1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721
#![allow(unsafe_code)]
//! [`InlineArray`] is a stack-inlinable array of bytes that is intended for situations where many bytes
//! are being shared in database-like scenarios, where optimizing for space usage is extremely
//! important.
//!
//! `InlineArray` uses 8 bytes on the stack. It will inline arrays of up to 7 bytes. If the bytes
//! are longer than that, it will store them in an optimized reference-count-backed structure of
//! two different variants. For arrays up to length 255, the data is stored with an `AtomicU8`
//! reference counter and `u8` length field, for only two bytes of overhead. For values larger
//! than that, they are stored with an `AtomicU16` reference counter and a 48-bit length field.
//! If the maximum counter is reached for either variant, the bytes are copied into a new
//! `InlineArray` with a fresh reference count of 1. This is made with the assumption that most
//! reference counts will be far lower than 2^16 and only rarely surpassing 255 in the small case.
//!
//! The inline and both types of shared instances of `InlineArray` guarantee that the stored array is
//! always aligned to 8-byte boundaries, regardless of if it is inline on the stack or
//! shared on the heap. This is advantageous for using in combination with certain
//! zero-copy serialization techniques that require alignment guarantees.
//!
//! Byte arrays that require more than 48 bits to store their length (256 terabytes) are not supported.
//!
//! [`InlineArray::make_mut`] (inspired by [`std::sync::Arc::make_mut`]) can be used for getting a mutable
//! reference to the bytes in this structure. If the shared reference counter is higher than 1, this acts
//! like a [`std::borrow::Cow`] and will make self into a private copy that is safe for modification.
//!
//! # Features
//!
//! * `serde` implements `serde::Serialize` and `serde::Deserialize` for `InlineArray` (disabled by
//! default)
//!
//! # Examples
//!
//! ```
//! use inline_array::InlineArray;
//!
//! let ia = InlineArray::from(b"yo!");
//!
//! // then use it more or less like you would an Arc<[u8]>
//! ```
use std::{
alloc::{alloc, dealloc, Layout},
convert::TryFrom,
fmt,
hash::{Hash, Hasher},
iter::FromIterator,
mem::size_of,
num::NonZeroU64,
ops::Deref,
sync::atomic::{AtomicU16, AtomicU8, Ordering},
};
#[cfg(feature = "concurrent_map_minimum")]
impl concurrent_map::Minimum for InlineArray {
const MIN: InlineArray = EMPTY;
}
#[cfg(feature = "serde")]
mod serde;
const SZ: usize = 8;
const INLINE_CUTOFF: usize = SZ - 1;
const SMALL_REMOTE_CUTOFF: usize = u8::MAX as usize;
const BIG_REMOTE_LEN_BYTES: usize = 6;
const INLINE_TRAILER_TAG: u8 = 0b01;
const SMALL_REMOTE_TRAILER_TAG: u8 = 0b10;
const BIG_REMOTE_TRAILER_TAG: u8 = 0b11;
const TRAILER_TAG_MASK: u8 = 0b0000_0011;
const TRAILER_PTR_MASK: u8 = 0b1111_1100;
/// A const-friendly empty `InlineArray`
pub const EMPTY: InlineArray = InlineArray([0, 0, 0, 0, 0, 0, 0, INLINE_TRAILER_TAG]);
#[repr(u8)]
#[derive(Debug, Clone, Copy, PartialEq, Eq)]
enum Kind {
Inline,
SmallRemote,
BigRemote,
}
const fn _static_tests() {
// static assert that BigRemoteHeader is 8 bytes in size
let _: [u8; 8] = [0; std::mem::size_of::<BigRemoteHeader>()];
// static assert that BigRemoteHeader is 8 byte-aligned
let _: [u8; 8] = [0; std::mem::align_of::<BigRemoteHeader>()];
// static assert that SmallRemoteTrailer is 2 bytes in size
let _: [u8; 2] = [0; std::mem::size_of::<SmallRemoteTrailer>()];
// static assert that SmallRemoteTrailer is 1 byte-aligned
let _: [u8; 1] = [0; std::mem::align_of::<SmallRemoteTrailer>()];
// static assert that InlineArray is 8 bytes
let _: [u8; 8] = [0; std::mem::size_of::<InlineArray>()];
// static assert that InlineArray is 8 byte-aligned
let _: [u8; 8] = [0; std::mem::align_of::<InlineArray>()];
}
/// A buffer that may either be inline or remote and protected
/// by an Arc. The inner buffer is guaranteed to be aligned to
/// 8 byte boundaries.
#[repr(align(8))]
pub struct InlineArray([u8; SZ]);
impl Clone for InlineArray {
fn clone(&self) -> InlineArray {
// We use 16 bytes for the reference count at
// the cost of this CAS and copying the inline
// array when we reach our max reference count size.
//
// When measured against the standard Arc reference
// count increment, this had a negligible performance
// hit that only became measurable at high contention,
// which is probably not likely for DB workloads where
// it is expected that most concurrent operations will
// distributed somewhat across larger structures.
if self.kind() == Kind::SmallRemote {
let rc = &self.deref_small_trailer().rc;
loop {
let current = rc.load(Ordering::Relaxed);
if current == u8::MAX {
return InlineArray::from(self.deref());
}
let cas_res = rc.compare_exchange_weak(
current,
current + 1,
Ordering::Relaxed,
Ordering::Relaxed,
);
if cas_res.is_ok() {
break;
}
}
} else if self.kind() == Kind::BigRemote {
let rc = &self.deref_big_header().rc;
loop {
let current = rc.load(Ordering::Relaxed);
if current == u16::MAX {
return InlineArray::from(self.deref());
}
let cas_res = rc.compare_exchange_weak(
current,
current + 1,
Ordering::Relaxed,
Ordering::Relaxed,
);
if cas_res.is_ok() {
break;
}
}
}
InlineArray(self.0)
}
}
impl Drop for InlineArray {
fn drop(&mut self) {
let kind = self.kind();
if kind == Kind::SmallRemote {
let small_trailer = self.deref_small_trailer();
let rc = small_trailer.rc.fetch_sub(1, Ordering::Release) - 1;
if rc == 0 {
std::sync::atomic::fence(Ordering::Acquire);
let layout = Layout::from_size_align(
small_trailer.len() + size_of::<SmallRemoteTrailer>(),
8,
)
.unwrap();
unsafe {
let ptr = self.remote_ptr().sub(small_trailer.len());
dealloc(ptr as *mut u8, layout);
}
}
} else if kind == Kind::BigRemote {
let big_header = self.deref_big_header();
let rc = big_header.rc.fetch_sub(1, Ordering::Release) - 1;
if rc == 0 {
std::sync::atomic::fence(Ordering::Acquire);
let layout =
Layout::from_size_align(big_header.len() + size_of::<BigRemoteHeader>(), 8)
.unwrap();
unsafe {
dealloc(self.remote_ptr() as *mut u8, layout);
}
}
}
}
}
struct SmallRemoteTrailer {
rc: AtomicU8,
len: u8,
}
impl SmallRemoteTrailer {
const fn len(&self) -> usize {
self.len as usize
}
}
#[repr(align(8))]
struct BigRemoteHeader {
rc: AtomicU16,
len: [u8; BIG_REMOTE_LEN_BYTES],
}
impl BigRemoteHeader {
const fn len(&self) -> usize {
#[cfg(any(target_pointer_width = "u32", feature = "fake_32_bit"))]
let buf: [u8; 4] = [self.len[0], self.len[1], self.len[2], self.len[3]];
#[cfg(all(target_pointer_width = "64", not(feature = "fake_32_bit")))]
let buf: [u8; 8] = [
self.len[0],
self.len[1],
self.len[2],
self.len[3],
self.len[4],
self.len[5],
0,
0,
];
#[cfg(feature = "fake_32_bit")]
let ret = u32::from_le_bytes(buf) as usize;
#[cfg(not(feature = "fake_32_bit"))]
let ret = usize::from_le_bytes(buf);
ret
}
}
impl Deref for InlineArray {
type Target = [u8];
#[inline]
fn deref(&self) -> &[u8] {
match self.kind() {
Kind::Inline => &self.0[..self.inline_len()],
Kind::SmallRemote => unsafe {
let len = self.deref_small_trailer().len();
let data_ptr = self.remote_ptr().sub(len);
std::slice::from_raw_parts(data_ptr, len)
},
Kind::BigRemote => unsafe {
let data_ptr = self.remote_ptr().add(size_of::<BigRemoteHeader>());
let len = self.deref_big_header().len();
std::slice::from_raw_parts(data_ptr, len)
},
}
}
}
impl AsRef<[u8]> for InlineArray {
#[inline]
fn as_ref(&self) -> &[u8] {
self
}
}
impl Default for InlineArray {
fn default() -> Self {
Self::from(&[])
}
}
impl Hash for InlineArray {
fn hash<H: Hasher>(&self, state: &mut H) {
self.deref().hash(state);
}
}
impl InlineArray {
fn new(slice: &[u8]) -> Self {
let mut data = [0_u8; SZ];
if slice.len() <= INLINE_CUTOFF {
data[SZ - 1] = u8::try_from(slice.len()).unwrap() << 2;
data[..slice.len()].copy_from_slice(slice);
data[SZ - 1] |= INLINE_TRAILER_TAG;
} else if slice.len() <= SMALL_REMOTE_CUTOFF {
let layout =
Layout::from_size_align(slice.len() + size_of::<SmallRemoteTrailer>(), 8).unwrap();
let trailer = SmallRemoteTrailer {
rc: 1.into(),
len: u8::try_from(slice.len()).unwrap(),
};
unsafe {
let data_ptr = alloc(layout);
assert!(!data_ptr.is_null());
let trailer_ptr = data_ptr.add(slice.len());
std::ptr::write(trailer_ptr as *mut SmallRemoteTrailer, trailer);
std::ptr::copy_nonoverlapping(slice.as_ptr(), data_ptr, slice.len());
std::ptr::write_unaligned(data.as_mut_ptr() as _, trailer_ptr);
}
// assert that the bottom 3 bits are empty, as we expect
// the buffer to always have an alignment of 8 (2 ^ 3).
#[cfg(not(miri))]
assert_eq!(data[SZ - 1] & 0b111, 0);
data[SZ - 1] |= SMALL_REMOTE_TRAILER_TAG;
} else {
let layout =
Layout::from_size_align(slice.len() + size_of::<BigRemoteHeader>(), 8).unwrap();
let slice_len_buf: [u8; 8] = (slice.len() as u64).to_le_bytes();
let len: [u8; BIG_REMOTE_LEN_BYTES] = [
slice_len_buf[0],
slice_len_buf[1],
slice_len_buf[2],
slice_len_buf[3],
slice_len_buf[4],
slice_len_buf[5],
];
assert_eq!(slice_len_buf[6], 0);
assert_eq!(slice_len_buf[7], 0);
let header = BigRemoteHeader { rc: 1.into(), len };
unsafe {
let header_ptr = alloc(layout);
assert!(!header_ptr.is_null());
let data_ptr = header_ptr.add(size_of::<BigRemoteHeader>());
std::ptr::write(header_ptr as *mut BigRemoteHeader, header);
std::ptr::copy_nonoverlapping(slice.as_ptr(), data_ptr, slice.len());
std::ptr::write_unaligned(data.as_mut_ptr() as _, header_ptr);
}
// assert that the bottom 3 bits are empty, as we expect
// the buffer to always have an alignment of 8 (2 ^ 3).
#[cfg(not(miri))]
assert_eq!(data[SZ - 1] & 0b111, 0);
data[SZ - 1] |= BIG_REMOTE_TRAILER_TAG;
}
Self(data)
}
fn remote_ptr(&self) -> *const u8 {
assert_ne!(self.kind(), Kind::Inline);
let mut copied = self.0;
copied[SZ - 1] &= TRAILER_PTR_MASK;
unsafe { std::ptr::read((&copied).as_ptr() as *const *const u8) }
}
fn deref_small_trailer(&self) -> &SmallRemoteTrailer {
assert_eq!(self.kind(), Kind::SmallRemote);
unsafe { &*(self.remote_ptr() as *mut SmallRemoteTrailer) }
}
fn deref_big_header(&self) -> &BigRemoteHeader {
assert_eq!(self.kind(), Kind::BigRemote);
unsafe { &*(self.remote_ptr() as *mut BigRemoteHeader) }
}
#[cfg(miri)]
fn inline_len(&self) -> usize {
(self.trailer() >> 2) as usize
}
#[cfg(miri)]
fn kind(&self) -> Kind {
self.trailer() & TRAILER_TAG_MASK == INLINE_TRAILER_TAG
}
#[cfg(miri)]
fn inline_trailer(&self) -> u8 {
self.deref()[SZ - 1]
}
#[cfg(not(miri))]
const fn inline_len(&self) -> usize {
(self.inline_trailer() >> 2) as usize
}
#[cfg(not(miri))]
const fn kind(&self) -> Kind {
match self.inline_trailer() & TRAILER_TAG_MASK {
INLINE_TRAILER_TAG => Kind::Inline,
SMALL_REMOTE_TRAILER_TAG => Kind::SmallRemote,
BIG_REMOTE_TRAILER_TAG => Kind::BigRemote,
_other => unsafe { std::hint::unreachable_unchecked() },
}
}
#[cfg(not(miri))]
const fn inline_trailer(&self) -> u8 {
self.0[SZ - 1]
}
/// This function returns a mutable reference to the inner
/// byte array. If there are more than 1 atomic references
/// to the inner array, the array is copied into a new
/// `InlineVec` and a reference to that is returned. This
/// functions similarly in spirit to [`std::sync::Arc::make_mut`].
pub fn make_mut(&mut self) -> &mut [u8] {
match self.kind() {
Kind::Inline => {
let inline_len = self.inline_len();
&mut self.0[..inline_len]
}
Kind::SmallRemote => {
if self.deref_small_trailer().rc.load(Ordering::Acquire) != 1 {
*self = InlineArray::from(self.deref())
}
unsafe {
let len = self.deref_small_trailer().len();
let data_ptr = self.remote_ptr().sub(len);
std::slice::from_raw_parts_mut(data_ptr as *mut u8, len)
}
}
Kind::BigRemote => {
if self.deref_big_header().rc.load(Ordering::Acquire) != 1 {
*self = InlineArray::from(self.deref())
}
unsafe {
let data_ptr = self.remote_ptr().add(size_of::<BigRemoteHeader>());
let len = self.deref_big_header().len();
std::slice::from_raw_parts_mut(data_ptr as *mut u8, len)
}
}
}
}
/// Similar in spirit to [`std::boxed::Box::into_raw`] except always keeps the 8-byte representation,
/// so we return a `NonZeroU64` here instead of a pointer. Must be paired with exactly one
/// corresponding [`InlineArray::from_raw`] to avoid a leak.
///
/// Be certain to pay attention to the unsafe contract for `from_raw`.
///
/// # Examples
/// ```
/// use std::num::NonZeroU64;
///
/// use inline_array::InlineArray;
///
/// let bytes = b"yo!";
///
/// let ia = InlineArray::from(bytes);
///
/// let ptr: NonZeroU64 = ia.into_raw();
///
/// let ia_2 = unsafe { InlineArray::from_raw(ptr) };
///
/// assert_eq!(&ia_2, bytes);
/// ```
pub fn into_raw(self) -> NonZeroU64 {
let ret = NonZeroU64::new(u64::from_le_bytes(self.0)).unwrap();
std::mem::forget(self);
ret
}
/// Similar in spirit to [`std::boxed::Box::from_raw`].
///
/// # Unsafe contract
///
/// * Must only be used with a `NonZeroU64` that was produced from [`InlineArray::into_raw`]
/// * When an [`InlineArray`] drops, it decrements a reference count (if its size is over the inline threshold)
/// and when that reference count reaches 0, the backing memory that this points to is
/// deallocated.
/// * As the reference count is small, when the max reference count is reached, a new
/// allocation is created with a new reference count. This means that you can't expect
/// to have as many [`InlineArray`] objects created from the same arbitrary `NonZeroU64` as calls to
/// clone on the initial object would intuitively (but mistakenly) allow.
/// * To be safe in light of the above two points, treat calls to [`InlineArray::from_raw`] as
/// consuming, owned semantics for corresponding previous calls to a `into_raw`. If you try
/// to be tricky with multiple calls to `from_raw` for a particular `NonZeroU64`, you must be
/// certain that drops are not causing your backing allocation to be deallocated and leading
/// to a use after free, which may be harder to reason about than you expect at first glance.
/// Headaches around use after frees are likely to follow if you don't treat a `NonZeroU64` created by a
/// particular call to `into_raw` as a unique pointer that should be paired with at most one
/// call to `from_raw`, similar to [`std::sync::Arc::from_raw`] but actually harder to reason
/// about due to the smaller reference counts causing new allocations when they reach their
/// max count.
///
/// # Examples
/// ```
/// use std::num::NonZeroU64;
///
/// use inline_array::InlineArray;
///
/// let bytes = b"yo!";
///
/// let ia = InlineArray::from(bytes);
///
/// let ptr: NonZeroU64 = ia.into_raw();
///
/// let ia_2 = unsafe { InlineArray::from_raw(ptr) };
///
/// assert_eq!(&ia_2, bytes);
/// ```
pub unsafe fn from_raw(raw: NonZeroU64) -> InlineArray {
InlineArray(raw.get().to_le_bytes())
}
}
impl FromIterator<u8> for InlineArray {
fn from_iter<T>(iter: T) -> Self
where
T: IntoIterator<Item = u8>,
{
let bs: Vec<u8> = iter.into_iter().collect();
bs.into()
}
}
impl From<&[u8]> for InlineArray {
fn from(slice: &[u8]) -> Self {
InlineArray::new(slice)
}
}
impl From<&str> for InlineArray {
fn from(s: &str) -> Self {
Self::from(s.as_bytes())
}
}
impl From<String> for InlineArray {
fn from(s: String) -> Self {
Self::from(s.as_bytes())
}
}
impl From<&String> for InlineArray {
fn from(s: &String) -> Self {
Self::from(s.as_bytes())
}
}
impl From<&InlineArray> for InlineArray {
fn from(v: &Self) -> Self {
v.clone()
}
}
impl From<Vec<u8>> for InlineArray {
fn from(v: Vec<u8>) -> Self {
InlineArray::new(&v)
}
}
impl From<Box<[u8]>> for InlineArray {
fn from(v: Box<[u8]>) -> Self {
InlineArray::new(&v)
}
}
impl std::borrow::Borrow<[u8]> for InlineArray {
fn borrow(&self) -> &[u8] {
self.as_ref()
}
}
impl std::borrow::Borrow<[u8]> for &InlineArray {
fn borrow(&self) -> &[u8] {
self.as_ref()
}
}
impl<const N: usize> From<&[u8; N]> for InlineArray {
fn from(v: &[u8; N]) -> Self {
Self::from(&v[..])
}
}
impl Ord for InlineArray {
fn cmp(&self, other: &Self) -> std::cmp::Ordering {
self.as_ref().cmp(other.as_ref())
}
}
impl PartialOrd for InlineArray {
fn partial_cmp(&self, other: &Self) -> Option<std::cmp::Ordering> {
Some(self.cmp(other))
}
}
impl<T: AsRef<[u8]>> PartialEq<T> for InlineArray {
fn eq(&self, other: &T) -> bool {
self.as_ref() == other.as_ref()
}
}
impl PartialEq<[u8]> for InlineArray {
fn eq(&self, other: &[u8]) -> bool {
self.as_ref() == other
}
}
impl Eq for InlineArray {}
impl fmt::Debug for InlineArray {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
self.as_ref().fmt(f)
}
}
#[cfg(test)]
mod tests {
use super::InlineArray;
#[test]
fn inline_array_smoke() {
let ia = InlineArray::from(vec![1, 2, 3]);
assert_eq!(ia, vec![1, 2, 3]);
}
#[test]
fn small_remote_array_smoke() {
let ia = InlineArray::from(&[4; 200][..]);
assert_eq!(ia, vec![4; 200]);
}
#[test]
fn big_remote_array_smoke() {
let ia = InlineArray::from(&[4; 256][..]);
assert_eq!(ia, vec![4; 256]);
}
#[test]
fn boxed_slice_conversion() {
let boite1: Box<[u8]> = Box::new([1, 2, 3]);
let iv1: InlineArray = boite1.into();
assert_eq!(iv1, vec![1, 2, 3]);
let boite2: Box<[u8]> = Box::new([4; 128]);
let iv2: InlineArray = boite2.into();
assert_eq!(iv2, vec![4; 128]);
}
#[test]
fn inline_array_as_mut_identity() {
let initial = &[1];
let mut iv = InlineArray::from(initial);
assert_eq!(initial, &*iv);
assert_eq!(initial, iv.make_mut());
}
fn prop_identity(inline_array: &InlineArray) -> bool {
let mut iv2 = inline_array.clone();
if iv2 != inline_array {
println!("expected clone to equal original");
return false;
}
if *inline_array != *iv2 {
println!("expected AsMut to equal original");
return false;
}
if &*inline_array != iv2.make_mut() {
println!("expected AsMut to equal original");
return false;
}
let buf: &[u8] = inline_array.as_ref();
assert_eq!(buf.as_ptr() as usize % 8, 0);
true
}
#[cfg(feature = "serde")]
fn prop_serde_roundtrip(inline_array: &InlineArray) -> bool {
let ser = bincode::serialize(inline_array).unwrap();
let de: InlineArray = bincode::deserialize(&ser).unwrap();
de == inline_array
}
impl quickcheck::Arbitrary for InlineArray {
fn arbitrary(g: &mut quickcheck::Gen) -> Self {
InlineArray::from(Vec::arbitrary(g))
}
}
quickcheck::quickcheck! {
#[cfg_attr(miri, ignore)]
fn inline_array(item: InlineArray) -> bool {
dbg!(item.len());
assert!(prop_identity(&item));
#[cfg(feature = "serde")]
assert!(prop_serde_roundtrip(&item));
true
}
}
#[test]
fn inline_array_bug_00() {
assert!(prop_identity(&InlineArray::new(&[
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
])));
}
}