1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215
/// # Index iterator implementing the infinity sampler algorithm
///
/// This struct implements the [Iterator] trait and generates an infinite sequence of [usize] insertion indexes for the reservoir. This struct's size is fixed and doesn't depend on N.
///
/// This iterator implements the mathematical core of the infinity sampler. It generates an infinite sequence of insertion indexes from 0 to N-1 for a buffer of size N such that:
/// * First N indexes are `0..=N-1`
/// * The rest of the indexes are generated in a loop of size `N*2`
/// * The older the value, the exponentially less likely it is to be kept
///
/// This works together with the dynamic sampling rate implemented by [SamplingReservoir](crate::SamplingReservoir):
///
/// * The sampling rate is halved every time `N/2` (a _pattern_) values have been positively sampled.
/// * At all times, if the reservoir has consumed `M` values, the buffer will contain an even spread of samples, with the distance between samples being exactly either `floor(log2(M))`` or `ceil(log2(M))`.
/// * Each time exactly `N*(2^M)` values consumed by the Reservoir (i.e. `N + M * N/2` values have been positively sampled), the buffer will contain perfectly evenly spead values with indexes `i*(2^M)`.
///
/// ## Example for N=16
///
/// Consider the following chart showing the insertion indexes for a 16-element buffer. The numbers
/// denote value indexes as seen by the Reservoir and only the values selected by the sampler are shown. The time moves from left to right, top to bottom.
///
/// ```ignore
/// |---------------- buffer -----------------|
/// 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 // pattern 0 (initial loop)
/// - 16 18 20 22 24 26 28 30 // pattern 1 / group 0
/// | 32 36 40 44 // pattern 2 / group 0
/// | 48 52 56 60 / group 1
/// | 64 72 // pattern 3 / group 0
/// r| 80 88 / group 1
/// e| 96 104 / group 2
/// p| 112 120 / group 3
/// e| 128 // pattern 4 / group 0
/// a| 144 / group 1
/// t| 160 / group 2
/// s| 176 / group 3
/// | 192 / group 4
/// | 208 / group 5
/// | 224 / group 6
/// - 240 / group 7
/// ```
///
/// ### Item insertion indexes
///
/// ```ignore
/// Pattern 0: 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
/// Pattern 1: 1 3 5 7 9 11 13 15
/// Pattern 2: 2 6 10 14
/// 3 7 11 15
/// Pattern 3: 4 12
/// 5 13
/// 6 14
/// 7 15
/// Pattenr 4: 8
/// 9
/// 10
/// 11
/// 12
/// 13
/// 14
/// 15
/// ```
///
/// ### Buffer contents
///
/// * After 16 items seen: `0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15`
/// * After 32 items seen: `0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30`
/// * After 64 items seen: `0 4 8 12 16 20 24 28 32 36 40 44 48 52 56 60`
///
#[derive(Clone)]
pub struct InfinitySamplerIndexer<const N: usize> {
iterator_pos: usize,
idx: usize,
left_offset: usize,
step: usize,
}
impl<const N: usize> InfinitySamplerIndexer<N> {
/// Create a new iterator for a buffer of size N, starting at 0.
pub const fn new() -> Self {
assert!(
N.is_power_of_two(),
"Buffer capacity must be a power of two"
);
Self {
iterator_pos: 0,
idx: 1,
left_offset: 1,
step: 2,
}
}
/// Returns the current position of the iterator in terms of total item count.
/// Increases monotonically.
pub fn position(&self) -> usize {
self.iterator_pos
}
/// Turn this iterator around, producing a [ReverseInfinitySamplerIndexer].
/// The next call to [`ReverseInfinitySamplerIndexer::next`] will return the same value as the last call to [`InfinitySamplerIndexer::next`], and then continue backwards.
pub fn reverse(self) -> ReverseInfinitySamplerIndexer<N> {
ReverseInfinitySamplerIndexer {
iterator_pos: self.iterator_pos,
idx: self.idx,
left_offset: self.left_offset,
step: self.step,
}
}
}
impl<const N: usize> Default for InfinitySamplerIndexer<N> {
fn default() -> Self {
Self::new()
}
}
impl<const N: usize> Iterator for InfinitySamplerIndexer<N> {
type Item = usize;
fn next(&mut self) -> Option<Self::Item> {
let idx = self.iterator_pos;
self.iterator_pos += 1;
if idx < N {
return Some(idx);
}
let idx = self.idx;
if self.idx == N - 1 {
// end of a pattern
if self.left_offset == N - 1 {
// restart the loop
self.left_offset = 1;
self.step = 2;
} else {
// move on to the next pattern
self.left_offset += 1;
debug_assert!(self.left_offset < N);
self.step *= 2;
}
self.idx = self.left_offset;
} else if self.idx + self.step >= N {
// move to the next group in the same pattern
self.left_offset += 1;
self.idx = self.left_offset;
} else {
self.idx += self.step;
}
Some(idx)
}
}
/// [InfinitySamplerIndexer], but in the reverse direction.
///
/// Unlike [InfinitySamplerIndexer], this iterator will end after reaching 0.
#[derive(Clone)]
pub struct ReverseInfinitySamplerIndexer<const N: usize> {
iterator_pos: usize,
idx: usize,
left_offset: usize,
step: usize,
}
impl<const N: usize> ReverseInfinitySamplerIndexer<N> {
pub fn position(&self) -> usize {
self.iterator_pos
}
/// Turn this iterator around, producing a [InfinitySamplerIndexer].
/// The next call to [`InfinitySamplerIndexer::next`] will return the same value as the last call to [`ReverseInfinitySamplerIndexer::next`], and then continue backwards.
pub fn reverse(self) -> InfinitySamplerIndexer<N> {
InfinitySamplerIndexer {
iterator_pos: self.iterator_pos,
idx: self.idx,
left_offset: self.left_offset,
step: self.step,
}
}
}
impl<const N: usize> Iterator for ReverseInfinitySamplerIndexer<N> {
type Item = usize;
fn next(&mut self) -> Option<Self::Item> {
if self.iterator_pos == 0 {
return None;
}
self.iterator_pos -= 1;
if self.iterator_pos < N {
return Some(self.iterator_pos);
}
if self.idx == 1 {
// end of a loop
self.left_offset = N - 1;
self.step = N;
self.idx = N - 1;
} else if self.idx == self.left_offset {
if self.left_offset == self.step / 2 {
// end of a pattern
self.step /= 2;
self.left_offset -= 1;
} else {
// end of a group
self.left_offset -= 1;
}
self.idx = self.left_offset + N - self.step;
} else {
self.idx -= self.step;
}
Some(self.idx)
}
}