doc, se_full_posix_1990))]
956 #[cfg_attr( // se_full_posix_1990/se_base_posix_2001 templat
957 feature = "doc_cfg",
958 doc(cfg(not(target_os = "hermit"))),
959 )]
960 ChildProcessEvent = SIGCHLD,
961 /// `SIGCONT` – resume the process after being suspended. This signal can be sent to a process by an external program when it wishes to resume that process after it being suspended in a stopped state.
962 ///
963 /// *Default handler: continue execution.*
964 #[cfg(any(doc, se_full_posix_1990))]
965 #[cfg_attr( // se_full_posix_1990/se_base_posix_2001 templat
966 feature = "doc_cfg",
967 doc(cfg(not(target_os = "hermit"))),
968 )]
969 Continue = SIGCONT,
970 /// `SIGSTOP` – forcefully stop a process temporarily. This signal can only be sent to a process by an external program. Unlike [`Suspend`], this signal cannot be masked out or handled, i.e. it is guaranteed to be able to temporarily stop a process from executing without [forcefully terminating it]. The process can then be restarted using [`Continue`].
971 ///
972 /// *Default handler: temporarily stop process, **cannot be overriden or disabled**.*
973 ///
974 /// [`Suspend`]: #variant.Suspend " "
975 /// [forcefully terminating it]: #variant.Kill " "
976 /// [`Continue`]: #variant.Continue " "
977 #[cfg(any(doc, se_full_posix_1990))]
978 #[cfg_attr( // se_full_posix_1990/se_base_posix_2001 templat
979 feature = "doc_cfg",
980 doc(cfg(not(target_os = "hermit"))),
981 )]
982 ForceSuspend = SIGSTOP,
983 /// `SIGTSTP` – temporarily stop a process. This signal can only be sent to a process by an external program. Unlike [`ForceSuspend`], this signal can be masked out or handled by the process which is requested to stop. The process can then be restarted using [`Continue`].
984 ///
985 /// *Default handler: temporarily stop process.*
986 ///
987 /// [`ForceSuspend`]: #variant.ForceSuspend " "
988 /// [`Continue`]: #variant.Continue " "
989 #[cfg(any(doc, se_full_posix_1990))]
990 #[cfg_attr( // se_full_posix_1990/se_base_posix_2001 templat
991 feature = "doc_cfg",
992 doc(cfg(not(target_os = "hermit"))),
993 )]
994 Suspend = SIGTSTP,
995 /// `SIGTTIN` – attempt to read from standard input while in the background. This signal is issued by the OS whenever a process which is under [job control] tries to read from standard input but is in the background, i.e. temporarily detached from the terminal.
996 ///
997 /// *Default handler: temporarily stop process.*
998 ///
999 /// [job control]: https://en.wikipedia.org/wiki/Job_control_(Unix) " "
1000 #[cfg(any(doc, se_full_posix_1990))]
1001 #[cfg_attr( // se_full_posix_1990/se_base_posix_2001 templat
1002 feature = "doc_cfg",
1003 doc(cfg(not(target_os = "hermit"))),
1004 )]
1005 TerminalInputWhileInBackground = SIGTTIN,
1006 /// `SIGTTOU` – attempt to write to standard output while in the background. This signal is issued by the OS whenever a process which is under [job control] tries to write to standard input but is in the background, i.e. temporarily detached from the terminal.
1007 ///
1008 /// *Default handler: temporarily stop process.*
1009 ///
1010 /// [job control]: https://en.wikipedia.org/wiki/Job_control_(Unix) " "
1011 #[cfg(any(doc, se_full_posix_1990))]
1012 #[cfg_attr( // se_full_posix_1990/se_base_posix_2001 templat
1013 feature = "doc_cfg",
1014 doc(cfg(not(target_os = "hermit"))),
1015 )]
1016 TerminalOutputWhileInBackground = SIGTTOU,
1017 /// `SIGPOLL` – watched file descriptor event. This signal is issued by the OS when a file descriptor which has been enabled to interact with this signal has a state update.
1018 ///
1019 /// *Default handler: process termination.*
1020 // TODO more on this
1021 #[cfg(any(se_sigpoll, se_sigpoll_is_sigio))]
1022 #[cfg_attr( // any(se_sigpoll, se_sigpoll_is_sigio) template
1023 feature = "doc_cfg",
1024 doc(cfg(any(
1025 target_os = "linux",
1026 target_os = "android",
1027 target_os = "emscripten",
1028 target_os = "redox",
1029 target_os = "haiku",
1030 target_os = "solaris",
1031 target_os = "illumos"
1032 )))
1033 )]
1034 PollNotification = SIGPOLL,
1035 /// `SIGBUS` – [bus error]. This signal is issued by the OS when a process does one of the following:
1036 /// - **Tries to access an invalid physical address**. Normally, this should never happen – attempts to access invalid *virtual* memory are handled as [segmentation faults], and invalid phyiscal addresses are typically not present in the address space of a program in user-mode.
1037 /// - **Performs an incorrectly aligned memory access**. In Rust, this can only happen if unsafe code is misused to construct an incorrectly aligned pointer to a type which requires alignment which is more strict than simple one byte alignment. This is a direct sign of memory unsafety being invoked.
1038 /// - **Incorrect x86 segment register**. This can only be acheieved using inline assembly or FFI (calling an external function written in assembly language or with usage of C/C++ inline assembly), and only on the x86 architecture. If an invalid value is loaded into the segment registers, the CPU generates this exception. This is either a sign of a failed advanced unsafe operation or a deliberate attempt to cryptically crash the program.
1039 ///
1040 /// For reasons described above, **this signal is considered unsafe** – handling it requires using `set_unsafe_handler`.
1041 ///
1042 /// *Default handler: process termination with a core dump.*
1043 ///
1044 /// [bus error]: https://en.wikipedia.org/wiki/Bus_error " "
1045 /// [segmentation faults]: #variant.SegmentationFault " "
1046 #[cfg(any(doc, se_base_posix_2001))]
1047 #[cfg_attr( // se_full_posix_1990/se_base_posix_2001 template
1048 feature = "doc_cfg",
1049 doc(cfg(not(target_os = "hermit"))),
1050 )]
1051 MemoryBusError = SIGBUS,
1052 /// `SIGPROF` – profiler clock signal. This signal is issued by the OS when the arranged amount of CPU time expires. The time includes not only user-mode CPU time spent in the process, but also kernel-mode CPU time which the OS associates with the process. This is different from [`UserModeProfilerClock`]'s behavior, which counts only user-mode CPU time. This clock can be set using the [`setitimer`] system call.
1053 ///
1054 /// *Default handler: process termination.*
1055 ///
1056 /// [`UserModeProfilerClock`]: #variant.UserModeProfilerClock " "
1057 /// [`setitimer`]: https://www.man7.org/linux/man-pages/man2/setitimer.2.html " "
1058 #[cfg(any(doc, se_base_posix_2001))]
1059 #[cfg_attr( // se_full_posix_1990/se_base_posix_2001 template
1060 feature = "doc_cfg",
1061 doc(cfg(not(target_os = "hermit"))),
1062 )]
1063 ProfilerClock = SIGPROF,
1064 /// `SIGVTALRM` – user-mode profiler clock signal. This signal is issued by the OS when the arranged amount of CPU time expires. Only user-mode CPU time is counted, in contrast to `ProfilerClock`, which counts kernel-mode time associated by the system with the process as well. This clock can be set using the [`setitimer`] system call.
1065 ///
1066 /// *Default handler: process termination.*
1067 ///
1068 /// [`ProfilerClock`]: #variant.ProfilerClock " "
1069 /// [`setitimer`]: https://www.man7.org/linux/man-pages/man2/setitimer.2.html " "
1070 #[cfg(any(doc, se_base_posix_2001))]
1071 #[cfg_attr( // se_full_posix_1990/se_base_posix_2001 template
1072 feature = "doc_cfg",
1073 doc(cfg(not(target_os = "hermit"))),
1074 )]
1075 UserModeProfilerClock = SIGVTALRM,
1076 /// `SIGSYS` – attempt to perform an invalid system call. This signal is issued by the OS when a system call receives invalid arguments. Normally, the C library functions used to perform system calls in Rust programs do not generate this signal – the only way to generate it is to send it to a process explicitly, use raw system call instructions or violate [`seccomp`] rules if it is enabled.
1077 ///
1078 /// *Default handler: process termination with a core dump.*
1079 ///
1080 /// [`seccomp`]: https://en.wikipedia.org/wiki/Seccomp " "
1081 #[cfg(any(doc, se_base_posix_2001))]
1082 #[cfg_attr( // se_full_posix_1990/se_base_posix_2001 template
1083 feature = "doc_cfg",
1084 doc(cfg(not(target_os = "hermit"))),
1085 )]
1086 InvalidSystemCall = SIGSYS,
1087 /// `SIGTRAP` – software breakpoint. This signal is issued by the OS when a breakpoint instruction is executed. On x86, the instruction to do so is `int 3`. This instruction is typically inserted by debuggers and code injection utilities.
1088 ///
1089 /// *Default handler: process termination with a core dump.*
1090 #[cfg(any(doc, se_base_posix_2001))]
1091 #[cfg_attr( // se_full_posix_1990/se_base_posix_2001 template
1092 feature = "doc_cfg",
1093 doc(cfg(not(target_os = "hermit"))),
1094 )]
1095 Breakpoint = SIGTRAP,
1096 /// `SIGURG` – [out-of-band data] received on a socket. This signal is issued by the OS when a socket owned by the process receives urgent out-of-band data.
1097 ///
1098 /// *Default handler: ignore.*
1099 ///
1100 /// [out-of-band data]: https://en.wikipedia.org/wiki/Out-of-band_data " "
1101 #[cfg(any(doc, se_base_posix_2001))]
1102 #[cfg_attr( // se_full_posix_1990/se_base_posix_2001 template
1103 feature = "doc_cfg",
1104 doc(cfg(not(target_os = "hermit"))),
1105 )]
1106 OutOfBandDataAvailable = SIGURG,
1107 /// `SIGXCPU` – assigned CPU time limit for the process was exceeded. This signal is issued by the OS if a CPU time limit for the process was set, when that limit expires. If not handled quickly, the system will issue a [`Kill`] signal to shut down the process forcefully, i.e. ignoring this signal won't lead to bypassing the limit. The [`setrlimit`] system call is used to set the soft limit for this signal and the hard limit, which invokes [`Kill`].
1108 ///
1109 /// *Default handler: process termination with a core dump.*
1110 ///
1111 /// [`setrlimit`]: https://www.man7.org/linux/man-pages/man2/setrlimit.2.html " "
1112 /// [`Kill`]: #variant.Kill " "
1113 #[cfg(any(doc, se_base_posix_2001))]
1114 #[cfg_attr( // se_full_posix_1990/se_base_posix_2001 template
1115 feature = "doc_cfg",
1116 doc(cfg(not(target_os = "hermit"))),
1117 )]
1118 CpuTimeLimitExceeded = SIGXCPU,
1119 /// `SIGXFSZ` – assigned file size limit for the process was exceeded. This signal is issued by the OS if a limit on the size of files which are written to by the process was set, when that limit is exceeded by the process. If ignored/handled, the offending system call fails with an error regardless of the handling method. The [`setrlimit`] system call is used to set the limit.
1120 ///
1121 /// *Default handler: process termination with a core dump.*
1122 ///
1123 /// [`setrlimit`]: https://www.man7.org/linux/man-pages/man2/setrlimit.2.html " "
1124 #[cfg(any(doc, se_base_posix_2001))]
1125 #[cfg_attr( // se_full_posix_1990/se_base_posix_2001 template
1126 feature = "doc_cfg",
1127 doc(cfg(not(target_os = "hermit"))),
1128 )]
1129 FileSizeLimitExceeded = SIGXFSZ,
1130}
1131impl SignalType {
1132 /// Returns `true` if the value is a special signal which cannot be blocked or handled ([`Kill`] or [`ForceSuspend`]), `false` otherwise.
1133 ///
1134 /// [`Kill`]: #variant.Kill " "
1135 /// [`ForceSuspend`]: #variant.ForceSuspend " "
1136 pub const fn is_unblockable(self) -> bool {
1137 matches!(self, Self::Kill | Self::ForceSuspend)
1138 }
1139 /// Returns `true` if the value is an unsafe signal which requires unsafe code when setting a handling method, `false` otherwise.
1140 pub const fn is_unsafe(self) -> bool {
1141 matches!(
1142 self,
1143 Self::SegmentationFault | Self::MemoryBusError | Self::IllegalInstruction
1144 )
1145 }
1146}
1147impl From<SignalType> for i32 {
1148 fn from(op: SignalType) -> Self {
1149 op as i32
1150 }
1151}
1152impl From<SignalType> for u32 {
1153 fn from(op: SignalType) -> Self {
1154 op as u32
1155 }
1156}
1157impl TryFrom<i32> for SignalType {
1158 type Error = UnknownSignalError;
1159 #[rustfmt::skip]
1160 fn try_from(value: i32) -> Result<Self, Self::Error> {
1161 match value {
1162 #[cfg(se_basic)] SIGHUP => Ok(Self::Hangup),
1163 #[cfg(se_basic)] SIGINT => Ok(Self::KeyboardInterrupt),
1164 #[cfg(se_basic)] SIGQUIT => Ok(Self::QuitAndDump),
1165 #[cfg(se_basic)] SIGILL => Ok(Self::IllegalInstruction),
1166 #[cfg(se_basic)] SIGABRT => Ok(Self::Abort),
1167 #[cfg(se_basic)] SIGFPE => Ok(Self::MathException),
1168 #[cfg(se_basic)] SIGKILL => Ok(Self::Kill),
1169 #[cfg(se_basic)] SIGSEGV => Ok(Self::SegmentationFault),
1170 #[cfg(se_basic)] SIGPIPE => Ok(Self::BrokenPipe),
1171 #[cfg(se_basic)] SIGALRM => Ok(Self::AlarmClock),
1172 #[cfg(se_basic)] SIGTERM => Ok(Self::Termination),
1173 #[cfg(se_full_posix_1990)] SIGUSR1 => Ok(Self::UserSignal1),
1174 #[cfg(se_full_posix_1990)] SIGUSR2 => Ok(Self::UserSignal2),
1175 #[cfg(se_full_posix_1990)] SIGCHLD => Ok(Self::ChildProcessEvent),
1176 #[cfg(se_full_posix_1990)] SIGCONT => Ok(Self::Continue),
1177 #[cfg(se_full_posix_1990)] SIGSTOP => Ok(Self::ForceSuspend),
1178 #[cfg(se_full_posix_1990)] SIGTSTP => Ok(Self::Suspend),
1179 #[cfg(se_full_posix_1990)] SIGTTIN => Ok(Self::TerminalInputWhileInBackground),
1180 #[cfg(se_full_posix_1990)] SIGTTOU => Ok(Self::TerminalOutputWhileInBackground),
1181 #[cfg(any(se_sigpoll, se_sigpoll_is_sigio))] SIGPOLL => Ok(Self::PollNotification),
1182 #[cfg(se_full_posix_2001)] SIGBUS => Ok(Self::MemoryBusError),
1183 #[cfg(se_full_posix_2001)] SIGPROF => Ok(Self::ProfilerClock),
1184 #[cfg(se_base_posix_2001)] SIGSYS => Ok(Self::InvalidSystemCall),
1185 #[cfg(se_base_posix_2001)] SIGTRAP => Ok(Self::Breakpoint),
1186 #[cfg(se_base_posix_2001)] SIGURG => Ok(Self::OutOfBandDataAvailable),
1187 #[cfg(se_base_posix_2001)] SIGVTALRM => Ok(Self::UserModeProfilerClock),
1188 #[cfg(se_base_posix_2001)] SIGXCPU => Ok(Self::CpuTimeLimitExceeded),
1189 #[cfg(se_base_posix_2001)] SIGXFSZ => Ok(Self::FileSizeLimitExceeded),
1190 _ => Err(UnknownSignalError { value }),
1191 }
1192 }
1193}
1194impl TryFrom<u32> for SignalType {
1195 type Error = UnknownSignalError;
1196 fn try_from(value: u32) -> Result<Self, Self::Error> {
1197 value.try_into()
1198 }
1199}
1200
1201/// Error type returned when a conversion from [`i32`]/[`u32`] to [`SignalType`] fails.
1202///
1203/// [`i32`]: https://doc.rust-lang.org/std/primitive.i32.html " "
1204/// [`u32`]: https://doc.rust-lang.org/std/primitive.u32.html " "
1205/// [`SignalType`]: enum.SignalType.html " "
1206#[derive(Copy, Clone, Debug, PartialEq, Eq)]
1207pub struct UnknownSignalError {
1208 /// The unknown signal value which was encountered.
1209 pub value: i32,
1210}
1211impl Display for UnknownSignalError {
1212 fn fmt(&self, f: &mut Formatter<'_>) -> fmt::Result {
1213 write!(f, "unknown signal value {}", self.value)
1214 }
1215}
1216impl fmt::Binary for UnknownSignalError {
1217 fn fmt(&self, f: &mut Formatter<'_>) -> fmt::Result {
1218 write!(f, "unknown signal value {:b}", self.value)
1219 }
1220}
1221impl fmt::LowerHex for UnknownSignalError {
1222 fn fmt(&self, f: &mut Formatter<'_>) -> fmt::Result {
1223 write!(f, "unknown signal value {:x}", self.value)
1224 }
1225}
1226impl fmt::UpperExp for UnknownSignalError {
1227 fn fmt(&self, f: &mut Formatter<'_>) -> fmt::Result {
1228 write!(f, "unknown signal value {:X}", self.value)
1229 }
1230}
1231impl fmt::Octal for UnknownSignalError {
1232 fn fmt(&self, f: &mut Formatter<'_>) -> fmt::Result {
1233 write!(f, "unknown signal value {:o}", self.value)
1234 }
1235}
1236impl Error for UnknownSignalError {}