1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343
/* * Copyright 2021 Actyx AG * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ use std::{ alloc::{alloc, dealloc, Layout}, borrow::Borrow, fmt::{Debug, Display, Formatter, Pointer, Result}, hash::{Hash, Hasher}, intrinsics::drop_in_place, ops::Deref, ptr::NonNull, sync::atomic::{AtomicPtr, AtomicUsize, Ordering::*}, }; pub(crate) type RemovePtr<T> = fn(*const (), *const Interned<T>); #[repr(C)] struct RefCounted<T: ?Sized> { /// number of references held to this value, including the one from the interner map /// /// highest bit stores whether the remove_if_lsat pointer has been consumed refs: AtomicUsize, /// Pointer to the location of a function pointer that can remove a given /// Interned<T> from the interner map. This same pointer is also provided /// as the first argument to the remove_if_last function in order to find /// the interner state in memory, so use #[repr(C)] and put the function /// pointer first! /// /// The function must remove the value from the interner and drop the /// weak reference to the pointed-to location. remover: AtomicPtr<RemovePtr<T>>, value: T, } impl<T: ?Sized> RefCounted<T> { fn from_box(value: Box<T>) -> NonNull<Self> { // figure out the needed allocation size — this requires #[repr(C)] let layout = Layout::new::<RefCounted<()>>() .extend(Layout::for_value(value.as_ref())) .unwrap() // fails only on address range overflow .0 .pad_to_align(); unsafe { // allocate using global allocator let ptr = alloc(layout); // get value pointer with the right metadata (e.g. string length) // while making sure to NOT DROP THE BOX let b = Box::leak(value) as *mut T; // construct correct (fat) pointer from allocation result let ptr = { let mut temp = b as *mut Self; // unfortunately <*const>::set_ptr_value is still experimental, but this is what it does: std::ptr::write(&mut temp as *mut _ as *mut *mut u8, ptr); temp }; // write the fields (*ptr).refs = AtomicUsize::new(1); (*ptr).remover = AtomicPtr::new(std::ptr::null_mut()); let num_bytes = std::mem::size_of_val(&*b); if num_bytes > 0 { std::ptr::copy_nonoverlapping( // copy payload value byte-wise, because what else can we do? b as *const u8, &mut (*ptr).value as *mut _ as *mut u8, num_bytes, ); // free the memory of the ex-Box; global allocator does not allow zero-sized allocations // so this must be guarded by num_bytes > 0 dealloc(b as *mut u8, Layout::for_value(&*b)); } NonNull::new_unchecked(ptr) } } fn from_sized(value: T) -> NonNull<Self> where T: Sized, { let b = Box::new(Self { refs: AtomicUsize::new(1), remover: AtomicPtr::new(std::ptr::null_mut()), value, }); NonNull::from(Box::leak(b)) } } pub struct Interned<T: ?Sized> { inner: NonNull<RefCounted<T>>, } unsafe impl<T: ?Sized + Sync + Send> Send for Interned<T> {} unsafe impl<T: ?Sized + Sync + Send> Sync for Interned<T> {} /// An interned value /// /// This type works very similar to an [`Arc`](https://doc.rust-lang.org/std/sync/struct.Arc.html) /// with the difference that it has no concept of weak references. They are not needed because /// **interned values must not be modified**, so reference cycles cannot be constructed. One /// reference is held by the interner that created this value as long as that interner lives. /// /// Keeping interned values around does not keep the interner alive: once the last reference to /// the interner is dropped, it will release its existing interned values, so the backing memory /// will be released once each of the interned values is no longer referenced through any `Interned` /// instances. (`Interned` keeps a [`Weak`](https://doc.rust-lang.org/std/sync/struct.Weak.html) /// reference to the interner that created it, so it will prevent the `ArcInner` from being /// deallocated while it lives.) impl<T: ?Sized> Interned<T> { /// Obtain current number of references, including this one, using /// [`Ordering::Relaxed`](https://doc.rust-lang.org/std/sync/atomic/enum.Ordering.html#variant.Relaxed). /// This means that reads and writes of your code may be freely reordered around this /// read, there is no synchronisation with other threads. /// /// The value will always be at least 1. If the value is 1, this means that the interner /// which produced this reference has been dropped; in this case you are still free to /// use this reference in any way you like. pub fn ref_count(&self) -> usize { self.inner().refs.load(Relaxed) } fn inner(&self) -> &RefCounted<T> { // this is safe since the existence of &self proves that the pointer is still valid unsafe { self.inner.as_ref() } } pub(crate) fn from_box(value: Box<T>) -> Self { Self { inner: RefCounted::from_box(value), } } pub(crate) fn from_sized(value: T) -> Self where T: Sized, { Self { inner: RefCounted::from_sized(value), } } pub(crate) fn make_hot(&mut self, map: *mut RemovePtr<T>) -> bool { self.inner() .remover .compare_exchange(std::ptr::null_mut(), map, Relaxed, Relaxed) .is_ok() } } // use the two upper bits as spin-wait conditions const MAX_REFCOUNT: usize = usize::MAX - 2; // cannot use null: spurious `get` failure in DashMap may lead to another make_hot // which we prevent by using a non-null marker when taking the removal function const TAKEN: *mut u8 = std::mem::align_of::<RemovePtr<()>>() as *mut _; impl<T: ?Sized> Clone for Interned<T> { fn clone(&self) -> Self { if self.inner().refs.fetch_add(1, Relaxed) >= MAX_REFCOUNT { // the below misspelling is deliberate panic!("either you are running on an 8086 or you are leaking Interned values at a phantastic rate"); } let ret = Self { inner: self.inner }; #[cfg(feature = "println")] println!("clone {:p}", *self); ret } } impl<T: ?Sized> Drop for Interned<T> { fn drop(&mut self) { // printing `self` to mark this particular execution (points to the stack) // printing `*self` to mark the interned value (as printed by `clone`) #[cfg(feature = "println")] println!("dropping {:p} {:p}", self, *self); // preconditions: // - this Interned may or may not be referenced by an interner (since the interner can be dropped) // - the `self` reference guarantees that the reference count is at least one // - whatever happens, we must decrement the reference count by one // - if the only remaining reference is the interner map, we need to try to remove it // (this races against an `intern` call for the same value and against dropping the interner) // // IMPORTANT NOTE: each Interned starts out with two references! // // Also, THE REMOVAL POINTER NEEDS TO BE USED EXACTLY ONCE! // decrement the count and read the value; the Release synchronises with an Acquire in case we deallocate let read = self.inner().refs.fetch_sub(1, Release); // two cases require action: // - count was two: perform the removal (unless already done) // - count was one: deallocate #[cfg(feature = "println")] println!("read {} {:p} {:p}", read, self, *self); if read > 2 { return; } // the other reference could be the map or external (if the map was dropped and we didn’t get here yet) // so this races against: // 1. map being dropped // 2. same value being interned again // 3. other external reference being dropped // In the dropping cases, the other thread saw read == 1. let remove_ptr = self.inner().remover.swap(TAKEN as *mut _, AcqRel); if remove_ptr as *mut u8 != TAKEN && !remove_ptr.is_null() { #[cfg(feature = "println")] println!("remover {:p} {:p}", self, *self); // We’re the first to see ref_count 2, so drop the connection to the interner. // There is a race here against concurrent interning of the same value or clone & drop // of this value if the interner was dropped earlier. In both cases we leave the // interner without this value, which in the first case means that a freshly interned // and live value is now unknown to the interner — interning it again will yield a // different RefCounted instance (which is why we can’t support pointer Eq). let raw_arc = remove_ptr as *const (); let remover = unsafe { *remove_ptr }; // If this thread saw read == 2 and another saw read == 1, didn’t get the remove_ptr, // and proceeded with the deallocation before we get here, then passing the self // reference is undefined behavior. OTOH, this can only happen if the interner has // been dropped, because otherwise that other reference is in the interner and cannot // concurrently be dropped. So we will only ever USE the self pointer when it is safe. // (but this is why it cannot be &Interned<T>, it must be *const Interned<T>) remover(raw_arc, self); } else { #[cfg(feature = "println")] println!("second {:p} {:p}", self, *self); } if read == 1 { #[cfg(feature = "println")] println!("drop {:p} {:p}", self, *self); // Final reference, do delete! We need to ensure that a previous drop on a different // thread has stopped using the data (i.e. synchronise with the Release in fetch_sub). assert!(self.inner().refs.load(Acquire) == 0); let layout = Layout::for_value(self.inner()); unsafe { // this is how you drop unsized values ... drop_in_place(self.inner.as_ptr()); // and then we still have to free the memory dealloc(self.inner.as_ptr() as *mut u8, layout); } } } } impl<T: ?Sized + PartialEq> PartialEq for Interned<T> { fn eq(&self, other: &Self) -> bool { self.inner().value.eq(&other.inner().value) } } impl<T: ?Sized + Eq> Eq for Interned<T> {} impl<T: ?Sized + PartialOrd> PartialOrd for Interned<T> { fn partial_cmp(&self, other: &Self) -> Option<std::cmp::Ordering> { self.inner().value.partial_cmp(&other.inner().value) } } impl<T: ?Sized + Ord> Ord for Interned<T> { fn cmp(&self, other: &Self) -> std::cmp::Ordering { self.inner().value.cmp(&other.inner().value) } } impl<T: ?Sized + Hash> Hash for Interned<T> { fn hash<H: Hasher>(&self, state: &mut H) { self.inner().value.hash(state) } } impl<T: ?Sized> Borrow<T> for Interned<T> { fn borrow(&self) -> &T { &self.inner().value } } // The following would be nice, but it clashes with the Borrow<T> for T blanket impl // impl<T: ?Sized + Borrow<X>, X: ?Sized> Borrow<X> for Interned<T> { // fn borrow(&self) -> &T { // &self.inner().value.borrow() // } // } impl<T: ?Sized> Deref for Interned<T> { type Target = T; fn deref(&self) -> &Self::Target { self.borrow() } } impl<T: ?Sized> AsRef<T> for Interned<T> { fn as_ref(&self) -> &T { self.deref() } } impl<T: ?Sized + Debug> Debug for Interned<T> { fn fmt(&self, f: &mut Formatter<'_>) -> Result { write!(f, "Interned({:?})", &*self) } } impl<T: ?Sized + Display> Display for Interned<T> { fn fmt(&self, f: &mut Formatter<'_>) -> Result { self.deref().fmt(f) } } impl<T: ?Sized> Pointer for Interned<T> { fn fmt(&self, f: &mut Formatter<'_>) -> Result { Pointer::fmt(&(&**self as *const T), f) } } #[cfg(test)] mod tests { use crate::InternOrd; #[test] fn pointer() { let interner = InternOrd::new(); let i = interner.intern_sized(42); let i2 = i.clone(); assert_eq!(format!("{:p}", i), format!("{:p}", i2)); } }