1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
use std::fmt::Display;

use crate::Indices;
use crate::{MinMax,here};

/// Reverse a generic slice by reverse iteration.
/// Creates a new Vec. Its naive use for descending sort etc. 
/// is to be avoided for efficiency reasons. 
pub fn revs<T>(s: &[T]) -> Vec<T> where T: Copy 
    { s.iter().rev().copied().collect::<Vec<T>>() }

/// Finds minimum, minimum's first index, maximum, maximum's first index 
pub fn minmax<T>(v:&[T])  -> MinMax<T> where T: PartialOrd+Copy {  
    let (mut min, mut max) = (v[0],v[0]); // initialise both to the first item 
    let (mut minindex,mut maxindex) = (0,0); // indices of min, max
    v.iter().enumerate().skip(1).for_each(|(i,&x)| { 
        if x < min { min = x; minindex = i } 
        else if x > max { max = x; maxindex = i }
    });
    MinMax{min,minindex,max,maxindex}
}

/// Removes repetitions from an explicitly ordered set.
pub fn sansrepeat<T>(s:&[T]) -> Vec<T> where T: PartialOrd+Copy {
    if s.len() < 2 { return s.to_vec() };
    let mut r:Vec<T> = Vec::new();  
    let mut last:T = s[0];
    r.push(last);  
    s.iter().skip(1).for_each(|&si| if si != last { last = si; r.push(si) }); 
    r
}

/// Finds the first occurence of item `m` in slice `s` by full iteration.
/// Returns `Some(index)` to the slice or `None` (when it  has gone to the end).
/// Note that it uses only partial order and thus accepts any item that is neither 
/// greater nor smaller than `m` (equality by default). 
/// Suitable for small unordered sets. 
/// For longer lists or repeated membership tests, it is better to
/// index sort them and then use faster binary `memsearch` (see below).
pub fn member<T>(s:&[T], m:T) -> Option<usize> where T: PartialOrd+Copy {
    for (i,&x) in s.iter().enumerate() { 
        if x < m { continue }
        if x > m { continue }
        return Some(i) 
    };
    None
}

/// Binary search of an explicitly sorted list (in ascending order).
/// Returns `Some(index)` of any item that is 
/// neither smaller nor greater than val. 
/// When none are found, returns `None`.
/// Example use: membership of an ascending ordered set. 
pub fn memsearch<T>(s:&[T], val: T)  -> Option<usize> where T: PartialOrd {     
    let n = s.len();
    if n == 0 { return None } // the slice s is empty
    if n == 1 {  // the slice contains a single item 
        if s[0] < val { return None }
        if s[0] > val { return None }
        return Some(0) } 
    let mut lo = 0_usize; // initial index of the low limit   
    if val < s[lo] { return None } // val is smaller than the smallest item in s 
    let mut hi = n-1; // index of the last item
    if s[hi] < val { return None }; // val exceeds the greatest item in s   
    loop {
        let gap = hi - lo;
        if gap <= 1 { return None } // termination, nothing left in the middle
        let mid = hi-gap/2; 
        // if mid's value is greater than val, reduce the high index to it
        if s[mid] > val { hi = mid; continue } 
        // if mid's value is smaller than val, raise the low index to it
        if s[mid] < val { lo = mid; continue } 
        return Some(mid) // otherwise found it!     
    }
}

/// Binary search of an explicitly sorted list (in descending order).
/// Returns `Some(index)` of any item that is 
/// neither smaller nor greater than val. 
/// When none are found, returns `None`.
/// Example use: membership of an descending ordered set. 
pub fn memsearchdesc<T>(s:&[T], val: T)  -> Option<usize> where T: PartialOrd {     
    let n = s.len();
    if n == 0 { return None } // the slice s is empty
    if n == 1 {  // the slice contains a single item 
        if s[0] < val { return None }
        if s[0] > val { return None }
        return Some(0) } 
    let mut lo = n-1; // initial index of the low limit   
    if val < s[lo] { return None } // val is smaller than the smallest item in s 
    let mut hi = 0_usize; // index of the last item
    if val > s[hi]  { return None }; // val exceeds the greatest item in s   
    loop {
        let gap = lo - hi;
        if gap <= 1 { return None } // termination, nothing left in the middle
        let mid = lo-gap/2; 
        // if mid's value is greater than val, increase the high index to it
        if s[mid] > val { hi = mid; continue } 
        // if mid's value is smaller than val, lower the low index to it
        if s[mid] < val { lo = mid; continue } 
        return Some(mid) // otherwise found it!     
    }
}

/// Binary search of an indexed list (in ascending order).
/// Returns `Some(index)` of any item that is 
/// neither smaller nor greater than val. 
/// When none are found, returns `None`.
/// Example use: membership of an indexed ordered set. 
pub fn memsearch_indexed<T>(s:&[T], i:&[usize], val: T)  -> Option<usize> where T: PartialOrd {     
    let n = s.len();
    if n == 0 { return None } // the slice s is empty
    if n == 1 {  // the slice contains a single item 
        if s[0] < val { return None }
        if s[0] > val { return None }
        return Some(0) } 
    let mut lo = 0_usize; // initial index of the low limit   
    if val < s[i[lo]] { return None } // val is smaller than the smallest item in s 
    let mut hi = n-1; // index of the last item
    if s[i[hi]] < val { return None }; // val exceeds the greatest item in s   
    loop {
        let gap = hi - lo;
        if gap <= 1 { return None } // termination, nothing left in the middle
        let mid = hi-gap/2; 
        // if mid's value is greater than val, reduce the high index to it
        if s[i[mid]] > val { hi = mid; continue } 
        // if mid's value is smaller than val, raise the low index to it
        if s[i[mid]] < val { lo = mid; continue } 
        return Some(mid) // otherwise found it!     
    }
}

/// Binary search of an indexed list (in descending order).
/// Returns `Some(index)` of any item that is 
/// neither smaller nor greater than val. 
/// When none are found, returns `None`.
/// Example use: membership of an indexed descending set. 
pub fn memsearchdesc_indexed<T>(s:&[T], i:&[usize], val:T)  -> Option<usize> where T: PartialOrd {     
    let n = s.len();
    if n == 0 { return None } // the slice s is empty
    if n == 1 {  // the slice contains a single item 
        if s[0] < val { return None }
        if s[0] > val { return None }
        return Some(0) } 
    let mut lo = n-1; // initial index of the low limit   
    if val < s[i[lo]] { return None } // val is smaller than the smallest item in s 
    let mut hi = 0_usize; // index of the last item
    if s[i[hi]] < val { return None }; // val exceeds the greatest item in s   
    loop {
        let gap = lo-hi;
        if gap <= 1 { return None } // termination, nothing left in the middle
        let mid = lo-gap/2; 
        // if mid's value is greater than val, reduce the high index to it
        if s[i[mid]] > val { hi = mid; continue } 
        // if mid's value is smaller than val, raise the low index to it
        if s[i[mid]] < val { lo = mid; continue } 
        return Some(mid) // otherwise found it!     
    }
}

/// Binary search of an explicitly sorted list in ascending order.
/// Returns an index of the first item that is greater than val. 
/// When none are greater, returns s.len() (invalid index but logical).
/// The complement index (the result subtracted from s.len()), gives
/// the first item in descending order that is not greater than val.
/// Note that both complements of binsearch and binsearchdesc,
/// in their respective opposite orderings, refer to the same preceding item
/// iff there exists precisely one item equal to val.
/// However, there can be more than one such items or none.
/// Example use: looking up cummulative probability density functions. 
pub fn binsearch<T>(s:&[T], val:T)  -> usize where T: PartialOrd {     
    let n = s.len();
    if n == 0 { panic!("{} empty vec of data!",here!()) }; 
    let mut hi = n-1; // valid index of the last item 
    if s[0] > val { return 0_usize }; // the first item already exceeds val
    if s[hi] <= val { return n }; // no items exceed val
    let mut lo = 0_usize; // initial index of the low limit     
    loop {
        let gap = hi-lo;
        if gap <= 1 { return hi };
        let mid = lo+gap/2;
        // mid item is greater than val, reduce the high index to it
        if s[mid] > val { hi = mid; continue };    
        // else raise the low index to mid; jumps also over any multiple equal values. 
        lo = mid;
    }  
}
/// Binary search of an explicitly sorted list in descending order.
/// Returns an index of the first item that is smaller than val. 
/// When none are smaller, returns s.len() (invalid index but logical).
/// The complement index (the result subtracted from s.len()), gives
/// the first item in ascending order that is not smaller than val.
/// Note that both complements of binsearch and binsearchdesc,
/// in their respective opposite orderings, refer to the same preceding item
/// iff there exists precisely one item equal to val.
/// However, there can be more than one such items or none.
/// Example use: looking up cummulative probability density functions. 
pub fn binsearchdesc<T>(s:&[T], val:T) -> usize where T: PartialOrd {     
    let n = s.len();
    if n == 0 { panic!("{} empty vec of data!",here!()) }; 
    let mut hi = n-1; // valid index of the last item 
    if s[0] < val { return 0_usize }; // the first item is already less than val
    if s[hi] >= val { return n }; // no item is less than val 
    let mut lo = 0_usize; // initial index of the low limit     
    loop {
        let gap = hi-lo;
        if gap <= 1 { return hi };
        let mid = lo+gap/2;
        //mid item is less than val, reduce the high index to it
        if s[mid] < val { hi = mid; continue };    
        // else raise the low index to mid; jumps also over any multiple equal values. 
        lo = mid;
    }  
}

/// Counts occurrences of val, using previously obtained 
/// ascending explicit sort `sasc` and descending sort `sdesc`.
/// This is to facilitate counting of many
/// different values without ever having to repeat the sorting.
/// This function is very efficient at counting 
/// numerous repetitions in large sets (e.g. probabilities in stats).
/// Binary search from both ends is deployed: O(2log(n)).
/// # Example:
/// ```
/// use crate::indxvec::Indices;
/// use indxvec::merge::{sortidx,occurs};
/// let s = [3.141,3.14159,3.14159,3.142];
/// let sindx = sortidx(&s); // only one sort ever
/// let sasc = sindx.unindex(&s,true);
/// let sdesc = sindx.unindex(&s,false);
/// assert_eq!(occurs(&sasc,&sdesc,3.14159),2);
/// ```
pub fn occurs<T>(sasc:&[T],sdesc:&[T],val:T) -> usize where T: PartialOrd+Copy+Display {
    let ascindex = binsearch(sasc, val); 
    if ascindex == 0 { return 0 }; // val not found 
    let descindex = binsearchdesc(sdesc, val);
    if descindex == 0 { return 0 };
    ascindex + descindex - sasc.len()
}

/// Unites two ascending explicitly sorted generic vectors,
/// by classical selection and copying of their head items into the result.
/// This is the union of two ordered sets.
pub fn unite<T>(v1: &[T], v2: &[T]) -> Vec<T> where T: PartialOrd+Copy, {  
    let l1 = v1.len();
    let l2 = v2.len();
    let mut resvec:Vec<T> = Vec::new();
    let mut i1 = 0;
    let mut i2 = 0;

    loop {
        if i1 == l1 { // v1 is now processed
            v2.iter().skip(i2).for_each(|&v| resvec.push(v)); // copy out the rest of v2
            break // and terminate
        }
        if i2 == l2 { // v2 is now processed
            v1.iter().skip(i1).for_each(|&v| resvec.push(v)); // copy out the rest of v1
            break // and terminate
        }
        if v1[i1] < v2[i2] { resvec.push(v1[i1]); i1 += 1; continue };
        if v1[i1] > v2[i2] { resvec.push(v2[i2]); i2 += 1; continue }; 
        // here they are equal, so consume one, skip the other
        resvec.push(v1[i1]); i1 += 1; i2 += 1
    }
    resvec
}

/// Unites two ascending index-sorted generic vectors.
/// This is the union of two index ordered sets.
/// Returns a single explicitly ordered set.
pub fn unite_indexed<T>(v1: &[T], ix1: &[usize], v2: &[T], ix2: &[usize]) -> Vec<T> where T: PartialOrd+Copy, {  
    let l1 = v1.len();
    let l2 = v2.len();
    let mut resvec:Vec<T> = Vec::new();
    let mut i1 = 0;
    let mut i2 = 0;

    loop {
        if i1 == l1 { // v1 is now processed
            for i in i2..l2 { resvec.push(v2[ix2[i]]) } // copy out the rest of v2
            break // and terminate
        }
        if i2 == l2 { // v2 is now processed
            for i in i1..l1 { resvec.push(v1[ix1[i]]) } // copy out the rest of v1
            break // and terminate
        }
        if v1[ix1[i1]] < v2[ix2[i2]] { resvec.push(v1[ix1[i1]]); i1 += 1; continue };
        if v1[ix1[i1]] > v2[ix2[i2]] { resvec.push(v2[ix2[i2]]); i2 += 1; continue }; 
        // here they are equal, so consume the first, skip both
        resvec.push(v1[ix1[i1]]); i1 += 1; i2 += 1
    }
    resvec
}

/// Intersects two ascending explicitly sorted generic vectors.
pub fn intersect<T>(v1: &[T], v2: &[T]) -> Vec<T> where T: PartialOrd+Copy, {  
    let l1 = v1.len();
    let l2 = v2.len();
    let mut resvec:Vec<T> = Vec::new();
    let mut i1 = 0;
    let mut i2 = 0;

    loop {
        if i1 == l1 {  break } // v1 is now empty 
        if i2 == l2 {  break } // v2 is now empty 
        if v1[i1] < v2[i2] { i1 += 1; continue };
        if v1[i1] > v2[i2] { i2 += 1; continue }; 
        // here they are equal, so consume one, skip both
        resvec.push(v1[i1]); i1 += 1; i2 += 1
    }
    resvec
}

/// Intersects two ascending index-sorted generic vectors. 
/// Returns a single explicitly ordered set.
pub fn intersect_indexed<T>(v1: &[T], ix1: &[usize], v2: &[T], ix2: &[usize]) -> Vec<T> where T: PartialOrd+Copy, {  
    let l1 = v1.len();
    let l2 = v2.len();
    let mut resvec:Vec<T> = Vec::new();
    let mut i1 = 0;
    let mut i2 = 0;

    loop {
        if i1 == l1 { break } // v1 is now processed, terminate 
        if i2 == l2 { break }  // v2 is now processed, terminate
        if v1[ix1[i1]] < v2[ix2[i2]] { i1 += 1; continue }; // skip v1 value
        if v1[ix1[i1]] > v2[ix2[i2]] { i2 += 1; continue }; // skip v2 value
        // here they are equal, so consume the first
        resvec.push(v1[ix1[i1]]); i1 += 1; i2 += 1
    }
    resvec
}

/// Sets difference: deleting elements of the second from the first.
/// Two ascending explicitly sorted generic vectors.
pub fn diff<T>(v1: &[T], v2: &[T]) -> Vec<T> where T: PartialOrd+Copy, {  
    let l1 = v1.len();
    let l2 = v2.len();
    let mut resvec:Vec<T> = Vec::new();
    let mut i1 = 0;
    let mut i2 = 0;

    loop {
        if i1 == l1 { break } // v1 is now empty 
        if i2 == l2 { 
            v1.iter().skip(i1).for_each(|&v| resvec.push(v)); // copy out the rest of v1
            break // and terminate
        }
        if v1[i1] < v2[i2] { resvec.push(v1[i1]); i1 += 1; continue }; // this v1 survived
        if v1[i1] > v2[i2] { i2 += 1; continue }; // this v2 is unused
        // here they are equal, so subtract them out, i.e. skip both
        i1 += 1; i2 += 1
    }
    resvec
}

/// Sets difference: deleting elements of the second from the first.
/// Two ascending index sorted generic vectors.
pub fn diff_indexed<T>(v1: &[T], ix1: &[usize], v2: &[T], ix2: &[usize]) -> Vec<T> where T: PartialOrd+Copy, {  
    let l1 = v1.len();
    let l2 = v2.len();
    let mut resvec:Vec<T> = Vec::new();
    let mut i1 = 0;
    let mut i2 = 0;

    loop {
        if i1 == l1 { break } // v1 is now empty 
        if i2 == l2 { 
            for i in i1..l1 { resvec.push(v1[ix1[i]]) } // copy out the rest of v1
            break // and terminate
        }
        if v1[ix1[i1]] < v2[ix2[i2]] { resvec.push(v1[ix1[i1]]); i1 += 1; continue }; // this v1 survived
        if v1[ix1[i1]] > v2[ix2[i2]] { i2 += 1; continue }; // this v2 is unused
        // here they are equal, so subtract them out, i.e. skip both
        i1 += 1; i2 += 1
    }
    resvec
}

/// Merges two ascending sorted generic vectors,
/// by classical selection and copying of their head items into the result.
/// Consider using merge_indexed instead, especially for non-primitive end types T. 
pub fn merge<T>(v1: &[T], v2: &[T]) -> Vec<T> where T: PartialOrd+Copy, {  
    let l1 = v1.len();
    let l2 = v2.len();
    let mut resvec:Vec<T> = Vec::with_capacity(l1+l2);
    let mut i1 = 0;
    let mut i2 = 0;
    loop {
        if i1 == l1 { // v1 is now processed
            v2.iter().skip(i2).for_each(|&v| resvec.push(v)); // copy out the rest of v2
            break // and terminate
        }
        if i2 == l2 { // v2 is now processed
            v1.iter().skip(i1).for_each(|&v| resvec.push(v)); // copy out the rest of v1
            break // and terminate
        }
        if v1[i1] < v2[i2] { resvec.push(v1[i1]); i1 += 1; continue };
        if v1[i1] > v2[i2] { resvec.push(v2[i2]); i2 += 1; continue }; 
        // here they are equal, so consume both
        resvec.push(v1[i1]); i1 += 1;
        resvec.push(v2[i2]); i2 += 1
    }
    resvec
}

/// Merges two ascending sort indices.
/// Data is not shuffled at all, v2 is just concatenated onto v1
/// in one go and both remain in their original order. 
/// Returns the concatenated vector and a new valid sort index into it.
pub fn merge_indexed<T>(v1:&[T], idx1: &[usize], v2: &[T], idx2: &[usize]) -> ( Vec<T>,Vec<usize> ) 
    where T: PartialOrd+Copy, {    
    let res = [v1,v2].concat(); // no individual shuffling, just one concatenation     
    let l = idx1.len();
    // shift up all items in idx2 by length of indx1, so that they will 
    // refer correctly to the second part of the concatenated vector
    let idx2shifted:Vec<usize> = idx2.iter().map(|x| l+x ).collect();
    // now merge the indices      
    let residx = merge_indices(&res,idx1,&idx2shifted);   
    ( res, residx )
}

/// Merges the sort indices of two concatenated vectors.
/// Data in s is not changed at all, only consulted for the comparisons. 
/// This function is used by  `mergesort` and `merge_indexed`. 
fn merge_indices<T>(s: &[T], idx1:&[usize], idx2:&[usize]) -> Vec<usize>
    where T: PartialOrd+Copy, {
    let l1 = idx1.len();
    let l2 = idx2.len();
    let mut residx:Vec<usize> = Vec::with_capacity(l1+l2); 
    let mut i1 = 0;  
    let mut i2 = 0;
    let mut head1 = s[idx1[i1]]; 
    let mut head2 = s[idx2[i2]];
    loop {
        if head1 < head2 { 
            residx.push(idx1[i1]);
            i1 += 1;  
            if i1 == l1 { // idx1 is now fully processed
                idx2.iter().skip(i2).for_each(|&v| residx.push(v)); // copy out the rest of idx2
                break // and terminate
            }
            head1 = s[idx1[i1]]; // else move to the next idx1 value
            continue
        }
        if head1 > head2 { 
            residx.push(idx2[i2]); 
            i2 += 1; 
            if i2 == l2 { // idx2 is now processed
                idx1.iter().skip(i1).for_each(|&v| residx.push(v)); // copy out the rest of idx1
                break // and terminate
            }                    
            head2 = s[idx2[i2]]; // else move to the next idx2 value
            continue
        } 
        // here the heads are equal, so consume both
        residx.push(idx1[i1]); 
        i1 += 1; 
        if i1 == l1 { // idx1 is now fully processed
            idx2.iter().skip(i2).for_each(|&v| residx.push(v)); // copy out the rest of idx2 
            break // and terminate
        }
        head1 = s[idx1[i1]];
        residx.push(idx2[i2]); 
        i2 += 1; 
        if i2 == l2 { // idx2 is now processed
            idx1.iter().skip(i1).for_each(|&v| residx.push(v)); // copy out the rest of idx1
            break // and terminate
        }                    
        head2 = s[idx2[i2]];            
    }
    residx
}

/// Doubly recursive non-destructive merge sort.  
/// The data is not moved or mutated. 
/// Efficiency is comparable to quicksort. 
/// Returns a vector of indices to s from i to i+n,
/// such that the indexed values are in ascending sort order (a sort index).  
/// Only the index values are being moved. 
pub fn mergesort<T>(s:&[T], i:usize, n:usize) -> Vec<usize> 
    where T: PartialOrd+Copy {
    if n == 1 { let res = vec![i]; return res };  // recursion termination
    if n == 2 {  // also terminate with two sorted items (for efficiency)          
        if s[i+1] < s[i] { return vec![i+1,i] } else { return vec![i,i+1] }
    }       
    let n1 = n / 2;  // the first part (the parts do not have to be the same) 
    let n2 = n - n1; // the remaining second part
    let sv1 = mergesort(s, i, n1); // recursively sort the first half
    let sv2 = mergesort(s, i+n1, n2); // recursively sort the second half 
    // Now merge the two sorted indices into one and return it     
    merge_indices(s,&sv1,&sv2)
}

/// A wrapper for mergesort, to obtain the sort index
/// of the (whole) input vector. Simpler than sortm.
pub fn sortidx<T>(s:&[T]) -> Vec<usize> where T:PartialOrd+Copy {
    mergesort(s,0,s.len())
}

/// Immutable sort. Returns new sorted vector (ascending or descending). 
/// Is a wrapper for mergesort. Passes the boolean flag 'ascending' onto 'unindex'.
/// Mergesort by itself always produces only an ascending index.
pub fn sortm<T>(s:&[T], ascending:bool) -> Vec<T> where T: PartialOrd+Copy {
    mergesort(s,0,s.len()).unindex(s,ascending)
}   

/// Fast ranking of many T items, with only `n*(log(n)+1)` complexity. 
/// Ranking is done by inverting the sort index.  
/// Sort index is in sorted order, giving data positions. 
/// Ranking is in data order, giving sorted order positions. 
/// Thus sort index and ranks are in an inverse relationship. 
/// They are easily converted by `.invindex()` (for: invert index).
pub fn rank<T>(s:&[T], ascending:bool) -> Vec<usize> where T:PartialOrd+Copy {
    let n = s.len();
    let sortindex = mergesort(s,0,n);
    let mut rankvec:Vec<usize> = vec![0;n];
    if ascending { 
        for (i,&sortpos) in sortindex.iter().enumerate() {
            rankvec[sortpos] = i
        } 
    } else { // rank in the order of descending values
        for (i,&sortpos) in sortindex.iter().enumerate() {
            rankvec[sortpos] = n-i-1 
        }
    }
    rankvec 
}