1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278
#![allow(dead_code)]
#[cfg(uds_supported)]
use super::c_wrappers;
use super::{
imports::*,
util::{check_ancillary_unsound, mk_msghdr_r, mk_msghdr_w},
AncillaryData, AncillaryDataBuf, EncodedAncillaryData, ToUdSocketPath, UdSocketPath,
};
use std::{
fmt::{self, Debug, Formatter},
io::{self, IoSlice, IoSliceMut, Read, Write},
iter,
net::Shutdown,
};
use to_method::To;
/// A Unix domain socket byte stream, obtained either from [`UdStreamListener`](super::UdStreamListener) or by connecting to an existing server.
///
/// # Examples
/// Basic example:
/// ```no_run
/// # fn main() -> Result<(), Box<dyn std::error::Error>> {
/// # #[cfg(unix)] {
/// use interprocess::os::unix::udsocket::UdStream;
/// use std::io::prelude::*;
///
/// let mut conn = UdStream::connect("/tmp/example1.sock")?;
/// conn.write_all(b"Hello from client!")?;
/// let mut string_buffer = String::new();
/// conn.read_to_string(&mut string_buffer)?;
/// println!("Server answered: {}", string_buffer);
/// # }
/// # Ok(()) }
/// ```
pub struct UdStream {
fd: FdOps,
}
impl UdStream {
/// Connects to a Unix domain socket server at the specified path.
///
/// See [`ToUdSocketPath`] for an example of using various string types to specify socket paths.
///
/// # System calls
/// - `socket`
/// - `connect`
pub fn connect<'a>(path: impl ToUdSocketPath<'a>) -> io::Result<Self> {
Self::_connect(path.to_socket_path()?, false)
}
pub(crate) fn connect_nonblocking<'a>(path: impl ToUdSocketPath<'a>) -> io::Result<Self> {
Self::_connect(path.to_socket_path()?, true)
}
fn _connect(path: UdSocketPath<'_>, nonblocking: bool) -> io::Result<Self> {
let addr = path.try_to::<sockaddr_un>()?;
let fd = c_wrappers::create_uds(SOCK_STREAM, nonblocking)?;
unsafe {
// SAFETY: addr is well-constructed
c_wrappers::connect(&fd, &addr)?;
}
c_wrappers::set_passcred(&fd, true)?;
Ok(Self { fd })
}
/// Receives bytes from the socket stream.
///
/// # System calls
/// - `read`
pub fn recv(&self, buf: &mut [u8]) -> io::Result<usize> {
self.fd.read(buf)
}
/// Receives bytes from the socket stream, making use of [scatter input] for the main data.
///
/// # System calls
/// - `readv`
///
/// [scatter input]: https://en.wikipedia.org/wiki/Vectored_I/O " "
pub fn recv_vectored(&self, bufs: &mut [IoSliceMut<'_>]) -> io::Result<usize> {
self.fd.read_vectored(bufs)
}
/// Receives both bytes and ancillary data from the socket stream.
///
/// The ancillary data buffer is automatically converted from the supplied value, if possible. For that reason, mutable slices of bytes (`u8` values) can be passed directly.
///
/// # System calls
/// - `recvmsg`
pub fn recv_ancillary<'a: 'b, 'b>(
&self,
buf: &mut [u8],
abuf: &'b mut AncillaryDataBuf<'a>,
) -> io::Result<(usize, usize)> {
check_ancillary_unsound()?;
self.recv_ancillary_vectored(&mut [IoSliceMut::new(buf)], abuf)
}
/// Receives bytes and ancillary data from the socket stream, making use of [scatter input] for the main data.
///
/// The ancillary data buffer is automatically converted from the supplied value, if possible. For that reason, mutable slices of bytes (`u8` values) can be passed directly.
///
/// # System calls
/// - `recvmsg`
///
/// [scatter input]: https://en.wikipedia.org/wiki/Vectored_I/O " "
#[allow(clippy::useless_conversion)]
pub fn recv_ancillary_vectored<'a: 'b, 'b>(
&self,
bufs: &mut [IoSliceMut<'_>],
abuf: &'b mut AncillaryDataBuf<'a>,
) -> io::Result<(usize, usize)> {
check_ancillary_unsound()?;
let mut hdr = mk_msghdr_r(bufs, abuf.as_mut())?;
let (success, bytes_read) = unsafe {
let result = libc::recvmsg(self.as_raw_fd(), &mut hdr as *mut _, 0);
(result != -1, result as usize)
};
if success {
Ok((bytes_read, hdr.msg_controllen as _))
} else {
Err(io::Error::last_os_error())
}
}
/// Sends bytes into the socket stream.
///
/// # System calls
/// - `write`
pub fn send(&self, buf: &[u8]) -> io::Result<usize> {
self.fd.write(buf)
}
/// Sends bytes into the socket stream, making use of [gather output] for the main data.
///
/// # System calls
/// - `senv`
///
/// [gather output]: https://en.wikipedia.org/wiki/Vectored_I/O " "
pub fn send_vectored(&self, bufs: &[IoSlice<'_>]) -> io::Result<usize> {
self.fd.write_vectored(bufs)
}
/// Sends bytes and ancillary data into the socket stream.
///
/// The ancillary data buffer is automatically converted from the supplied value, if possible. For that reason, slices and `Vec`s of `AncillaryData` can be passed directly.
///
/// # System calls
/// - `sendmsg`
pub fn send_ancillary<'a>(
&self,
buf: &[u8],
ancillary_data: impl IntoIterator<Item = AncillaryData<'a>>,
) -> io::Result<(usize, usize)> {
check_ancillary_unsound()?;
self.send_ancillary_vectored(&[IoSlice::new(buf)], ancillary_data)
}
/// Sends bytes and ancillary data into the socket stream, making use of [gather output] for the main data.
///
/// The ancillary data buffer is automatically converted from the supplied value, if possible. For that reason, slices and `Vec`s of `AncillaryData` can be passed directly.
///
/// # System calls
/// - `sendmsg`
///
/// [gather output]: https://en.wikipedia.org/wiki/Vectored_I/O " "
#[allow(clippy::useless_conversion)]
pub fn send_ancillary_vectored<'a>(
&self,
bufs: &[IoSlice<'_>],
ancillary_data: impl IntoIterator<Item = AncillaryData<'a>>,
) -> io::Result<(usize, usize)> {
check_ancillary_unsound()?;
let abuf = ancillary_data
.into_iter()
.collect::<EncodedAncillaryData<'_>>();
let hdr = mk_msghdr_w(bufs, abuf.as_ref())?;
let (success, bytes_written) = unsafe {
let result = libc::sendmsg(self.as_raw_fd(), &hdr as *const _, 0);
(result != -1, result as usize)
};
if success {
Ok((bytes_written, hdr.msg_controllen as _))
} else {
Err(io::Error::last_os_error())
}
}
/// Shuts down the read, write, or both halves of the stream. See [`Shutdown`].
///
/// Attempting to call this method with the same `how` argument multiple times may return `Ok(())` every time or it may return an error the second time it is called, depending on the platform. You must either avoid using the same value twice or ignore the error entirely.
pub fn shutdown(&self, how: Shutdown) -> io::Result<()> {
c_wrappers::shutdown(&self.fd, how)
}
/// Enables or disables the nonblocking mode for the stream. By default, it is disabled.
///
/// In nonblocking mode, calls to the `recv…` methods and the `Read` trait methods will never wait for at least one byte of data to become available; calls to `send…` methods and the `Write` trait methods will never wait for the other side to remove enough bytes from the buffer for the write operation to be performed. Those operations will instead return a [`WouldBlock`] error immediately, allowing the thread to perform other useful operations in the meantime.
///
/// [`accept`]: #method.accept " "
/// [`incoming`]: #method.incoming " "
/// [`WouldBlock`]: https://doc.rust-lang.org/std/io/enum.ErrorKind.html#variant.WouldBlock " "
pub fn set_nonblocking(&self, nonblocking: bool) -> io::Result<()> {
c_wrappers::set_nonblocking(&self.fd, nonblocking)
}
/// Checks whether the stream is currently in nonblocking mode or not.
pub fn is_nonblocking(&self) -> io::Result<bool> {
c_wrappers::get_nonblocking(&self.fd)
}
/// Fetches the credentials of the other end of the connection without using ancillary data. The returned structure contains the process identifier, user identifier and group identifier of the peer.
#[cfg(any(doc, uds_peercred))]
#[cfg_attr( // uds_peercred template
feature = "doc_cfg",
doc(cfg(any(
all(
target_os = "linux",
any(
target_env = "gnu",
target_env = "musl",
target_env = "musleabi",
target_env = "musleabihf"
)
),
target_os = "emscripten",
target_os = "redox",
target_os = "haiku"
)))
)]
pub fn get_peer_credentials(&self) -> io::Result<ucred> {
c_wrappers::get_peer_ucred(&self.fd)
}
}
impl Read for UdStream {
fn read(&mut self, buf: &mut [u8]) -> io::Result<usize> {
self.fd.read(buf)
}
fn read_vectored(&mut self, bufs: &mut [IoSliceMut<'_>]) -> io::Result<usize> {
let mut abuf = AncillaryDataBuf::Owned(Vec::new());
self.recv_ancillary_vectored(bufs, &mut abuf).map(|x| x.0)
}
}
impl Write for UdStream {
fn write(&mut self, buf: &[u8]) -> io::Result<usize> {
self.fd.write(buf)
}
fn write_vectored(&mut self, bufs: &[IoSlice<'_>]) -> io::Result<usize> {
self.send_ancillary_vectored(bufs, iter::empty())
.map(|x| x.0)
}
fn flush(&mut self) -> io::Result<()> {
// You cannot flush a socket
Ok(())
}
}
impl Debug for UdStream {
fn fmt(&self, f: &mut Formatter<'_>) -> fmt::Result {
f.debug_struct("UdStream")
.field("fd", &self.as_raw_fd())
.finish()
}
}
impl AsRawFd for UdStream {
#[cfg(unix)]
fn as_raw_fd(&self) -> c_int {
self.fd.as_raw_fd()
}
}
impl IntoRawFd for UdStream {
#[cfg(unix)]
fn into_raw_fd(self) -> c_int {
self.fd.into_raw_fd()
}
}
impl FromRawFd for UdStream {
#[cfg(unix)]
unsafe fn from_raw_fd(fd: c_int) -> Self {
Self { fd: FdOps::new(fd) }
}
}