1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
#![no_std]
#![feature(core_intrinsics)]

#[macro_use]
extern crate bitflags;

use core::{cmp, mem};

pub use self::io::Io;
mod io;

pub use self::mmio::Mmio;
mod mmio;

#[derive(Debug)]
pub enum SpiError {
    /// Access Error Log (H_AEL) is set
    Access,
    /// Flash Cycle Error (FCERR) is set
    Cycle,
    /// Register contains unexpected data
    Register,
}

pub trait Spi {
    fn len(&mut self) -> Result<usize, SpiError>;

    fn read(&mut self, address: usize, buf: &mut [u8]) -> Result<usize, SpiError>;

    fn erase(&mut self, address: usize) -> Result<(), SpiError>;

    fn write(&mut self, address: usize, buf: &[u8]) -> Result<usize, SpiError>;
}

bitflags! {
    pub struct HsfStsCtl: u32 {
        /// Flash Cycle Done
        const FDONE = 1 << 0;
        /// Flash Cycle Error
        const FCERR = 1 << 1;
        /// Access Error Log
        const H_AEL = 1 << 2;

        // Reserved 3:4

        /// SPI Cycle In Progress
        const H_SCIP = 1 << 5;

        // Reserved 6:10

        /// Write Status Disable
        const WRSDIS = 1 << 11;
        /// PRR3 PRR4 Lock-Down
        const PRR34_LOCKDN = 1 << 12;
        /// Flash Descriptor Override Pin-Strap Status
        const FDOPSS = 1 << 13;
        /// Flash Descriptor Valid
        const FDV = 1 << 14;
        /// Flash Configuration Lock-Down
        const FLOCKDN = 1 << 15;
        //// Flash Cycle Go
        const FGO = 1 << 16;

        /// Flash Cycle
        const FCYCLE = 0b1111 << 17;
        const FCYCLE_0 = 1 << 17;
        const FCYCLE_1 = 1 << 18;
        const FCYCLE_2 = 1 << 19;
        const FCYCLE_3 = 1 << 20;

        /// Write Enable Type
        const WET = 1 << 21;

        // Reserved 22:23

        /// Flash Data Byte Count - Programmed with count minus one
        const FDBC = 0b111111 << 24;
        const FDBC_0 = 1 << 24;
        const FDBC_1 = 1 << 25;
        const FDBC_2 = 1 << 26;
        const FDBC_3 = 1 << 27;
        const FDBC_4 = 1 << 28;
        const FDBC_5 = 1 << 29;

        // Reserved 30

        /// Flash SPI SMI# Enable
        const FSMIE = 1 << 31;
    }
}

impl HsfStsCtl {
    fn cycle(&self) -> HsfStsCtlCycle {
        unsafe { mem::transmute((*self & Self::FCYCLE).bits) }
    }

    fn set_cycle(&mut self, value: HsfStsCtlCycle) {
        *self = (*self & !Self::FCYCLE) | (
            Self::from_bits_truncate(value as u32)
        );
    }

    fn count(&self) -> u8 {
        (((*self & Self::FDBC).bits >> 24) + 1) as u8
    }

    fn set_count(&mut self, value: u8) {
        *self = (*self & !Self::FDBC) | (
            Self::from_bits_truncate(
                (cmp::max(value, 64).saturating_sub(1) as u32) << 24
            )
        );
    }
}

#[repr(u32)]
pub enum HsfStsCtlCycle {
    /// Read number of bytes in FDBC plus one
    Read = 0x0 << 17,
    /// Reserved - treated as 0x0 read
    Rsvd = 0x1 << 17,
    /// Write number of bytes in FDBC plus one
    Write = 0x2 << 17,
    /// Erase 4096 bytes
    BlockErase = 0x3 << 17,
    /// Erase 65536 bytes
    SectorErase = 0x4 << 17,
    /// Read SFDP
    ReadSfdp = 0x5 << 17,
    /// Read JEDEC ID
    ReadJedec = 0x6 << 17,
    /// Write status
    WriteStatus = 0x7 << 17,
    /// Read status
    ReadStatus = 0x8 << 17,
    /// RPMC Op1
    RpmcOp1 = 0x9 << 17,
    /// Rpmc Op2
    RpmcOp2 = 0xA << 17,
}

#[repr(u32)]
pub enum FdoSection {
    Map = 0b000 << 12,
    Component = 0b001 << 12,
    Region = 0b010 << 12,
    Master = 0b011 << 12
}

// Kaby Lake SPI is compatible with Sky Lake SPI
pub type SpiKbl = SpiSkl;

// Cannon Lake SPI is compatible with Sky Lake SPI
pub type SpiCnl = SpiSkl;

#[allow(dead_code)]
#[repr(packed)]
pub struct SpiSkl {
    /// BIOS Flash Primary Region
    bfpreg: Mmio<u32>,
    /// Hardware Sequencing Flash Status and Control
    hsfsts_ctl: Mmio<u32>,
    /// Flash Address
    faddr: Mmio<u32>,
    /// Discrete Lock Bits
    dlock: Mmio<u32>,
    /// Flash Data
    fdata: [Mmio<u32>; 16],
    /// Flash Region Access Permissions
    fracc: Mmio<u32>,
    /// Flash Regions
    freg: [Mmio<u32>; 6],
    _reserved1: [Mmio<u32>; 6],
    /// Flash Protected Ranges
    fpr: [Mmio<u32>; 5],
    /// Global Protected Range
    gpr: Mmio<u32>,
    _reserved2: [Mmio<u32>; 5],
    /// Secondary Flash Region Access Permissions
    sfracc: Mmio<u32>,
    /// Flash Descriptor Observability Control
    fdoc: Mmio<u32>,
    /// Flash Descriptor Observability Data
    fdod: Mmio<u32>,
    _reserved3: Mmio<u32>,
    // Additional Flash Control
    afc: Mmio<u32>,
    /// Vendor Specific Capabilities for Component 0
    vscc0: Mmio<u32>,
    /// Vendor Specific Capabilities for Component 1
    vscc1: Mmio<u32>,
    /// Parameter Table Index
    ptinx: Mmio<u32>,
    /// Parameter Table Data
    ptdata: Mmio<u32>,
    /// SPI Bus Requester Status
    sbrs: Mmio<u32>,
}

impl SpiSkl {
    pub fn address() -> usize {
        0xfe010000
    }

    pub fn hsfsts_ctl(&self) -> HsfStsCtl {
        HsfStsCtl::from_bits_truncate(self.hsfsts_ctl.read())
    }

    pub fn set_hsfsts_ctl(&mut self, value: HsfStsCtl) {
        self.hsfsts_ctl.write(value.bits);
    }

    pub fn fdo(&mut self, section: FdoSection, index: u16) -> u32 {
        self.fdoc.write(
            (section as u32) |
            (((index & 0b1111111111) as u32) << 2)
        );
        self.fdod.read()
    }
}

impl Spi for SpiSkl {
    fn len(&mut self) -> Result<usize, SpiError> {
        let component = self.fdo(FdoSection::Component, 0);
        Ok(match component & 0b111 {
            0b000 => 512,
            0b001 => 1024,
            0b010 => 2048,
            0b011 => 4096,
            0b100 => 8192,
            0b101 => 16384,
            _ => return Err(SpiError::Register)
        } * 1024)
    }

    fn read(&mut self, address: usize, buf: &mut [u8]) -> Result<usize, SpiError> {
        let mut count = 0;
        for chunk in buf.chunks_mut(64) {
            let mut hsfsts_ctl;

            // Wait for other transactions
            loop {
                hsfsts_ctl = self.hsfsts_ctl();
                if ! hsfsts_ctl.contains(HsfStsCtl::H_SCIP) {
                    break;
                }
            }

            hsfsts_ctl.set_cycle(HsfStsCtlCycle::Read);
            hsfsts_ctl.set_count(chunk.len() as u8);
            hsfsts_ctl.insert(HsfStsCtl::FGO);

            // Start command
            self.faddr.write((address + count) as u32);
            self.set_hsfsts_ctl(hsfsts_ctl);

            // Wait for command to finish
            loop {
                hsfsts_ctl = self.hsfsts_ctl();

                if hsfsts_ctl.contains(HsfStsCtl::FCERR) {
                    return Err(SpiError::Cycle);
                }

                if hsfsts_ctl.contains(HsfStsCtl::FDONE) {
                    break;
                }
            }

            for (i, dword) in chunk.chunks_mut(4).enumerate() {
                let data = self.fdata[i].read();
                for (j, byte) in dword.iter_mut().enumerate() {
                    *byte = (data >> (j * 8)) as u8;
                }
            }

            count += chunk.len()
        }
        Ok(count)
    }

    fn erase(&mut self, address: usize) -> Result<(), SpiError> {
        let mut hsfsts_ctl;

        // Wait for other transactions
        loop {
            hsfsts_ctl = self.hsfsts_ctl();
            if ! hsfsts_ctl.contains(HsfStsCtl::H_SCIP) {
                break;
            }
        }

        hsfsts_ctl.set_cycle(HsfStsCtlCycle::BlockErase);
        hsfsts_ctl.insert(HsfStsCtl::FGO);

        // Start command
        self.faddr.write(address as u32);
        self.set_hsfsts_ctl(hsfsts_ctl);

        // Wait for command to finish
        loop {
            hsfsts_ctl = self.hsfsts_ctl();

            if hsfsts_ctl.contains(HsfStsCtl::FCERR) {
                return Err(SpiError::Cycle);
            }

            if hsfsts_ctl.contains(HsfStsCtl::FDONE) {
                break;
            }
        }

        Ok(())
    }

    fn write(&mut self, address: usize, buf: &[u8]) -> Result<usize, SpiError> {
        let mut count = 0;
        for chunk in buf.chunks(64) {
            let mut hsfsts_ctl;

            // Wait for other transactions
            loop {
                hsfsts_ctl = self.hsfsts_ctl();
                if ! hsfsts_ctl.contains(HsfStsCtl::H_SCIP) {
                    break;
                }
            }

            hsfsts_ctl.set_cycle(HsfStsCtlCycle::Write);
            hsfsts_ctl.set_count(chunk.len() as u8);
            hsfsts_ctl.insert(HsfStsCtl::FGO);

            // Fill data
            for (i, dword) in chunk.chunks(4).enumerate() {
                let mut data = 0;
                for (j, byte) in dword.iter().enumerate() {
                    data |= (*byte as u32) << (j * 8);
                }
                self.fdata[i].write(data);
            }

            // Start command
            self.faddr.write((address + count) as u32);
            self.set_hsfsts_ctl(hsfsts_ctl);

            // Wait for command to finish
            loop {
                hsfsts_ctl = self.hsfsts_ctl();

                if hsfsts_ctl.contains(HsfStsCtl::FCERR) {
                    return Err(SpiError::Cycle);
                }

                if hsfsts_ctl.contains(HsfStsCtl::FDONE) {
                    break;
                }
            }

            count += chunk.len()
        }
        Ok(count)
    }
}

#[cfg(test)]
mod tests {
    use super::SpiSkl;

    #[test]
    fn offsets() {
        unsafe {
            let spi: &SpiSkl = &*(0 as *const SpiSkl);

            assert_eq!(&spi.bfpreg as *const _ as usize, 0x00);

            assert_eq!(&spi.freg as *const _ as usize, 0x54);
            assert_eq!(&spi.fpr as *const _ as usize, 0x84);

            assert_eq!(&spi.gpr as *const _ as usize, 0x98);
            assert_eq!(&spi.sfracc as *const _ as usize, 0xb0);

            assert_eq!(&spi.fdod as *const _ as usize, 0xb8);
            assert_eq!(&spi.afc as *const _ as usize, 0xc0);

            assert_eq!(&spi.sbrs as *const _ as usize, 0xd4);
        }
    }
}