indexmap/map.rs
1//! [`IndexMap`] is a hash table where the iteration order of the key-value
2//! pairs is independent of the hash values of the keys.
3
4mod core;
5mod iter;
6mod mutable;
7mod slice;
8
9#[cfg(feature = "serde")]
10#[cfg_attr(docsrs, doc(cfg(feature = "serde")))]
11pub mod serde_seq;
12
13#[cfg(test)]
14mod tests;
15
16pub use self::core::raw_entry_v1::{self, RawEntryApiV1};
17pub use self::core::{Entry, IndexedEntry, OccupiedEntry, VacantEntry};
18pub use self::iter::{
19 Drain, ExtractIf, IntoIter, IntoKeys, IntoValues, Iter, IterMut, IterMut2, Keys, Splice,
20 Values, ValuesMut,
21};
22pub use self::mutable::MutableEntryKey;
23pub use self::mutable::MutableKeys;
24pub use self::slice::Slice;
25
26#[cfg(feature = "rayon")]
27pub use crate::rayon::map as rayon;
28
29use ::core::cmp::Ordering;
30use ::core::fmt;
31use ::core::hash::{BuildHasher, Hash};
32use ::core::mem;
33use ::core::ops::{Index, IndexMut, RangeBounds};
34use alloc::boxed::Box;
35use alloc::vec::Vec;
36
37#[cfg(feature = "std")]
38use std::hash::RandomState;
39
40pub(crate) use self::core::{ExtractCore, IndexMapCore};
41use crate::util::{third, try_simplify_range};
42use crate::{Bucket, Equivalent, GetDisjointMutError, HashValue, TryReserveError};
43
44/// A hash table where the iteration order of the key-value pairs is independent
45/// of the hash values of the keys.
46///
47/// The interface is closely compatible with the standard
48/// [`HashMap`][std::collections::HashMap],
49/// but also has additional features.
50///
51/// # Order
52///
53/// The key-value pairs have a consistent order that is determined by
54/// the sequence of insertion and removal calls on the map. The order does
55/// not depend on the keys or the hash function at all.
56///
57/// All iterators traverse the map in *the order*.
58///
59/// The insertion order is preserved, with **notable exceptions** like the
60/// [`.remove()`][Self::remove] or [`.swap_remove()`][Self::swap_remove] methods.
61/// Methods such as [`.sort_by()`][Self::sort_by] of
62/// course result in a new order, depending on the sorting order.
63///
64/// # Indices
65///
66/// The key-value pairs are indexed in a compact range without holes in the
67/// range `0..self.len()`. For example, the method `.get_full` looks up the
68/// index for a key, and the method `.get_index` looks up the key-value pair by
69/// index.
70///
71/// # Examples
72///
73/// ```
74/// use indexmap::IndexMap;
75///
76/// // count the frequency of each letter in a sentence.
77/// let mut letters = IndexMap::new();
78/// for ch in "a short treatise on fungi".chars() {
79/// *letters.entry(ch).or_insert(0) += 1;
80/// }
81///
82/// assert_eq!(letters[&'s'], 2);
83/// assert_eq!(letters[&'t'], 3);
84/// assert_eq!(letters[&'u'], 1);
85/// assert_eq!(letters.get(&'y'), None);
86/// ```
87#[cfg(feature = "std")]
88pub struct IndexMap<K, V, S = RandomState> {
89 pub(crate) core: IndexMapCore<K, V>,
90 hash_builder: S,
91}
92#[cfg(not(feature = "std"))]
93pub struct IndexMap<K, V, S> {
94 pub(crate) core: IndexMapCore<K, V>,
95 hash_builder: S,
96}
97
98impl<K, V, S> Clone for IndexMap<K, V, S>
99where
100 K: Clone,
101 V: Clone,
102 S: Clone,
103{
104 fn clone(&self) -> Self {
105 IndexMap {
106 core: self.core.clone(),
107 hash_builder: self.hash_builder.clone(),
108 }
109 }
110
111 fn clone_from(&mut self, other: &Self) {
112 self.core.clone_from(&other.core);
113 self.hash_builder.clone_from(&other.hash_builder);
114 }
115}
116
117impl<K, V, S> fmt::Debug for IndexMap<K, V, S>
118where
119 K: fmt::Debug,
120 V: fmt::Debug,
121{
122 #[cfg(not(feature = "test_debug"))]
123 fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
124 f.debug_map().entries(self.iter()).finish()
125 }
126
127 #[cfg(feature = "test_debug")]
128 fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
129 // Let the inner `IndexMapCore` print all of its details
130 f.debug_struct("IndexMap")
131 .field("core", &self.core)
132 .finish()
133 }
134}
135
136#[cfg(feature = "std")]
137#[cfg_attr(docsrs, doc(cfg(feature = "std")))]
138impl<K, V> IndexMap<K, V> {
139 /// Create a new map. (Does not allocate.)
140 #[inline]
141 pub fn new() -> Self {
142 Self::with_capacity(0)
143 }
144
145 /// Create a new map with capacity for `n` key-value pairs. (Does not
146 /// allocate if `n` is zero.)
147 ///
148 /// Computes in **O(n)** time.
149 #[inline]
150 pub fn with_capacity(n: usize) -> Self {
151 Self::with_capacity_and_hasher(n, <_>::default())
152 }
153}
154
155impl<K, V, S> IndexMap<K, V, S> {
156 /// Create a new map with capacity for `n` key-value pairs. (Does not
157 /// allocate if `n` is zero.)
158 ///
159 /// Computes in **O(n)** time.
160 #[inline]
161 pub fn with_capacity_and_hasher(n: usize, hash_builder: S) -> Self {
162 if n == 0 {
163 Self::with_hasher(hash_builder)
164 } else {
165 IndexMap {
166 core: IndexMapCore::with_capacity(n),
167 hash_builder,
168 }
169 }
170 }
171
172 /// Create a new map with `hash_builder`.
173 ///
174 /// This function is `const`, so it
175 /// can be called in `static` contexts.
176 pub const fn with_hasher(hash_builder: S) -> Self {
177 IndexMap {
178 core: IndexMapCore::new(),
179 hash_builder,
180 }
181 }
182
183 #[inline]
184 pub(crate) fn into_entries(self) -> Vec<Bucket<K, V>> {
185 self.core.into_entries()
186 }
187
188 #[inline]
189 pub(crate) fn as_entries(&self) -> &[Bucket<K, V>] {
190 self.core.as_entries()
191 }
192
193 #[inline]
194 pub(crate) fn as_entries_mut(&mut self) -> &mut [Bucket<K, V>] {
195 self.core.as_entries_mut()
196 }
197
198 pub(crate) fn with_entries<F>(&mut self, f: F)
199 where
200 F: FnOnce(&mut [Bucket<K, V>]),
201 {
202 self.core.with_entries(f);
203 }
204
205 /// Return the number of elements the map can hold without reallocating.
206 ///
207 /// This number is a lower bound; the map might be able to hold more,
208 /// but is guaranteed to be able to hold at least this many.
209 ///
210 /// Computes in **O(1)** time.
211 pub fn capacity(&self) -> usize {
212 self.core.capacity()
213 }
214
215 /// Return a reference to the map's `BuildHasher`.
216 pub fn hasher(&self) -> &S {
217 &self.hash_builder
218 }
219
220 /// Return the number of key-value pairs in the map.
221 ///
222 /// Computes in **O(1)** time.
223 #[inline]
224 pub fn len(&self) -> usize {
225 self.core.len()
226 }
227
228 /// Returns true if the map contains no elements.
229 ///
230 /// Computes in **O(1)** time.
231 #[inline]
232 pub fn is_empty(&self) -> bool {
233 self.len() == 0
234 }
235
236 /// Return an iterator over the key-value pairs of the map, in their order
237 pub fn iter(&self) -> Iter<'_, K, V> {
238 Iter::new(self.as_entries())
239 }
240
241 /// Return an iterator over the key-value pairs of the map, in their order
242 pub fn iter_mut(&mut self) -> IterMut<'_, K, V> {
243 IterMut::new(self.as_entries_mut())
244 }
245
246 /// Return an iterator over the keys of the map, in their order
247 pub fn keys(&self) -> Keys<'_, K, V> {
248 Keys::new(self.as_entries())
249 }
250
251 /// Return an owning iterator over the keys of the map, in their order
252 pub fn into_keys(self) -> IntoKeys<K, V> {
253 IntoKeys::new(self.into_entries())
254 }
255
256 /// Return an iterator over the values of the map, in their order
257 pub fn values(&self) -> Values<'_, K, V> {
258 Values::new(self.as_entries())
259 }
260
261 /// Return an iterator over mutable references to the values of the map,
262 /// in their order
263 pub fn values_mut(&mut self) -> ValuesMut<'_, K, V> {
264 ValuesMut::new(self.as_entries_mut())
265 }
266
267 /// Return an owning iterator over the values of the map, in their order
268 pub fn into_values(self) -> IntoValues<K, V> {
269 IntoValues::new(self.into_entries())
270 }
271
272 /// Remove all key-value pairs in the map, while preserving its capacity.
273 ///
274 /// Computes in **O(n)** time.
275 pub fn clear(&mut self) {
276 self.core.clear();
277 }
278
279 /// Shortens the map, keeping the first `len` elements and dropping the rest.
280 ///
281 /// If `len` is greater than the map's current length, this has no effect.
282 pub fn truncate(&mut self, len: usize) {
283 self.core.truncate(len);
284 }
285
286 /// Clears the `IndexMap` in the given index range, returning those
287 /// key-value pairs as a drain iterator.
288 ///
289 /// The range may be any type that implements [`RangeBounds<usize>`],
290 /// including all of the `std::ops::Range*` types, or even a tuple pair of
291 /// `Bound` start and end values. To drain the map entirely, use `RangeFull`
292 /// like `map.drain(..)`.
293 ///
294 /// This shifts down all entries following the drained range to fill the
295 /// gap, and keeps the allocated memory for reuse.
296 ///
297 /// ***Panics*** if the starting point is greater than the end point or if
298 /// the end point is greater than the length of the map.
299 #[track_caller]
300 pub fn drain<R>(&mut self, range: R) -> Drain<'_, K, V>
301 where
302 R: RangeBounds<usize>,
303 {
304 Drain::new(self.core.drain(range))
305 }
306
307 /// Creates an iterator which uses a closure to determine if an element should be removed,
308 /// for all elements in the given range.
309 ///
310 /// If the closure returns true, the element is removed from the map and yielded.
311 /// If the closure returns false, or panics, the element remains in the map and will not be
312 /// yielded.
313 ///
314 /// Note that `extract_if` lets you mutate every value in the filter closure, regardless of
315 /// whether you choose to keep or remove it.
316 ///
317 /// The range may be any type that implements [`RangeBounds<usize>`],
318 /// including all of the `std::ops::Range*` types, or even a tuple pair of
319 /// `Bound` start and end values. To check the entire map, use `RangeFull`
320 /// like `map.extract_if(.., predicate)`.
321 ///
322 /// If the returned `ExtractIf` is not exhausted, e.g. because it is dropped without iterating
323 /// or the iteration short-circuits, then the remaining elements will be retained.
324 /// Use [`retain`] with a negated predicate if you do not need the returned iterator.
325 ///
326 /// [`retain`]: IndexMap::retain
327 ///
328 /// ***Panics*** if the starting point is greater than the end point or if
329 /// the end point is greater than the length of the map.
330 ///
331 /// # Examples
332 ///
333 /// Splitting a map into even and odd keys, reusing the original map:
334 ///
335 /// ```
336 /// use indexmap::IndexMap;
337 ///
338 /// let mut map: IndexMap<i32, i32> = (0..8).map(|x| (x, x)).collect();
339 /// let extracted: IndexMap<i32, i32> = map.extract_if(.., |k, _v| k % 2 == 0).collect();
340 ///
341 /// let evens = extracted.keys().copied().collect::<Vec<_>>();
342 /// let odds = map.keys().copied().collect::<Vec<_>>();
343 ///
344 /// assert_eq!(evens, vec![0, 2, 4, 6]);
345 /// assert_eq!(odds, vec![1, 3, 5, 7]);
346 /// ```
347 #[track_caller]
348 pub fn extract_if<F, R>(&mut self, range: R, pred: F) -> ExtractIf<'_, K, V, F>
349 where
350 F: FnMut(&K, &mut V) -> bool,
351 R: RangeBounds<usize>,
352 {
353 ExtractIf::new(&mut self.core, range, pred)
354 }
355
356 /// Splits the collection into two at the given index.
357 ///
358 /// Returns a newly allocated map containing the elements in the range
359 /// `[at, len)`. After the call, the original map will be left containing
360 /// the elements `[0, at)` with its previous capacity unchanged.
361 ///
362 /// ***Panics*** if `at > len`.
363 #[track_caller]
364 pub fn split_off(&mut self, at: usize) -> Self
365 where
366 S: Clone,
367 {
368 Self {
369 core: self.core.split_off(at),
370 hash_builder: self.hash_builder.clone(),
371 }
372 }
373
374 /// Reserve capacity for `additional` more key-value pairs.
375 ///
376 /// Computes in **O(n)** time.
377 pub fn reserve(&mut self, additional: usize) {
378 self.core.reserve(additional);
379 }
380
381 /// Reserve capacity for `additional` more key-value pairs, without over-allocating.
382 ///
383 /// Unlike `reserve`, this does not deliberately over-allocate the entry capacity to avoid
384 /// frequent re-allocations. However, the underlying data structures may still have internal
385 /// capacity requirements, and the allocator itself may give more space than requested, so this
386 /// cannot be relied upon to be precisely minimal.
387 ///
388 /// Computes in **O(n)** time.
389 pub fn reserve_exact(&mut self, additional: usize) {
390 self.core.reserve_exact(additional);
391 }
392
393 /// Try to reserve capacity for `additional` more key-value pairs.
394 ///
395 /// Computes in **O(n)** time.
396 pub fn try_reserve(&mut self, additional: usize) -> Result<(), TryReserveError> {
397 self.core.try_reserve(additional)
398 }
399
400 /// Try to reserve capacity for `additional` more key-value pairs, without over-allocating.
401 ///
402 /// Unlike `try_reserve`, this does not deliberately over-allocate the entry capacity to avoid
403 /// frequent re-allocations. However, the underlying data structures may still have internal
404 /// capacity requirements, and the allocator itself may give more space than requested, so this
405 /// cannot be relied upon to be precisely minimal.
406 ///
407 /// Computes in **O(n)** time.
408 pub fn try_reserve_exact(&mut self, additional: usize) -> Result<(), TryReserveError> {
409 self.core.try_reserve_exact(additional)
410 }
411
412 /// Shrink the capacity of the map as much as possible.
413 ///
414 /// Computes in **O(n)** time.
415 pub fn shrink_to_fit(&mut self) {
416 self.core.shrink_to(0);
417 }
418
419 /// Shrink the capacity of the map with a lower limit.
420 ///
421 /// Computes in **O(n)** time.
422 pub fn shrink_to(&mut self, min_capacity: usize) {
423 self.core.shrink_to(min_capacity);
424 }
425}
426
427impl<K, V, S> IndexMap<K, V, S>
428where
429 K: Hash + Eq,
430 S: BuildHasher,
431{
432 /// Insert a key-value pair in the map.
433 ///
434 /// If an equivalent key already exists in the map: the key remains and
435 /// retains in its place in the order, its corresponding value is updated
436 /// with `value`, and the older value is returned inside `Some(_)`.
437 ///
438 /// If no equivalent key existed in the map: the new key-value pair is
439 /// inserted, last in order, and `None` is returned.
440 ///
441 /// Computes in **O(1)** time (amortized average).
442 ///
443 /// See also [`entry`][Self::entry] if you want to insert *or* modify,
444 /// or [`insert_full`][Self::insert_full] if you need to get the index of
445 /// the corresponding key-value pair.
446 pub fn insert(&mut self, key: K, value: V) -> Option<V> {
447 self.insert_full(key, value).1
448 }
449
450 /// Insert a key-value pair in the map, and get their index.
451 ///
452 /// If an equivalent key already exists in the map: the key remains and
453 /// retains in its place in the order, its corresponding value is updated
454 /// with `value`, and the older value is returned inside `(index, Some(_))`.
455 ///
456 /// If no equivalent key existed in the map: the new key-value pair is
457 /// inserted, last in order, and `(index, None)` is returned.
458 ///
459 /// Computes in **O(1)** time (amortized average).
460 ///
461 /// See also [`entry`][Self::entry] if you want to insert *or* modify.
462 pub fn insert_full(&mut self, key: K, value: V) -> (usize, Option<V>) {
463 let hash = self.hash(&key);
464 self.core.insert_full(hash, key, value)
465 }
466
467 /// Insert a key-value pair in the map at its ordered position among sorted keys.
468 ///
469 /// This is equivalent to finding the position with
470 /// [`binary_search_keys`][Self::binary_search_keys], then either updating
471 /// it or calling [`insert_before`][Self::insert_before] for a new key.
472 ///
473 /// If the sorted key is found in the map, its corresponding value is
474 /// updated with `value`, and the older value is returned inside
475 /// `(index, Some(_))`. Otherwise, the new key-value pair is inserted at
476 /// the sorted position, and `(index, None)` is returned.
477 ///
478 /// If the existing keys are **not** already sorted, then the insertion
479 /// index is unspecified (like [`slice::binary_search`]), but the key-value
480 /// pair is moved to or inserted at that position regardless.
481 ///
482 /// Computes in **O(n)** time (average). Instead of repeating calls to
483 /// `insert_sorted`, it may be faster to call batched [`insert`][Self::insert]
484 /// or [`extend`][Self::extend] and only call [`sort_keys`][Self::sort_keys]
485 /// or [`sort_unstable_keys`][Self::sort_unstable_keys] once.
486 pub fn insert_sorted(&mut self, key: K, value: V) -> (usize, Option<V>)
487 where
488 K: Ord,
489 {
490 match self.binary_search_keys(&key) {
491 Ok(i) => (i, Some(mem::replace(&mut self[i], value))),
492 Err(i) => self.insert_before(i, key, value),
493 }
494 }
495
496 /// Insert a key-value pair in the map at its ordered position among keys
497 /// sorted by `cmp`.
498 ///
499 /// This is equivalent to finding the position with
500 /// [`binary_search_by`][Self::binary_search_by], then calling
501 /// [`insert_before`][Self::insert_before] with the given key and value.
502 ///
503 /// If the existing keys are **not** already sorted, then the insertion
504 /// index is unspecified (like [`slice::binary_search`]), but the key-value
505 /// pair is moved to or inserted at that position regardless.
506 ///
507 /// Computes in **O(n)** time (average).
508 pub fn insert_sorted_by<F>(&mut self, key: K, value: V, mut cmp: F) -> (usize, Option<V>)
509 where
510 F: FnMut(&K, &V, &K, &V) -> Ordering,
511 {
512 let (Ok(i) | Err(i)) = self.binary_search_by(|k, v| cmp(k, v, &key, &value));
513 self.insert_before(i, key, value)
514 }
515
516 /// Insert a key-value pair in the map at its ordered position
517 /// using a sort-key extraction function.
518 ///
519 /// This is equivalent to finding the position with
520 /// [`binary_search_by_key`][Self::binary_search_by_key] with `sort_key(key)`, then
521 /// calling [`insert_before`][Self::insert_before] with the given key and value.
522 ///
523 /// If the existing keys are **not** already sorted, then the insertion
524 /// index is unspecified (like [`slice::binary_search`]), but the key-value
525 /// pair is moved to or inserted at that position regardless.
526 ///
527 /// Computes in **O(n)** time (average).
528 pub fn insert_sorted_by_key<B, F>(
529 &mut self,
530 key: K,
531 value: V,
532 mut sort_key: F,
533 ) -> (usize, Option<V>)
534 where
535 B: Ord,
536 F: FnMut(&K, &V) -> B,
537 {
538 let search_key = sort_key(&key, &value);
539 let (Ok(i) | Err(i)) = self.binary_search_by_key(&search_key, sort_key);
540 self.insert_before(i, key, value)
541 }
542
543 /// Insert a key-value pair in the map before the entry at the given index, or at the end.
544 ///
545 /// If an equivalent key already exists in the map: the key remains and
546 /// is moved to the new position in the map, its corresponding value is updated
547 /// with `value`, and the older value is returned inside `Some(_)`. The returned index
548 /// will either be the given index or one less, depending on how the entry moved.
549 /// (See [`shift_insert`](Self::shift_insert) for different behavior here.)
550 ///
551 /// If no equivalent key existed in the map: the new key-value pair is
552 /// inserted exactly at the given index, and `None` is returned.
553 ///
554 /// ***Panics*** if `index` is out of bounds.
555 /// Valid indices are `0..=map.len()` (inclusive).
556 ///
557 /// Computes in **O(n)** time (average).
558 ///
559 /// See also [`entry`][Self::entry] if you want to insert *or* modify,
560 /// perhaps only using the index for new entries with [`VacantEntry::shift_insert`].
561 ///
562 /// # Examples
563 ///
564 /// ```
565 /// use indexmap::IndexMap;
566 /// let mut map: IndexMap<char, ()> = ('a'..='z').map(|c| (c, ())).collect();
567 ///
568 /// // The new key '*' goes exactly at the given index.
569 /// assert_eq!(map.get_index_of(&'*'), None);
570 /// assert_eq!(map.insert_before(10, '*', ()), (10, None));
571 /// assert_eq!(map.get_index_of(&'*'), Some(10));
572 ///
573 /// // Moving the key 'a' up will shift others down, so this moves *before* 10 to index 9.
574 /// assert_eq!(map.insert_before(10, 'a', ()), (9, Some(())));
575 /// assert_eq!(map.get_index_of(&'a'), Some(9));
576 /// assert_eq!(map.get_index_of(&'*'), Some(10));
577 ///
578 /// // Moving the key 'z' down will shift others up, so this moves to exactly 10.
579 /// assert_eq!(map.insert_before(10, 'z', ()), (10, Some(())));
580 /// assert_eq!(map.get_index_of(&'z'), Some(10));
581 /// assert_eq!(map.get_index_of(&'*'), Some(11));
582 ///
583 /// // Moving or inserting before the endpoint is also valid.
584 /// assert_eq!(map.len(), 27);
585 /// assert_eq!(map.insert_before(map.len(), '*', ()), (26, Some(())));
586 /// assert_eq!(map.get_index_of(&'*'), Some(26));
587 /// assert_eq!(map.insert_before(map.len(), '+', ()), (27, None));
588 /// assert_eq!(map.get_index_of(&'+'), Some(27));
589 /// assert_eq!(map.len(), 28);
590 /// ```
591 #[track_caller]
592 pub fn insert_before(&mut self, mut index: usize, key: K, value: V) -> (usize, Option<V>) {
593 let len = self.len();
594
595 assert!(
596 index <= len,
597 "index out of bounds: the len is {len} but the index is {index}. Expected index <= len"
598 );
599
600 match self.entry(key) {
601 Entry::Occupied(mut entry) => {
602 if index > entry.index() {
603 // Some entries will shift down when this one moves up,
604 // so "insert before index" becomes "move to index - 1",
605 // keeping the entry at the original index unmoved.
606 index -= 1;
607 }
608 let old = mem::replace(entry.get_mut(), value);
609 entry.move_index(index);
610 (index, Some(old))
611 }
612 Entry::Vacant(entry) => {
613 entry.shift_insert(index, value);
614 (index, None)
615 }
616 }
617 }
618
619 /// Insert a key-value pair in the map at the given index.
620 ///
621 /// If an equivalent key already exists in the map: the key remains and
622 /// is moved to the given index in the map, its corresponding value is updated
623 /// with `value`, and the older value is returned inside `Some(_)`.
624 /// Note that existing entries **cannot** be moved to `index == map.len()`!
625 /// (See [`insert_before`](Self::insert_before) for different behavior here.)
626 ///
627 /// If no equivalent key existed in the map: the new key-value pair is
628 /// inserted at the given index, and `None` is returned.
629 ///
630 /// ***Panics*** if `index` is out of bounds.
631 /// Valid indices are `0..map.len()` (exclusive) when moving an existing entry, or
632 /// `0..=map.len()` (inclusive) when inserting a new key.
633 ///
634 /// Computes in **O(n)** time (average).
635 ///
636 /// See also [`entry`][Self::entry] if you want to insert *or* modify,
637 /// perhaps only using the index for new entries with [`VacantEntry::shift_insert`].
638 ///
639 /// # Examples
640 ///
641 /// ```
642 /// use indexmap::IndexMap;
643 /// let mut map: IndexMap<char, ()> = ('a'..='z').map(|c| (c, ())).collect();
644 ///
645 /// // The new key '*' goes exactly at the given index.
646 /// assert_eq!(map.get_index_of(&'*'), None);
647 /// assert_eq!(map.shift_insert(10, '*', ()), None);
648 /// assert_eq!(map.get_index_of(&'*'), Some(10));
649 ///
650 /// // Moving the key 'a' up to 10 will shift others down, including the '*' that was at 10.
651 /// assert_eq!(map.shift_insert(10, 'a', ()), Some(()));
652 /// assert_eq!(map.get_index_of(&'a'), Some(10));
653 /// assert_eq!(map.get_index_of(&'*'), Some(9));
654 ///
655 /// // Moving the key 'z' down to 9 will shift others up, including the '*' that was at 9.
656 /// assert_eq!(map.shift_insert(9, 'z', ()), Some(()));
657 /// assert_eq!(map.get_index_of(&'z'), Some(9));
658 /// assert_eq!(map.get_index_of(&'*'), Some(10));
659 ///
660 /// // Existing keys can move to len-1 at most, but new keys can insert at the endpoint.
661 /// assert_eq!(map.len(), 27);
662 /// assert_eq!(map.shift_insert(map.len() - 1, '*', ()), Some(()));
663 /// assert_eq!(map.get_index_of(&'*'), Some(26));
664 /// assert_eq!(map.shift_insert(map.len(), '+', ()), None);
665 /// assert_eq!(map.get_index_of(&'+'), Some(27));
666 /// assert_eq!(map.len(), 28);
667 /// ```
668 ///
669 /// ```should_panic
670 /// use indexmap::IndexMap;
671 /// let mut map: IndexMap<char, ()> = ('a'..='z').map(|c| (c, ())).collect();
672 ///
673 /// // This is an invalid index for moving an existing key!
674 /// map.shift_insert(map.len(), 'a', ());
675 /// ```
676 #[track_caller]
677 pub fn shift_insert(&mut self, index: usize, key: K, value: V) -> Option<V> {
678 let len = self.len();
679 match self.entry(key) {
680 Entry::Occupied(mut entry) => {
681 assert!(
682 index < len,
683 "index out of bounds: the len is {len} but the index is {index}"
684 );
685
686 let old = mem::replace(entry.get_mut(), value);
687 entry.move_index(index);
688 Some(old)
689 }
690 Entry::Vacant(entry) => {
691 assert!(
692 index <= len,
693 "index out of bounds: the len is {len} but the index is {index}. Expected index <= len"
694 );
695
696 entry.shift_insert(index, value);
697 None
698 }
699 }
700 }
701
702 /// Replaces the key at the given index. The new key does not need to be
703 /// equivalent to the one it is replacing, but it must be unique to the rest
704 /// of the map.
705 ///
706 /// Returns `Ok(old_key)` if successful, or `Err((other_index, key))` if an
707 /// equivalent key already exists at a different index. The map will be
708 /// unchanged in the error case.
709 ///
710 /// Direct indexing can be used to change the corresponding value: simply
711 /// `map[index] = value`, or `mem::replace(&mut map[index], value)` to
712 /// retrieve the old value as well.
713 ///
714 /// ***Panics*** if `index` is out of bounds.
715 ///
716 /// Computes in **O(1)** time (average).
717 #[track_caller]
718 pub fn replace_index(&mut self, index: usize, key: K) -> Result<K, (usize, K)> {
719 // If there's a direct match, we don't even need to hash it.
720 let entry = &mut self.as_entries_mut()[index];
721 if key == entry.key {
722 return Ok(mem::replace(&mut entry.key, key));
723 }
724
725 let hash = self.hash(&key);
726 if let Some(i) = self.core.get_index_of(hash, &key) {
727 debug_assert_ne!(i, index);
728 return Err((i, key));
729 }
730 Ok(self.core.replace_index_unique(index, hash, key))
731 }
732
733 /// Get the given key's corresponding entry in the map for insertion and/or
734 /// in-place manipulation.
735 ///
736 /// Computes in **O(1)** time (amortized average).
737 pub fn entry(&mut self, key: K) -> Entry<'_, K, V> {
738 let hash = self.hash(&key);
739 self.core.entry(hash, key)
740 }
741
742 /// Creates a splicing iterator that replaces the specified range in the map
743 /// with the given `replace_with` key-value iterator and yields the removed
744 /// items. `replace_with` does not need to be the same length as `range`.
745 ///
746 /// The `range` is removed even if the iterator is not consumed until the
747 /// end. It is unspecified how many elements are removed from the map if the
748 /// `Splice` value is leaked.
749 ///
750 /// The input iterator `replace_with` is only consumed when the `Splice`
751 /// value is dropped. If a key from the iterator matches an existing entry
752 /// in the map (outside of `range`), then the value will be updated in that
753 /// position. Otherwise, the new key-value pair will be inserted in the
754 /// replaced `range`.
755 ///
756 /// ***Panics*** if the starting point is greater than the end point or if
757 /// the end point is greater than the length of the map.
758 ///
759 /// # Examples
760 ///
761 /// ```
762 /// use indexmap::IndexMap;
763 ///
764 /// let mut map = IndexMap::from([(0, '_'), (1, 'a'), (2, 'b'), (3, 'c'), (4, 'd')]);
765 /// let new = [(5, 'E'), (4, 'D'), (3, 'C'), (2, 'B'), (1, 'A')];
766 /// let removed: Vec<_> = map.splice(2..4, new).collect();
767 ///
768 /// // 1 and 4 got new values, while 5, 3, and 2 were newly inserted.
769 /// assert!(map.into_iter().eq([(0, '_'), (1, 'A'), (5, 'E'), (3, 'C'), (2, 'B'), (4, 'D')]));
770 /// assert_eq!(removed, &[(2, 'b'), (3, 'c')]);
771 /// ```
772 #[track_caller]
773 pub fn splice<R, I>(&mut self, range: R, replace_with: I) -> Splice<'_, I::IntoIter, K, V, S>
774 where
775 R: RangeBounds<usize>,
776 I: IntoIterator<Item = (K, V)>,
777 {
778 Splice::new(self, range, replace_with.into_iter())
779 }
780
781 /// Moves all key-value pairs from `other` into `self`, leaving `other` empty.
782 ///
783 /// This is equivalent to calling [`insert`][Self::insert] for each
784 /// key-value pair from `other` in order, which means that for keys that
785 /// already exist in `self`, their value is updated in the current position.
786 ///
787 /// # Examples
788 ///
789 /// ```
790 /// use indexmap::IndexMap;
791 ///
792 /// // Note: Key (3) is present in both maps.
793 /// let mut a = IndexMap::from([(3, "c"), (2, "b"), (1, "a")]);
794 /// let mut b = IndexMap::from([(3, "d"), (4, "e"), (5, "f")]);
795 /// let old_capacity = b.capacity();
796 ///
797 /// a.append(&mut b);
798 ///
799 /// assert_eq!(a.len(), 5);
800 /// assert_eq!(b.len(), 0);
801 /// assert_eq!(b.capacity(), old_capacity);
802 ///
803 /// assert!(a.keys().eq(&[3, 2, 1, 4, 5]));
804 /// assert_eq!(a[&3], "d"); // "c" was overwritten.
805 /// ```
806 pub fn append<S2>(&mut self, other: &mut IndexMap<K, V, S2>) {
807 self.extend(other.drain(..));
808 }
809}
810
811impl<K, V, S> IndexMap<K, V, S>
812where
813 S: BuildHasher,
814{
815 pub(crate) fn hash<Q: ?Sized + Hash>(&self, key: &Q) -> HashValue {
816 let h = self.hash_builder.hash_one(key);
817 HashValue(h as usize)
818 }
819
820 /// Return `true` if an equivalent to `key` exists in the map.
821 ///
822 /// Computes in **O(1)** time (average).
823 pub fn contains_key<Q>(&self, key: &Q) -> bool
824 where
825 Q: ?Sized + Hash + Equivalent<K>,
826 {
827 self.get_index_of(key).is_some()
828 }
829
830 /// Return a reference to the stored value for `key`, if it is present,
831 /// else `None`.
832 ///
833 /// Computes in **O(1)** time (average).
834 pub fn get<Q>(&self, key: &Q) -> Option<&V>
835 where
836 Q: ?Sized + Hash + Equivalent<K>,
837 {
838 if let Some(i) = self.get_index_of(key) {
839 let entry = &self.as_entries()[i];
840 Some(&entry.value)
841 } else {
842 None
843 }
844 }
845
846 /// Return references to the stored key-value pair for the lookup `key`,
847 /// if it is present, else `None`.
848 ///
849 /// Computes in **O(1)** time (average).
850 pub fn get_key_value<Q>(&self, key: &Q) -> Option<(&K, &V)>
851 where
852 Q: ?Sized + Hash + Equivalent<K>,
853 {
854 if let Some(i) = self.get_index_of(key) {
855 let entry = &self.as_entries()[i];
856 Some((&entry.key, &entry.value))
857 } else {
858 None
859 }
860 }
861
862 /// Return the index with references to the stored key-value pair for the
863 /// lookup `key`, if it is present, else `None`.
864 ///
865 /// Computes in **O(1)** time (average).
866 pub fn get_full<Q>(&self, key: &Q) -> Option<(usize, &K, &V)>
867 where
868 Q: ?Sized + Hash + Equivalent<K>,
869 {
870 if let Some(i) = self.get_index_of(key) {
871 let entry = &self.as_entries()[i];
872 Some((i, &entry.key, &entry.value))
873 } else {
874 None
875 }
876 }
877
878 /// Return the item index for `key`, if it is present, else `None`.
879 ///
880 /// Computes in **O(1)** time (average).
881 pub fn get_index_of<Q>(&self, key: &Q) -> Option<usize>
882 where
883 Q: ?Sized + Hash + Equivalent<K>,
884 {
885 match self.as_entries() {
886 [] => None,
887 [x] => key.equivalent(&x.key).then_some(0),
888 _ => {
889 let hash = self.hash(key);
890 self.core.get_index_of(hash, key)
891 }
892 }
893 }
894
895 /// Return a mutable reference to the stored value for `key`,
896 /// if it is present, else `None`.
897 ///
898 /// Computes in **O(1)** time (average).
899 pub fn get_mut<Q>(&mut self, key: &Q) -> Option<&mut V>
900 where
901 Q: ?Sized + Hash + Equivalent<K>,
902 {
903 if let Some(i) = self.get_index_of(key) {
904 let entry = &mut self.as_entries_mut()[i];
905 Some(&mut entry.value)
906 } else {
907 None
908 }
909 }
910
911 /// Return a reference and mutable references to the stored key-value pair
912 /// for the lookup `key`, if it is present, else `None`.
913 ///
914 /// Computes in **O(1)** time (average).
915 pub fn get_key_value_mut<Q>(&mut self, key: &Q) -> Option<(&K, &mut V)>
916 where
917 Q: ?Sized + Hash + Equivalent<K>,
918 {
919 if let Some(i) = self.get_index_of(key) {
920 let entry = &mut self.as_entries_mut()[i];
921 Some((&entry.key, &mut entry.value))
922 } else {
923 None
924 }
925 }
926
927 /// Return the index with a reference and mutable reference to the stored
928 /// key-value pair for the lookup `key`, if it is present, else `None`.
929 ///
930 /// Computes in **O(1)** time (average).
931 pub fn get_full_mut<Q>(&mut self, key: &Q) -> Option<(usize, &K, &mut V)>
932 where
933 Q: ?Sized + Hash + Equivalent<K>,
934 {
935 if let Some(i) = self.get_index_of(key) {
936 let entry = &mut self.as_entries_mut()[i];
937 Some((i, &entry.key, &mut entry.value))
938 } else {
939 None
940 }
941 }
942
943 /// Return the values for `N` keys. If any key is duplicated, this function will panic.
944 ///
945 /// # Examples
946 ///
947 /// ```
948 /// let mut map = indexmap::IndexMap::from([(1, 'a'), (3, 'b'), (2, 'c')]);
949 /// assert_eq!(map.get_disjoint_mut([&2, &1]), [Some(&mut 'c'), Some(&mut 'a')]);
950 /// ```
951 pub fn get_disjoint_mut<Q, const N: usize>(&mut self, keys: [&Q; N]) -> [Option<&mut V>; N]
952 where
953 Q: ?Sized + Hash + Equivalent<K>,
954 {
955 let indices = keys.map(|key| self.get_index_of(key));
956 match self.as_mut_slice().get_disjoint_opt_mut(indices) {
957 Err(GetDisjointMutError::IndexOutOfBounds) => {
958 unreachable!(
959 "Internal error: indices should never be OOB as we got them from get_index_of"
960 );
961 }
962 Err(GetDisjointMutError::OverlappingIndices) => {
963 panic!("duplicate keys found");
964 }
965 Ok(key_values) => key_values.map(|kv_opt| kv_opt.map(|kv| kv.1)),
966 }
967 }
968
969 /// Remove the key-value pair equivalent to `key` and return
970 /// its value.
971 ///
972 /// **NOTE:** This is equivalent to [`.swap_remove(key)`][Self::swap_remove], replacing this
973 /// entry's position with the last element, and it is deprecated in favor of calling that
974 /// explicitly. If you need to preserve the relative order of the keys in the map, use
975 /// [`.shift_remove(key)`][Self::shift_remove] instead.
976 #[deprecated(note = "`remove` disrupts the map order -- \
977 use `swap_remove` or `shift_remove` for explicit behavior.")]
978 pub fn remove<Q>(&mut self, key: &Q) -> Option<V>
979 where
980 Q: ?Sized + Hash + Equivalent<K>,
981 {
982 self.swap_remove(key)
983 }
984
985 /// Remove and return the key-value pair equivalent to `key`.
986 ///
987 /// **NOTE:** This is equivalent to [`.swap_remove_entry(key)`][Self::swap_remove_entry],
988 /// replacing this entry's position with the last element, and it is deprecated in favor of
989 /// calling that explicitly. If you need to preserve the relative order of the keys in the map,
990 /// use [`.shift_remove_entry(key)`][Self::shift_remove_entry] instead.
991 #[deprecated(note = "`remove_entry` disrupts the map order -- \
992 use `swap_remove_entry` or `shift_remove_entry` for explicit behavior.")]
993 pub fn remove_entry<Q>(&mut self, key: &Q) -> Option<(K, V)>
994 where
995 Q: ?Sized + Hash + Equivalent<K>,
996 {
997 self.swap_remove_entry(key)
998 }
999
1000 /// Remove the key-value pair equivalent to `key` and return
1001 /// its value.
1002 ///
1003 /// Like [`Vec::swap_remove`], the pair is removed by swapping it with the
1004 /// last element of the map and popping it off. **This perturbs
1005 /// the position of what used to be the last element!**
1006 ///
1007 /// Return `None` if `key` is not in map.
1008 ///
1009 /// Computes in **O(1)** time (average).
1010 pub fn swap_remove<Q>(&mut self, key: &Q) -> Option<V>
1011 where
1012 Q: ?Sized + Hash + Equivalent<K>,
1013 {
1014 self.swap_remove_full(key).map(third)
1015 }
1016
1017 /// Remove and return the key-value pair equivalent to `key`.
1018 ///
1019 /// Like [`Vec::swap_remove`], the pair is removed by swapping it with the
1020 /// last element of the map and popping it off. **This perturbs
1021 /// the position of what used to be the last element!**
1022 ///
1023 /// Return `None` if `key` is not in map.
1024 ///
1025 /// Computes in **O(1)** time (average).
1026 pub fn swap_remove_entry<Q>(&mut self, key: &Q) -> Option<(K, V)>
1027 where
1028 Q: ?Sized + Hash + Equivalent<K>,
1029 {
1030 match self.swap_remove_full(key) {
1031 Some((_, key, value)) => Some((key, value)),
1032 None => None,
1033 }
1034 }
1035
1036 /// Remove the key-value pair equivalent to `key` and return it and
1037 /// the index it had.
1038 ///
1039 /// Like [`Vec::swap_remove`], the pair is removed by swapping it with the
1040 /// last element of the map and popping it off. **This perturbs
1041 /// the position of what used to be the last element!**
1042 ///
1043 /// Return `None` if `key` is not in map.
1044 ///
1045 /// Computes in **O(1)** time (average).
1046 pub fn swap_remove_full<Q>(&mut self, key: &Q) -> Option<(usize, K, V)>
1047 where
1048 Q: ?Sized + Hash + Equivalent<K>,
1049 {
1050 match self.as_entries() {
1051 [x] if key.equivalent(&x.key) => {
1052 let (k, v) = self.core.pop()?;
1053 Some((0, k, v))
1054 }
1055 [_] | [] => None,
1056 _ => {
1057 let hash = self.hash(key);
1058 self.core.swap_remove_full(hash, key)
1059 }
1060 }
1061 }
1062
1063 /// Remove the key-value pair equivalent to `key` and return
1064 /// its value.
1065 ///
1066 /// Like [`Vec::remove`], the pair is removed by shifting all of the
1067 /// elements that follow it, preserving their relative order.
1068 /// **This perturbs the index of all of those elements!**
1069 ///
1070 /// Return `None` if `key` is not in map.
1071 ///
1072 /// Computes in **O(n)** time (average).
1073 pub fn shift_remove<Q>(&mut self, key: &Q) -> Option<V>
1074 where
1075 Q: ?Sized + Hash + Equivalent<K>,
1076 {
1077 self.shift_remove_full(key).map(third)
1078 }
1079
1080 /// Remove and return the key-value pair equivalent to `key`.
1081 ///
1082 /// Like [`Vec::remove`], the pair is removed by shifting all of the
1083 /// elements that follow it, preserving their relative order.
1084 /// **This perturbs the index of all of those elements!**
1085 ///
1086 /// Return `None` if `key` is not in map.
1087 ///
1088 /// Computes in **O(n)** time (average).
1089 pub fn shift_remove_entry<Q>(&mut self, key: &Q) -> Option<(K, V)>
1090 where
1091 Q: ?Sized + Hash + Equivalent<K>,
1092 {
1093 match self.shift_remove_full(key) {
1094 Some((_, key, value)) => Some((key, value)),
1095 None => None,
1096 }
1097 }
1098
1099 /// Remove the key-value pair equivalent to `key` and return it and
1100 /// the index it had.
1101 ///
1102 /// Like [`Vec::remove`], the pair is removed by shifting all of the
1103 /// elements that follow it, preserving their relative order.
1104 /// **This perturbs the index of all of those elements!**
1105 ///
1106 /// Return `None` if `key` is not in map.
1107 ///
1108 /// Computes in **O(n)** time (average).
1109 pub fn shift_remove_full<Q>(&mut self, key: &Q) -> Option<(usize, K, V)>
1110 where
1111 Q: ?Sized + Hash + Equivalent<K>,
1112 {
1113 match self.as_entries() {
1114 [x] if key.equivalent(&x.key) => {
1115 let (k, v) = self.core.pop()?;
1116 Some((0, k, v))
1117 }
1118 [_] | [] => None,
1119 _ => {
1120 let hash = self.hash(key);
1121 self.core.shift_remove_full(hash, key)
1122 }
1123 }
1124 }
1125}
1126
1127impl<K, V, S> IndexMap<K, V, S> {
1128 /// Remove the last key-value pair
1129 ///
1130 /// This preserves the order of the remaining elements.
1131 ///
1132 /// Computes in **O(1)** time (average).
1133 #[doc(alias = "pop_last")] // like `BTreeMap`
1134 pub fn pop(&mut self) -> Option<(K, V)> {
1135 self.core.pop()
1136 }
1137
1138 /// Removes and returns the last key-value pair from a map if the predicate
1139 /// returns `true`, or [`None`] if the predicate returns false or the map
1140 /// is empty (the predicate will not be called in that case).
1141 ///
1142 /// This preserves the order of the remaining elements.
1143 ///
1144 /// Computes in **O(1)** time (average).
1145 ///
1146 /// # Examples
1147 ///
1148 /// ```
1149 /// use indexmap::IndexMap;
1150 ///
1151 /// let init = [(1, 'a'), (2, 'b'), (3, 'c'), (4, 'd')];
1152 /// let mut map = IndexMap::from(init);
1153 /// let pred = |key: &i32, _value: &mut char| *key % 2 == 0;
1154 ///
1155 /// assert_eq!(map.pop_if(pred), Some((4, 'd')));
1156 /// assert_eq!(map.as_slice(), &init[..3]);
1157 /// assert_eq!(map.pop_if(pred), None);
1158 /// ```
1159 pub fn pop_if(&mut self, predicate: impl FnOnce(&K, &mut V) -> bool) -> Option<(K, V)> {
1160 let (last_key, last_value) = self.last_mut()?;
1161 if predicate(last_key, last_value) {
1162 self.core.pop()
1163 } else {
1164 None
1165 }
1166 }
1167
1168 /// Scan through each key-value pair in the map and keep those where the
1169 /// closure `keep` returns `true`.
1170 ///
1171 /// The elements are visited in order, and remaining elements keep their
1172 /// order.
1173 ///
1174 /// Computes in **O(n)** time (average).
1175 pub fn retain<F>(&mut self, mut keep: F)
1176 where
1177 F: FnMut(&K, &mut V) -> bool,
1178 {
1179 self.core.retain_in_order(move |k, v| keep(k, v));
1180 }
1181
1182 /// Sort the map's key-value pairs by the default ordering of the keys.
1183 ///
1184 /// This is a stable sort -- but equivalent keys should not normally coexist in
1185 /// a map at all, so [`sort_unstable_keys`][Self::sort_unstable_keys] is preferred
1186 /// because it is generally faster and doesn't allocate auxiliary memory.
1187 ///
1188 /// See [`sort_by`](Self::sort_by) for details.
1189 pub fn sort_keys(&mut self)
1190 where
1191 K: Ord,
1192 {
1193 self.with_entries(move |entries| {
1194 entries.sort_by(move |a, b| K::cmp(&a.key, &b.key));
1195 });
1196 }
1197
1198 /// Sort the map's key-value pairs in place using the comparison
1199 /// function `cmp`.
1200 ///
1201 /// The comparison function receives two key and value pairs to compare (you
1202 /// can sort by keys or values or their combination as needed).
1203 ///
1204 /// Computes in **O(n log n + c)** time and **O(n)** space where *n* is
1205 /// the length of the map and *c* the capacity. The sort is stable.
1206 pub fn sort_by<F>(&mut self, mut cmp: F)
1207 where
1208 F: FnMut(&K, &V, &K, &V) -> Ordering,
1209 {
1210 self.with_entries(move |entries| {
1211 entries.sort_by(move |a, b| cmp(&a.key, &a.value, &b.key, &b.value));
1212 });
1213 }
1214
1215 /// Sort the key-value pairs of the map and return a by-value iterator of
1216 /// the key-value pairs with the result.
1217 ///
1218 /// The sort is stable.
1219 pub fn sorted_by<F>(self, mut cmp: F) -> IntoIter<K, V>
1220 where
1221 F: FnMut(&K, &V, &K, &V) -> Ordering,
1222 {
1223 let mut entries = self.into_entries();
1224 entries.sort_by(move |a, b| cmp(&a.key, &a.value, &b.key, &b.value));
1225 IntoIter::new(entries)
1226 }
1227
1228 /// Sort the map's key-value pairs in place using a sort-key extraction function.
1229 ///
1230 /// Computes in **O(n log n + c)** time and **O(n)** space where *n* is
1231 /// the length of the map and *c* the capacity. The sort is stable.
1232 pub fn sort_by_key<T, F>(&mut self, mut sort_key: F)
1233 where
1234 T: Ord,
1235 F: FnMut(&K, &V) -> T,
1236 {
1237 self.with_entries(move |entries| {
1238 entries.sort_by_key(move |a| sort_key(&a.key, &a.value));
1239 });
1240 }
1241
1242 /// Sort the map's key-value pairs by the default ordering of the keys, but
1243 /// may not preserve the order of equal elements.
1244 ///
1245 /// See [`sort_unstable_by`](Self::sort_unstable_by) for details.
1246 pub fn sort_unstable_keys(&mut self)
1247 where
1248 K: Ord,
1249 {
1250 self.with_entries(move |entries| {
1251 entries.sort_unstable_by(move |a, b| K::cmp(&a.key, &b.key));
1252 });
1253 }
1254
1255 /// Sort the map's key-value pairs in place using the comparison function `cmp`, but
1256 /// may not preserve the order of equal elements.
1257 ///
1258 /// The comparison function receives two key and value pairs to compare (you
1259 /// can sort by keys or values or their combination as needed).
1260 ///
1261 /// Computes in **O(n log n + c)** time where *n* is
1262 /// the length of the map and *c* is the capacity. The sort is unstable.
1263 pub fn sort_unstable_by<F>(&mut self, mut cmp: F)
1264 where
1265 F: FnMut(&K, &V, &K, &V) -> Ordering,
1266 {
1267 self.with_entries(move |entries| {
1268 entries.sort_unstable_by(move |a, b| cmp(&a.key, &a.value, &b.key, &b.value));
1269 });
1270 }
1271
1272 /// Sort the key-value pairs of the map and return a by-value iterator of
1273 /// the key-value pairs with the result.
1274 ///
1275 /// The sort is unstable.
1276 #[inline]
1277 pub fn sorted_unstable_by<F>(self, mut cmp: F) -> IntoIter<K, V>
1278 where
1279 F: FnMut(&K, &V, &K, &V) -> Ordering,
1280 {
1281 let mut entries = self.into_entries();
1282 entries.sort_unstable_by(move |a, b| cmp(&a.key, &a.value, &b.key, &b.value));
1283 IntoIter::new(entries)
1284 }
1285
1286 /// Sort the map's key-value pairs in place using a sort-key extraction function.
1287 ///
1288 /// Computes in **O(n log n + c)** time where *n* is
1289 /// the length of the map and *c* is the capacity. The sort is unstable.
1290 pub fn sort_unstable_by_key<T, F>(&mut self, mut sort_key: F)
1291 where
1292 T: Ord,
1293 F: FnMut(&K, &V) -> T,
1294 {
1295 self.with_entries(move |entries| {
1296 entries.sort_unstable_by_key(move |a| sort_key(&a.key, &a.value));
1297 });
1298 }
1299
1300 /// Sort the map's key-value pairs in place using a sort-key extraction function.
1301 ///
1302 /// During sorting, the function is called at most once per entry, by using temporary storage
1303 /// to remember the results of its evaluation. The order of calls to the function is
1304 /// unspecified and may change between versions of `indexmap` or the standard library.
1305 ///
1306 /// Computes in **O(m n + n log n + c)** time () and **O(n)** space, where the function is
1307 /// **O(m)**, *n* is the length of the map, and *c* the capacity. The sort is stable.
1308 pub fn sort_by_cached_key<T, F>(&mut self, mut sort_key: F)
1309 where
1310 T: Ord,
1311 F: FnMut(&K, &V) -> T,
1312 {
1313 self.with_entries(move |entries| {
1314 entries.sort_by_cached_key(move |a| sort_key(&a.key, &a.value));
1315 });
1316 }
1317
1318 /// Search over a sorted map for a key.
1319 ///
1320 /// Returns the position where that key is present, or the position where it can be inserted to
1321 /// maintain the sort. See [`slice::binary_search`] for more details.
1322 ///
1323 /// Computes in **O(log(n))** time, which is notably less scalable than looking the key up
1324 /// using [`get_index_of`][IndexMap::get_index_of], but this can also position missing keys.
1325 pub fn binary_search_keys(&self, x: &K) -> Result<usize, usize>
1326 where
1327 K: Ord,
1328 {
1329 self.as_slice().binary_search_keys(x)
1330 }
1331
1332 /// Search over a sorted map with a comparator function.
1333 ///
1334 /// Returns the position where that value is present, or the position where it can be inserted
1335 /// to maintain the sort. See [`slice::binary_search_by`] for more details.
1336 ///
1337 /// Computes in **O(log(n))** time.
1338 #[inline]
1339 pub fn binary_search_by<'a, F>(&'a self, f: F) -> Result<usize, usize>
1340 where
1341 F: FnMut(&'a K, &'a V) -> Ordering,
1342 {
1343 self.as_slice().binary_search_by(f)
1344 }
1345
1346 /// Search over a sorted map with an extraction function.
1347 ///
1348 /// Returns the position where that value is present, or the position where it can be inserted
1349 /// to maintain the sort. See [`slice::binary_search_by_key`] for more details.
1350 ///
1351 /// Computes in **O(log(n))** time.
1352 #[inline]
1353 pub fn binary_search_by_key<'a, B, F>(&'a self, b: &B, f: F) -> Result<usize, usize>
1354 where
1355 F: FnMut(&'a K, &'a V) -> B,
1356 B: Ord,
1357 {
1358 self.as_slice().binary_search_by_key(b, f)
1359 }
1360
1361 /// Checks if the keys of this map are sorted.
1362 #[inline]
1363 pub fn is_sorted(&self) -> bool
1364 where
1365 K: PartialOrd,
1366 {
1367 self.as_slice().is_sorted()
1368 }
1369
1370 /// Checks if this map is sorted using the given comparator function.
1371 #[inline]
1372 pub fn is_sorted_by<'a, F>(&'a self, cmp: F) -> bool
1373 where
1374 F: FnMut(&'a K, &'a V, &'a K, &'a V) -> bool,
1375 {
1376 self.as_slice().is_sorted_by(cmp)
1377 }
1378
1379 /// Checks if this map is sorted using the given sort-key function.
1380 #[inline]
1381 pub fn is_sorted_by_key<'a, F, T>(&'a self, sort_key: F) -> bool
1382 where
1383 F: FnMut(&'a K, &'a V) -> T,
1384 T: PartialOrd,
1385 {
1386 self.as_slice().is_sorted_by_key(sort_key)
1387 }
1388
1389 /// Returns the index of the partition point of a sorted map according to the given predicate
1390 /// (the index of the first element of the second partition).
1391 ///
1392 /// See [`slice::partition_point`] for more details.
1393 ///
1394 /// Computes in **O(log(n))** time.
1395 #[must_use]
1396 pub fn partition_point<P>(&self, pred: P) -> usize
1397 where
1398 P: FnMut(&K, &V) -> bool,
1399 {
1400 self.as_slice().partition_point(pred)
1401 }
1402
1403 /// Reverses the order of the map's key-value pairs in place.
1404 ///
1405 /// Computes in **O(n)** time and **O(1)** space.
1406 pub fn reverse(&mut self) {
1407 self.core.reverse()
1408 }
1409
1410 /// Returns a slice of all the key-value pairs in the map.
1411 ///
1412 /// Computes in **O(1)** time.
1413 pub fn as_slice(&self) -> &Slice<K, V> {
1414 Slice::from_slice(self.as_entries())
1415 }
1416
1417 /// Returns a mutable slice of all the key-value pairs in the map.
1418 ///
1419 /// Computes in **O(1)** time.
1420 pub fn as_mut_slice(&mut self) -> &mut Slice<K, V> {
1421 Slice::from_mut_slice(self.as_entries_mut())
1422 }
1423
1424 /// Converts into a boxed slice of all the key-value pairs in the map.
1425 ///
1426 /// Note that this will drop the inner hash table and any excess capacity.
1427 pub fn into_boxed_slice(self) -> Box<Slice<K, V>> {
1428 Slice::from_boxed(self.into_entries().into_boxed_slice())
1429 }
1430
1431 /// Get a key-value pair by index
1432 ///
1433 /// Valid indices are `0 <= index < self.len()`.
1434 ///
1435 /// Computes in **O(1)** time.
1436 pub fn get_index(&self, index: usize) -> Option<(&K, &V)> {
1437 self.as_entries().get(index).map(Bucket::refs)
1438 }
1439
1440 /// Get a key-value pair by index
1441 ///
1442 /// Valid indices are `0 <= index < self.len()`.
1443 ///
1444 /// Computes in **O(1)** time.
1445 pub fn get_index_mut(&mut self, index: usize) -> Option<(&K, &mut V)> {
1446 self.as_entries_mut().get_mut(index).map(Bucket::ref_mut)
1447 }
1448
1449 /// Get an entry in the map by index for in-place manipulation.
1450 ///
1451 /// Valid indices are `0 <= index < self.len()`.
1452 ///
1453 /// Computes in **O(1)** time.
1454 pub fn get_index_entry(&mut self, index: usize) -> Option<IndexedEntry<'_, K, V>> {
1455 if index >= self.len() {
1456 return None;
1457 }
1458 Some(IndexedEntry::new(&mut self.core, index))
1459 }
1460
1461 /// Get an array of `N` key-value pairs by `N` indices
1462 ///
1463 /// Valid indices are *0 <= index < self.len()* and each index needs to be unique.
1464 ///
1465 /// # Examples
1466 ///
1467 /// ```
1468 /// let mut map = indexmap::IndexMap::from([(1, 'a'), (3, 'b'), (2, 'c')]);
1469 /// assert_eq!(map.get_disjoint_indices_mut([2, 0]), Ok([(&2, &mut 'c'), (&1, &mut 'a')]));
1470 /// ```
1471 pub fn get_disjoint_indices_mut<const N: usize>(
1472 &mut self,
1473 indices: [usize; N],
1474 ) -> Result<[(&K, &mut V); N], GetDisjointMutError> {
1475 self.as_mut_slice().get_disjoint_mut(indices)
1476 }
1477
1478 /// Returns a slice of key-value pairs in the given range of indices.
1479 ///
1480 /// Valid indices are `0 <= index < self.len()`.
1481 ///
1482 /// Computes in **O(1)** time.
1483 pub fn get_range<R: RangeBounds<usize>>(&self, range: R) -> Option<&Slice<K, V>> {
1484 let entries = self.as_entries();
1485 let range = try_simplify_range(range, entries.len())?;
1486 entries.get(range).map(Slice::from_slice)
1487 }
1488
1489 /// Returns a mutable slice of key-value pairs in the given range of indices.
1490 ///
1491 /// Valid indices are `0 <= index < self.len()`.
1492 ///
1493 /// Computes in **O(1)** time.
1494 pub fn get_range_mut<R: RangeBounds<usize>>(&mut self, range: R) -> Option<&mut Slice<K, V>> {
1495 let entries = self.as_entries_mut();
1496 let range = try_simplify_range(range, entries.len())?;
1497 entries.get_mut(range).map(Slice::from_mut_slice)
1498 }
1499
1500 /// Get the first key-value pair
1501 ///
1502 /// Computes in **O(1)** time.
1503 #[doc(alias = "first_key_value")] // like `BTreeMap`
1504 pub fn first(&self) -> Option<(&K, &V)> {
1505 self.as_entries().first().map(Bucket::refs)
1506 }
1507
1508 /// Get the first key-value pair, with mutable access to the value
1509 ///
1510 /// Computes in **O(1)** time.
1511 pub fn first_mut(&mut self) -> Option<(&K, &mut V)> {
1512 self.as_entries_mut().first_mut().map(Bucket::ref_mut)
1513 }
1514
1515 /// Get the first entry in the map for in-place manipulation.
1516 ///
1517 /// Computes in **O(1)** time.
1518 pub fn first_entry(&mut self) -> Option<IndexedEntry<'_, K, V>> {
1519 self.get_index_entry(0)
1520 }
1521
1522 /// Get the last key-value pair
1523 ///
1524 /// Computes in **O(1)** time.
1525 #[doc(alias = "last_key_value")] // like `BTreeMap`
1526 pub fn last(&self) -> Option<(&K, &V)> {
1527 self.as_entries().last().map(Bucket::refs)
1528 }
1529
1530 /// Get the last key-value pair, with mutable access to the value
1531 ///
1532 /// Computes in **O(1)** time.
1533 pub fn last_mut(&mut self) -> Option<(&K, &mut V)> {
1534 self.as_entries_mut().last_mut().map(Bucket::ref_mut)
1535 }
1536
1537 /// Get the last entry in the map for in-place manipulation.
1538 ///
1539 /// Computes in **O(1)** time.
1540 pub fn last_entry(&mut self) -> Option<IndexedEntry<'_, K, V>> {
1541 self.get_index_entry(self.len().checked_sub(1)?)
1542 }
1543
1544 /// Remove the key-value pair by index
1545 ///
1546 /// Valid indices are `0 <= index < self.len()`.
1547 ///
1548 /// Like [`Vec::swap_remove`], the pair is removed by swapping it with the
1549 /// last element of the map and popping it off. **This perturbs
1550 /// the position of what used to be the last element!**
1551 ///
1552 /// Computes in **O(1)** time (average).
1553 pub fn swap_remove_index(&mut self, index: usize) -> Option<(K, V)> {
1554 self.core.swap_remove_index(index)
1555 }
1556
1557 /// Remove the key-value pair by index
1558 ///
1559 /// Valid indices are `0 <= index < self.len()`.
1560 ///
1561 /// Like [`Vec::remove`], the pair is removed by shifting all of the
1562 /// elements that follow it, preserving their relative order.
1563 /// **This perturbs the index of all of those elements!**
1564 ///
1565 /// Computes in **O(n)** time (average).
1566 pub fn shift_remove_index(&mut self, index: usize) -> Option<(K, V)> {
1567 self.core.shift_remove_index(index)
1568 }
1569
1570 /// Moves the position of a key-value pair from one index to another
1571 /// by shifting all other pairs in-between.
1572 ///
1573 /// * If `from < to`, the other pairs will shift down while the targeted pair moves up.
1574 /// * If `from > to`, the other pairs will shift up while the targeted pair moves down.
1575 ///
1576 /// ***Panics*** if `from` or `to` are out of bounds.
1577 ///
1578 /// Computes in **O(n)** time (average).
1579 #[track_caller]
1580 pub fn move_index(&mut self, from: usize, to: usize) {
1581 self.core.move_index(from, to)
1582 }
1583
1584 /// Swaps the position of two key-value pairs in the map.
1585 ///
1586 /// ***Panics*** if `a` or `b` are out of bounds.
1587 ///
1588 /// Computes in **O(1)** time (average).
1589 #[track_caller]
1590 pub fn swap_indices(&mut self, a: usize, b: usize) {
1591 self.core.swap_indices(a, b)
1592 }
1593}
1594
1595/// Access [`IndexMap`] values corresponding to a key.
1596///
1597/// # Examples
1598///
1599/// ```
1600/// use indexmap::IndexMap;
1601///
1602/// let mut map = IndexMap::new();
1603/// for word in "Lorem ipsum dolor sit amet".split_whitespace() {
1604/// map.insert(word.to_lowercase(), word.to_uppercase());
1605/// }
1606/// assert_eq!(map["lorem"], "LOREM");
1607/// assert_eq!(map["ipsum"], "IPSUM");
1608/// ```
1609///
1610/// ```should_panic
1611/// use indexmap::IndexMap;
1612///
1613/// let mut map = IndexMap::new();
1614/// map.insert("foo", 1);
1615/// println!("{:?}", map["bar"]); // panics!
1616/// ```
1617impl<K, V, Q: ?Sized, S> Index<&Q> for IndexMap<K, V, S>
1618where
1619 Q: Hash + Equivalent<K>,
1620 S: BuildHasher,
1621{
1622 type Output = V;
1623
1624 /// Returns a reference to the value corresponding to the supplied `key`.
1625 ///
1626 /// ***Panics*** if `key` is not present in the map.
1627 fn index(&self, key: &Q) -> &V {
1628 self.get(key).expect("no entry found for key")
1629 }
1630}
1631
1632/// Access [`IndexMap`] values corresponding to a key.
1633///
1634/// Mutable indexing allows changing / updating values of key-value
1635/// pairs that are already present.
1636///
1637/// You can **not** insert new pairs with index syntax, use `.insert()`.
1638///
1639/// # Examples
1640///
1641/// ```
1642/// use indexmap::IndexMap;
1643///
1644/// let mut map = IndexMap::new();
1645/// for word in "Lorem ipsum dolor sit amet".split_whitespace() {
1646/// map.insert(word.to_lowercase(), word.to_string());
1647/// }
1648/// let lorem = &mut map["lorem"];
1649/// assert_eq!(lorem, "Lorem");
1650/// lorem.retain(char::is_lowercase);
1651/// assert_eq!(map["lorem"], "orem");
1652/// ```
1653///
1654/// ```should_panic
1655/// use indexmap::IndexMap;
1656///
1657/// let mut map = IndexMap::new();
1658/// map.insert("foo", 1);
1659/// map["bar"] = 1; // panics!
1660/// ```
1661impl<K, V, Q: ?Sized, S> IndexMut<&Q> for IndexMap<K, V, S>
1662where
1663 Q: Hash + Equivalent<K>,
1664 S: BuildHasher,
1665{
1666 /// Returns a mutable reference to the value corresponding to the supplied `key`.
1667 ///
1668 /// ***Panics*** if `key` is not present in the map.
1669 fn index_mut(&mut self, key: &Q) -> &mut V {
1670 self.get_mut(key).expect("no entry found for key")
1671 }
1672}
1673
1674/// Access [`IndexMap`] values at indexed positions.
1675///
1676/// See [`Index<usize> for Keys`][keys] to access a map's keys instead.
1677///
1678/// [keys]: Keys#impl-Index<usize>-for-Keys<'a,+K,+V>
1679///
1680/// # Examples
1681///
1682/// ```
1683/// use indexmap::IndexMap;
1684///
1685/// let mut map = IndexMap::new();
1686/// for word in "Lorem ipsum dolor sit amet".split_whitespace() {
1687/// map.insert(word.to_lowercase(), word.to_uppercase());
1688/// }
1689/// assert_eq!(map[0], "LOREM");
1690/// assert_eq!(map[1], "IPSUM");
1691/// map.reverse();
1692/// assert_eq!(map[0], "AMET");
1693/// assert_eq!(map[1], "SIT");
1694/// map.sort_keys();
1695/// assert_eq!(map[0], "AMET");
1696/// assert_eq!(map[1], "DOLOR");
1697/// ```
1698///
1699/// ```should_panic
1700/// use indexmap::IndexMap;
1701///
1702/// let mut map = IndexMap::new();
1703/// map.insert("foo", 1);
1704/// println!("{:?}", map[10]); // panics!
1705/// ```
1706impl<K, V, S> Index<usize> for IndexMap<K, V, S> {
1707 type Output = V;
1708
1709 /// Returns a reference to the value at the supplied `index`.
1710 ///
1711 /// ***Panics*** if `index` is out of bounds.
1712 fn index(&self, index: usize) -> &V {
1713 if let Some((_, value)) = self.get_index(index) {
1714 value
1715 } else {
1716 panic!(
1717 "index out of bounds: the len is {len} but the index is {index}",
1718 len = self.len()
1719 );
1720 }
1721 }
1722}
1723
1724/// Access [`IndexMap`] values at indexed positions.
1725///
1726/// Mutable indexing allows changing / updating indexed values
1727/// that are already present.
1728///
1729/// You can **not** insert new values with index syntax -- use [`.insert()`][IndexMap::insert].
1730///
1731/// # Examples
1732///
1733/// ```
1734/// use indexmap::IndexMap;
1735///
1736/// let mut map = IndexMap::new();
1737/// for word in "Lorem ipsum dolor sit amet".split_whitespace() {
1738/// map.insert(word.to_lowercase(), word.to_string());
1739/// }
1740/// let lorem = &mut map[0];
1741/// assert_eq!(lorem, "Lorem");
1742/// lorem.retain(char::is_lowercase);
1743/// assert_eq!(map["lorem"], "orem");
1744/// ```
1745///
1746/// ```should_panic
1747/// use indexmap::IndexMap;
1748///
1749/// let mut map = IndexMap::new();
1750/// map.insert("foo", 1);
1751/// map[10] = 1; // panics!
1752/// ```
1753impl<K, V, S> IndexMut<usize> for IndexMap<K, V, S> {
1754 /// Returns a mutable reference to the value at the supplied `index`.
1755 ///
1756 /// ***Panics*** if `index` is out of bounds.
1757 fn index_mut(&mut self, index: usize) -> &mut V {
1758 let len: usize = self.len();
1759
1760 if let Some((_, value)) = self.get_index_mut(index) {
1761 value
1762 } else {
1763 panic!("index out of bounds: the len is {len} but the index is {index}");
1764 }
1765 }
1766}
1767
1768impl<K, V, S> FromIterator<(K, V)> for IndexMap<K, V, S>
1769where
1770 K: Hash + Eq,
1771 S: BuildHasher + Default,
1772{
1773 /// Create an `IndexMap` from the sequence of key-value pairs in the
1774 /// iterable.
1775 ///
1776 /// `from_iter` uses the same logic as `extend`. See
1777 /// [`extend`][IndexMap::extend] for more details.
1778 fn from_iter<I: IntoIterator<Item = (K, V)>>(iterable: I) -> Self {
1779 let iter = iterable.into_iter();
1780 let (low, _) = iter.size_hint();
1781 let mut map = Self::with_capacity_and_hasher(low, <_>::default());
1782 map.extend(iter);
1783 map
1784 }
1785}
1786
1787#[cfg(feature = "std")]
1788#[cfg_attr(docsrs, doc(cfg(feature = "std")))]
1789impl<K, V, const N: usize> From<[(K, V); N]> for IndexMap<K, V, RandomState>
1790where
1791 K: Hash + Eq,
1792{
1793 /// # Examples
1794 ///
1795 /// ```
1796 /// use indexmap::IndexMap;
1797 ///
1798 /// let map1 = IndexMap::from([(1, 2), (3, 4)]);
1799 /// let map2: IndexMap<_, _> = [(1, 2), (3, 4)].into();
1800 /// assert_eq!(map1, map2);
1801 /// ```
1802 fn from(arr: [(K, V); N]) -> Self {
1803 Self::from_iter(arr)
1804 }
1805}
1806
1807impl<K, V, S> Extend<(K, V)> for IndexMap<K, V, S>
1808where
1809 K: Hash + Eq,
1810 S: BuildHasher,
1811{
1812 /// Extend the map with all key-value pairs in the iterable.
1813 ///
1814 /// This is equivalent to calling [`insert`][IndexMap::insert] for each of
1815 /// them in order, which means that for keys that already existed
1816 /// in the map, their value is updated but it keeps the existing order.
1817 ///
1818 /// New keys are inserted in the order they appear in the sequence. If
1819 /// equivalents of a key occur more than once, the last corresponding value
1820 /// prevails.
1821 fn extend<I: IntoIterator<Item = (K, V)>>(&mut self, iterable: I) {
1822 // (Note: this is a copy of `std`/`hashbrown`'s reservation logic.)
1823 // Keys may be already present or show multiple times in the iterator.
1824 // Reserve the entire hint lower bound if the map is empty.
1825 // Otherwise reserve half the hint (rounded up), so the map
1826 // will only resize twice in the worst case.
1827 let iter = iterable.into_iter();
1828 let (lower_len, _) = iter.size_hint();
1829 let reserve = if self.is_empty() {
1830 lower_len
1831 } else {
1832 lower_len.div_ceil(2)
1833 };
1834 self.reserve(reserve);
1835 iter.for_each(move |(k, v)| {
1836 self.insert(k, v);
1837 });
1838 }
1839}
1840
1841impl<'a, K, V, S> Extend<(&'a K, &'a V)> for IndexMap<K, V, S>
1842where
1843 K: Hash + Eq + Copy,
1844 V: Copy,
1845 S: BuildHasher,
1846{
1847 /// Extend the map with all key-value pairs in the iterable.
1848 ///
1849 /// See the first extend method for more details.
1850 fn extend<I: IntoIterator<Item = (&'a K, &'a V)>>(&mut self, iterable: I) {
1851 self.extend(iterable.into_iter().map(|(&key, &value)| (key, value)));
1852 }
1853}
1854
1855impl<K, V, S> Default for IndexMap<K, V, S>
1856where
1857 S: Default,
1858{
1859 /// Return an empty [`IndexMap`]
1860 fn default() -> Self {
1861 Self::with_capacity_and_hasher(0, S::default())
1862 }
1863}
1864
1865impl<K, V1, S1, V2, S2> PartialEq<IndexMap<K, V2, S2>> for IndexMap<K, V1, S1>
1866where
1867 K: Hash + Eq,
1868 V1: PartialEq<V2>,
1869 S1: BuildHasher,
1870 S2: BuildHasher,
1871{
1872 fn eq(&self, other: &IndexMap<K, V2, S2>) -> bool {
1873 if self.len() != other.len() {
1874 return false;
1875 }
1876
1877 self.iter()
1878 .all(|(key, value)| other.get(key).map_or(false, |v| *value == *v))
1879 }
1880}
1881
1882impl<K, V, S> Eq for IndexMap<K, V, S>
1883where
1884 K: Eq + Hash,
1885 V: Eq,
1886 S: BuildHasher,
1887{
1888}