1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528
use std::fmt::Display;
use crate::Indices;
use crate::{MinMax,here};
/// Reverse a generic slice by reverse iteration.
/// Creates a new Vec. Its naive use for descending sort etc.
/// is to be avoided for efficiency reasons.
pub fn revs<T>(s: &[T]) -> Vec<T> where T: Copy
{ s.iter().rev().copied().collect::<Vec<T>>() }
/// Finds minimum, minimum's first index, maximum, maximum's first index
pub fn minmax<T>(v:&[T]) -> MinMax<T> where T: PartialOrd+Copy {
let (mut min, mut max) = (v[0],v[0]); // initialise both to the first item
let (mut minindex,mut maxindex) = (0,0); // indices of min, max
v.iter().enumerate().skip(1).for_each(|(i,&x)| {
if x < min { min = x; minindex = i }
else if x > max { max = x; maxindex = i }
});
MinMax{min,minindex,max,maxindex}
}
/// Removes repetitions from an explicitly ordered set.
pub fn sansrepeat<T>(s:&[T]) -> Vec<T> where T: PartialOrd+Copy {
if s.len() < 2 { return s.to_vec() };
let mut r:Vec<T> = Vec::new();
let mut last:T = s[0];
r.push(last);
s.iter().skip(1).for_each(|&si| if si != last { last = si; r.push(si) });
r
}
/// Finds the first occurence of item `m` in slice `s` by full iteration.
/// Returns `Some(index)` to the slice or `None` (when it has gone to the end).
/// Note that it uses only partial order and thus accepts any item that is neither
/// greater nor smaller than `m` (equality by default).
/// Suitable for small unordered sets.
/// For longer lists or repeated membership tests, it is better to
/// index sort them and then use faster binary `memsearch` (see below).
pub fn member<T>(s:&[T], m:T) -> Option<usize> where T: PartialOrd+Copy {
for (i,&x) in s.iter().enumerate() {
if x < m { continue }
if x > m { continue }
return Some(i)
};
None
}
/// Binary search of an explicitly sorted list (in ascending order).
/// Returns `Some(index)` of any item that is
/// neither smaller nor greater than val.
/// When none are found, returns `None`.
/// Example use: membership of an ascending ordered set.
pub fn memsearch<T>(s:&[T], val: T) -> Option<usize> where T: PartialOrd {
let n = s.len();
if n == 0 { return None } // the slice s is empty
if n == 1 { // the slice contains a single item
if s[0] < val { return None }
if s[0] > val { return None }
return Some(0) }
let mut lo = 0_usize; // initial index of the low limit
if val < s[lo] { return None } // val is smaller than the smallest item in s
let mut hi = n-1; // index of the last item
if s[hi] < val { return None }; // val exceeds the greatest item in s
loop {
let gap = hi - lo;
if gap <= 1 { return None } // termination, nothing left in the middle
let mid = hi-gap/2;
// if mid's value is greater than val, reduce the high index to it
if s[mid] > val { hi = mid; continue }
// if mid's value is smaller than val, raise the low index to it
if s[mid] < val { lo = mid; continue }
return Some(mid) // otherwise found it!
}
}
/// Binary search of an explicitly sorted list (in descending order).
/// Returns `Some(index)` of any item that is
/// neither smaller nor greater than val.
/// When none are found, returns `None`.
/// Example use: membership of an descending ordered set.
pub fn memsearchdesc<T>(s:&[T], val: T) -> Option<usize> where T: PartialOrd {
let n = s.len();
if n == 0 { return None } // the slice s is empty
if n == 1 { // the slice contains a single item
if s[0] < val { return None }
if s[0] > val { return None }
return Some(0) }
let mut lo = n-1; // initial index of the low limit
if val < s[lo] { return None } // val is smaller than the smallest item in s
let mut hi = 0_usize; // index of the last item
if val > s[hi] { return None }; // val exceeds the greatest item in s
loop {
let gap = lo - hi;
if gap <= 1 { return None } // termination, nothing left in the middle
let mid = lo-gap/2;
// if mid's value is greater than val, increase the high index to it
if s[mid] > val { hi = mid; continue }
// if mid's value is smaller than val, lower the low index to it
if s[mid] < val { lo = mid; continue }
return Some(mid) // otherwise found it!
}
}
/// Binary search of an indexed list (in ascending order).
/// Returns `Some(index)` of any item that is
/// neither smaller nor greater than val.
/// When none are found, returns `None`.
/// Example use: membership of an indexed ordered set.
pub fn memsearch_indexed<T>(s:&[T], i:&[usize], val: T) -> Option<usize> where T: PartialOrd {
let n = s.len();
if n == 0 { return None } // the slice s is empty
if n == 1 { // the slice contains a single item
if s[0] < val { return None }
if s[0] > val { return None }
return Some(0) }
let mut lo = 0_usize; // initial index of the low limit
if val < s[i[lo]] { return None } // val is smaller than the smallest item in s
let mut hi = n-1; // index of the last item
if s[i[hi]] < val { return None }; // val exceeds the greatest item in s
loop {
let gap = hi - lo;
if gap <= 1 { return None } // termination, nothing left in the middle
let mid = hi-gap/2;
// if mid's value is greater than val, reduce the high index to it
if s[i[mid]] > val { hi = mid; continue }
// if mid's value is smaller than val, raise the low index to it
if s[i[mid]] < val { lo = mid; continue }
return Some(mid) // otherwise found it!
}
}
/// Binary search of an indexed list (in descending order).
/// Returns `Some(index)` of any item that is
/// neither smaller nor greater than val.
/// When none are found, returns `None`.
/// Example use: membership of an indexed descending set.
pub fn memsearchdesc_indexed<T>(s:&[T], i:&[usize], val:T) -> Option<usize> where T: PartialOrd {
let n = s.len();
if n == 0 { return None } // the slice s is empty
if n == 1 { // the slice contains a single item
if s[0] < val { return None }
if s[0] > val { return None }
return Some(0) }
let mut lo = n-1; // initial index of the low limit
if val < s[i[lo]] { return None } // val is smaller than the smallest item in s
let mut hi = 0_usize; // index of the last item
if s[i[hi]] < val { return None }; // val exceeds the greatest item in s
loop {
let gap = lo-hi;
if gap <= 1 { return None } // termination, nothing left in the middle
let mid = lo-gap/2;
// if mid's value is greater than val, reduce the high index to it
if s[i[mid]] > val { hi = mid; continue }
// if mid's value is smaller than val, raise the low index to it
if s[i[mid]] < val { lo = mid; continue }
return Some(mid) // otherwise found it!
}
}
/// Binary search of an explicitly sorted list in ascending order.
/// Returns an index of the first item that is greater than val.
/// When none are greater, returns s.len() (invalid index but logical).
/// The complement index (the result subtracted from s.len()), gives
/// the first item in descending order that is not greater than val.
/// Note that both complements of binsearch and binsearchdesc,
/// in their respective opposite orderings, refer to the same preceding item
/// iff there exists precisely one item equal to val.
/// However, there can be more than one such items or none.
/// Example use: looking up cummulative probability density functions.
pub fn binsearch<T>(s:&[T], val:T) -> usize where T: PartialOrd {
let n = s.len();
if n == 0 { panic!("{} empty vec of data!",here!()) };
let mut hi = n-1; // valid index of the last item
if s[0] > val { return 0_usize }; // the first item already exceeds val
if s[hi] <= val { return n }; // no items exceed val
let mut lo = 0_usize; // initial index of the low limit
loop {
let gap = hi-lo;
if gap <= 1 { return hi };
let mid = lo+gap/2;
// mid item is greater than val, reduce the high index to it
if s[mid] > val { hi = mid; continue };
// else raise the low index to mid; jumps also over any multiple equal values.
lo = mid;
}
}
/// Binary search of an explicitly sorted list in descending order.
/// Returns an index of the first item that is smaller than val.
/// When none are smaller, returns s.len() (invalid index but logical).
/// The complement index (the result subtracted from s.len()), gives
/// the first item in ascending order that is not smaller than val.
/// Note that both complements of binsearch and binsearchdesc,
/// in their respective opposite orderings, refer to the same preceding item
/// iff there exists precisely one item equal to val.
/// However, there can be more than one such items or none.
/// Example use: looking up cummulative probability density functions.
pub fn binsearchdesc<T>(s:&[T], val:T) -> usize where T: PartialOrd {
let n = s.len();
if n == 0 { panic!("{} empty vec of data!",here!()) };
let mut hi = n-1; // valid index of the last item
if s[0] < val { return 0_usize }; // the first item is already less than val
if s[hi] >= val { return n }; // no item is less than val
let mut lo = 0_usize; // initial index of the low limit
loop {
let gap = hi-lo;
if gap <= 1 { return hi };
let mid = lo+gap/2;
//mid item is less than val, reduce the high index to it
if s[mid] < val { hi = mid; continue };
// else raise the low index to mid; jumps also over any multiple equal values.
lo = mid;
}
}
/// Counts occurrences of val, using previously obtained
/// ascending explicit sort `sasc` and descending sort `sdesc`.
/// This is to facilitate counting of many
/// different values without ever having to repeat the sorting.
/// This function is very efficient at counting
/// numerous repetitions in large sets (e.g. probabilities in stats).
/// Binary search from both ends is deployed: O(2log(n)).
/// # Example:
/// ```
/// use crate::indxvec::Indices;
/// use indxvec::merge::{sortidx,occurs};
/// let s = [3.141,3.14159,3.14159,3.142];
/// let sindx = sortidx(&s); // only one sort ever
/// let sasc = sindx.unindex(&s,true);
/// let sdesc = sindx.unindex(&s,false);
/// assert_eq!(occurs(&sasc,&sdesc,3.14159),2);
/// ```
pub fn occurs<T>(sasc:&[T],sdesc:&[T],val:T) -> usize where T: PartialOrd+Copy+Display {
let ascindex = binsearch(sasc, val);
if ascindex == 0 { return 0 }; // val not found
let descindex = binsearchdesc(sdesc, val);
if descindex == 0 { return 0 };
ascindex + descindex - sasc.len()
}
/// Unites two ascending explicitly sorted generic vectors,
/// by classical selection and copying of their head items into the result.
/// This is the union of two ordered sets.
pub fn unite<T>(v1: &[T], v2: &[T]) -> Vec<T> where T: PartialOrd+Copy, {
let l1 = v1.len();
let l2 = v2.len();
let mut resvec:Vec<T> = Vec::new();
let mut i1 = 0;
let mut i2 = 0;
loop {
if i1 == l1 { // v1 is now processed
v2.iter().skip(i2).for_each(|&v| resvec.push(v)); // copy out the rest of v2
break // and terminate
}
if i2 == l2 { // v2 is now processed
v1.iter().skip(i1).for_each(|&v| resvec.push(v)); // copy out the rest of v1
break // and terminate
}
if v1[i1] < v2[i2] { resvec.push(v1[i1]); i1 += 1; continue };
if v1[i1] > v2[i2] { resvec.push(v2[i2]); i2 += 1; continue };
// here they are equal, so consume one, skip the other
resvec.push(v1[i1]); i1 += 1; i2 += 1
}
resvec
}
/// Unites two ascending index-sorted generic vectors.
/// This is the union of two index ordered sets.
/// Returns a single explicitly ordered set.
pub fn unite_indexed<T>(v1: &[T], ix1: &[usize], v2: &[T], ix2: &[usize]) -> Vec<T> where T: PartialOrd+Copy, {
let l1 = v1.len();
let l2 = v2.len();
let mut resvec:Vec<T> = Vec::new();
let mut i1 = 0;
let mut i2 = 0;
loop {
if i1 == l1 { // v1 is now processed
for i in i2..l2 { resvec.push(v2[ix2[i]]) } // copy out the rest of v2
break // and terminate
}
if i2 == l2 { // v2 is now processed
for i in i1..l1 { resvec.push(v1[ix1[i]]) } // copy out the rest of v1
break // and terminate
}
if v1[ix1[i1]] < v2[ix2[i2]] { resvec.push(v1[ix1[i1]]); i1 += 1; continue };
if v1[ix1[i1]] > v2[ix2[i2]] { resvec.push(v2[ix2[i2]]); i2 += 1; continue };
// here they are equal, so consume the first, skip both
resvec.push(v1[ix1[i1]]); i1 += 1; i2 += 1
}
resvec
}
/// Intersects two ascending explicitly sorted generic vectors.
pub fn intersect<T>(v1: &[T], v2: &[T]) -> Vec<T> where T: PartialOrd+Copy, {
let l1 = v1.len();
let l2 = v2.len();
let mut resvec:Vec<T> = Vec::new();
let mut i1 = 0;
let mut i2 = 0;
loop {
if i1 == l1 { break } // v1 is now empty
if i2 == l2 { break } // v2 is now empty
if v1[i1] < v2[i2] { i1 += 1; continue };
if v1[i1] > v2[i2] { i2 += 1; continue };
// here they are equal, so consume one, skip both
resvec.push(v1[i1]); i1 += 1; i2 += 1
}
resvec
}
/// Intersects two ascending index-sorted generic vectors.
/// Returns a single explicitly ordered set.
pub fn intersect_indexed<T>(v1: &[T], ix1: &[usize], v2: &[T], ix2: &[usize]) -> Vec<T> where T: PartialOrd+Copy, {
let l1 = v1.len();
let l2 = v2.len();
let mut resvec:Vec<T> = Vec::new();
let mut i1 = 0;
let mut i2 = 0;
loop {
if i1 == l1 { break } // v1 is now processed, terminate
if i2 == l2 { break } // v2 is now processed, terminate
if v1[ix1[i1]] < v2[ix2[i2]] { i1 += 1; continue }; // skip v1 value
if v1[ix1[i1]] > v2[ix2[i2]] { i2 += 1; continue }; // skip v2 value
// here they are equal, so consume the first
resvec.push(v1[ix1[i1]]); i1 += 1; i2 += 1
}
resvec
}
/// Sets difference: deleting elements of the second from the first.
/// Two ascending explicitly sorted generic vectors.
pub fn diff<T>(v1: &[T], v2: &[T]) -> Vec<T> where T: PartialOrd+Copy, {
let l1 = v1.len();
let l2 = v2.len();
let mut resvec:Vec<T> = Vec::new();
let mut i1 = 0;
let mut i2 = 0;
loop {
if i1 == l1 { break } // v1 is now empty
if i2 == l2 {
v1.iter().skip(i1).for_each(|&v| resvec.push(v)); // copy out the rest of v1
break // and terminate
}
if v1[i1] < v2[i2] { resvec.push(v1[i1]); i1 += 1; continue }; // this v1 survived
if v1[i1] > v2[i2] { i2 += 1; continue }; // this v2 is unused
// here they are equal, so subtract them out, i.e. skip both
i1 += 1; i2 += 1
}
resvec
}
/// Sets difference: deleting elements of the second from the first.
/// Two ascending index sorted generic vectors.
pub fn diff_indexed<T>(v1: &[T], ix1: &[usize], v2: &[T], ix2: &[usize]) -> Vec<T> where T: PartialOrd+Copy, {
let l1 = v1.len();
let l2 = v2.len();
let mut resvec:Vec<T> = Vec::new();
let mut i1 = 0;
let mut i2 = 0;
loop {
if i1 == l1 { break } // v1 is now empty
if i2 == l2 {
for i in i1..l1 { resvec.push(v1[ix1[i]]) } // copy out the rest of v1
break // and terminate
}
if v1[ix1[i1]] < v2[ix2[i2]] { resvec.push(v1[ix1[i1]]); i1 += 1; continue }; // this v1 survived
if v1[ix1[i1]] > v2[ix2[i2]] { i2 += 1; continue }; // this v2 is unused
// here they are equal, so subtract them out, i.e. skip both
i1 += 1; i2 += 1
}
resvec
}
/// Merges two ascending sorted generic vectors,
/// by classical selection and copying of their head items into the result.
/// Consider using merge_indexed instead, especially for non-primitive end types T.
pub fn merge<T>(v1: &[T], v2: &[T]) -> Vec<T> where T: PartialOrd+Copy, {
let l1 = v1.len();
let l2 = v2.len();
let mut resvec:Vec<T> = Vec::with_capacity(l1+l2);
let mut i1 = 0;
let mut i2 = 0;
loop {
if i1 == l1 { // v1 is now processed
v2.iter().skip(i2).for_each(|&v| resvec.push(v)); // copy out the rest of v2
break // and terminate
}
if i2 == l2 { // v2 is now processed
v1.iter().skip(i1).for_each(|&v| resvec.push(v)); // copy out the rest of v1
break // and terminate
}
if v1[i1] < v2[i2] { resvec.push(v1[i1]); i1 += 1; continue };
if v1[i1] > v2[i2] { resvec.push(v2[i2]); i2 += 1; continue };
// here they are equal, so consume both
resvec.push(v1[i1]); i1 += 1;
resvec.push(v2[i2]); i2 += 1
}
resvec
}
/// Merges two ascending sort indices.
/// Data is not shuffled at all, v2 is just concatenated onto v1
/// in one go and both remain in their original order.
/// Returns the concatenated vector and a new valid sort index into it.
pub fn merge_indexed<T>(v1:&[T], idx1: &[usize], v2: &[T], idx2: &[usize]) -> ( Vec<T>,Vec<usize> )
where T: PartialOrd+Copy, {
let res = [v1,v2].concat(); // no individual shuffling, just one concatenation
let l = idx1.len();
// shift up all items in idx2 by length of indx1, so that they will
// refer correctly to the second part of the concatenated vector
let idx2shifted:Vec<usize> = idx2.iter().map(|x| l+x ).collect();
// now merge the indices
let residx = merge_indices(&res,idx1,&idx2shifted);
( res, residx )
}
/// Merges the sort indices of two concatenated vectors.
/// Data in s is not changed at all, only consulted for the comparisons.
/// This function is used by `mergesort` and `merge_indexed`.
fn merge_indices<T>(s: &[T], idx1:&[usize], idx2:&[usize]) -> Vec<usize>
where T: PartialOrd+Copy, {
let l1 = idx1.len();
let l2 = idx2.len();
let mut residx:Vec<usize> = Vec::with_capacity(l1+l2);
let mut i1 = 0;
let mut i2 = 0;
let mut head1 = s[idx1[i1]];
let mut head2 = s[idx2[i2]];
loop {
if head1 < head2 {
residx.push(idx1[i1]);
i1 += 1;
if i1 == l1 { // idx1 is now fully processed
idx2.iter().skip(i2).for_each(|&v| residx.push(v)); // copy out the rest of idx2
break // and terminate
}
head1 = s[idx1[i1]]; // else move to the next idx1 value
continue
}
if head1 > head2 {
residx.push(idx2[i2]);
i2 += 1;
if i2 == l2 { // idx2 is now processed
idx1.iter().skip(i1).for_each(|&v| residx.push(v)); // copy out the rest of idx1
break // and terminate
}
head2 = s[idx2[i2]]; // else move to the next idx2 value
continue
}
// here the heads are equal, so consume both
residx.push(idx1[i1]);
i1 += 1;
if i1 == l1 { // idx1 is now fully processed
idx2.iter().skip(i2).for_each(|&v| residx.push(v)); // copy out the rest of idx2
break // and terminate
}
head1 = s[idx1[i1]];
residx.push(idx2[i2]);
i2 += 1;
if i2 == l2 { // idx2 is now processed
idx1.iter().skip(i1).for_each(|&v| residx.push(v)); // copy out the rest of idx1
break // and terminate
}
head2 = s[idx2[i2]];
}
residx
}
/// Doubly recursive non-destructive merge sort.
/// The data is not moved or mutated.
/// Efficiency is comparable to quicksort.
/// Returns a vector of indices to s from i to i+n,
/// such that the indexed values are in ascending sort order (a sort index).
/// Only the index values are being moved.
pub fn mergesort<T>(s:&[T], i:usize, n:usize) -> Vec<usize>
where T: PartialOrd+Copy {
if n == 1 { let res = vec![i]; return res }; // recursion termination
if n == 2 { // also terminate with two sorted items (for efficiency)
if s[i+1] < s[i] { return vec![i+1,i] } else { return vec![i,i+1] }
}
let n1 = n / 2; // the first part (the parts do not have to be the same)
let n2 = n - n1; // the remaining second part
let sv1 = mergesort(s, i, n1); // recursively sort the first half
let sv2 = mergesort(s, i+n1, n2); // recursively sort the second half
// Now merge the two sorted indices into one and return it
merge_indices(s,&sv1,&sv2)
}
/// A wrapper for mergesort, to obtain the sort index
/// of the (whole) input vector. Simpler than sortm.
pub fn sortidx<T>(s:&[T]) -> Vec<usize> where T:PartialOrd+Copy {
mergesort(s,0,s.len())
}
/// Immutable sort. Returns new sorted vector (ascending or descending).
/// Is a wrapper for mergesort. Passes the boolean flag 'ascending' onto 'unindex'.
/// Mergesort by itself always produces only an ascending index.
pub fn sortm<T>(s:&[T], ascending:bool) -> Vec<T> where T: PartialOrd+Copy {
mergesort(s,0,s.len()).unindex(s,ascending)
}
/// Fast ranking of many T items, with only `n*(log(n)+1)` complexity.
/// Ranking is done by inverting the sort index.
/// Sort index is in sorted order, giving data positions.
/// Ranking is in data order, giving sorted order positions.
/// Thus sort index and ranks are in an inverse relationship.
/// They are easily converted by `.invindex()` (for: invert index).
pub fn rank<T>(s:&[T], ascending:bool) -> Vec<usize> where T:PartialOrd+Copy {
let n = s.len();
let sortindex = mergesort(s,0,n);
let mut rankvec:Vec<usize> = vec![0;n];
if ascending {
for (i,&sortpos) in sortindex.iter().enumerate() {
rankvec[sortpos] = i
}
} else { // rank in the order of descending values
for (i,&sortpos) in sortindex.iter().enumerate() {
rankvec[sortpos] = n-i-1
}
}
rankvec
}