indexmap/
map.rs

1//! [`IndexMap`] is a hash table where the iteration order of the key-value
2//! pairs is independent of the hash values of the keys.
3
4mod core;
5mod iter;
6mod mutable;
7mod slice;
8
9#[cfg(feature = "serde")]
10#[cfg_attr(docsrs, doc(cfg(feature = "serde")))]
11pub mod serde_seq;
12
13#[cfg(test)]
14mod tests;
15
16pub use self::core::raw_entry_v1::{self, RawEntryApiV1};
17pub use self::core::{Entry, IndexedEntry, OccupiedEntry, VacantEntry};
18pub use self::iter::{
19    Drain, ExtractIf, IntoIter, IntoKeys, IntoValues, Iter, IterMut, IterMut2, Keys, Splice,
20    Values, ValuesMut,
21};
22pub use self::mutable::MutableEntryKey;
23pub use self::mutable::MutableKeys;
24pub use self::slice::Slice;
25
26#[cfg(feature = "rayon")]
27pub use crate::rayon::map as rayon;
28
29use ::core::cmp::Ordering;
30use ::core::fmt;
31use ::core::hash::{BuildHasher, Hash};
32use ::core::mem;
33use ::core::ops::{Index, IndexMut, RangeBounds};
34use alloc::boxed::Box;
35use alloc::vec::Vec;
36
37#[cfg(feature = "std")]
38use std::hash::RandomState;
39
40pub(crate) use self::core::{ExtractCore, IndexMapCore};
41use crate::util::{third, try_simplify_range};
42use crate::{Bucket, Equivalent, GetDisjointMutError, HashValue, TryReserveError};
43
44/// A hash table where the iteration order of the key-value pairs is independent
45/// of the hash values of the keys.
46///
47/// The interface is closely compatible with the standard
48/// [`HashMap`][std::collections::HashMap],
49/// but also has additional features.
50///
51/// # Order
52///
53/// The key-value pairs have a consistent order that is determined by
54/// the sequence of insertion and removal calls on the map. The order does
55/// not depend on the keys or the hash function at all.
56///
57/// All iterators traverse the map in *the order*.
58///
59/// The insertion order is preserved, with **notable exceptions** like the
60/// [`.remove()`][Self::remove] or [`.swap_remove()`][Self::swap_remove] methods.
61/// Methods such as [`.sort_by()`][Self::sort_by] of
62/// course result in a new order, depending on the sorting order.
63///
64/// # Indices
65///
66/// The key-value pairs are indexed in a compact range without holes in the
67/// range `0..self.len()`. For example, the method `.get_full` looks up the
68/// index for a key, and the method `.get_index` looks up the key-value pair by
69/// index.
70///
71/// # Examples
72///
73/// ```
74/// use indexmap::IndexMap;
75///
76/// // count the frequency of each letter in a sentence.
77/// let mut letters = IndexMap::new();
78/// for ch in "a short treatise on fungi".chars() {
79///     *letters.entry(ch).or_insert(0) += 1;
80/// }
81///
82/// assert_eq!(letters[&'s'], 2);
83/// assert_eq!(letters[&'t'], 3);
84/// assert_eq!(letters[&'u'], 1);
85/// assert_eq!(letters.get(&'y'), None);
86/// ```
87#[cfg(feature = "std")]
88pub struct IndexMap<K, V, S = RandomState> {
89    pub(crate) core: IndexMapCore<K, V>,
90    hash_builder: S,
91}
92#[cfg(not(feature = "std"))]
93pub struct IndexMap<K, V, S> {
94    pub(crate) core: IndexMapCore<K, V>,
95    hash_builder: S,
96}
97
98impl<K, V, S> Clone for IndexMap<K, V, S>
99where
100    K: Clone,
101    V: Clone,
102    S: Clone,
103{
104    fn clone(&self) -> Self {
105        IndexMap {
106            core: self.core.clone(),
107            hash_builder: self.hash_builder.clone(),
108        }
109    }
110
111    fn clone_from(&mut self, other: &Self) {
112        self.core.clone_from(&other.core);
113        self.hash_builder.clone_from(&other.hash_builder);
114    }
115}
116
117impl<K, V, S> fmt::Debug for IndexMap<K, V, S>
118where
119    K: fmt::Debug,
120    V: fmt::Debug,
121{
122    #[cfg(not(feature = "test_debug"))]
123    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
124        f.debug_map().entries(self.iter()).finish()
125    }
126
127    #[cfg(feature = "test_debug")]
128    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
129        // Let the inner `IndexMapCore` print all of its details
130        f.debug_struct("IndexMap")
131            .field("core", &self.core)
132            .finish()
133    }
134}
135
136#[cfg(feature = "std")]
137#[cfg_attr(docsrs, doc(cfg(feature = "std")))]
138impl<K, V> IndexMap<K, V> {
139    /// Create a new map. (Does not allocate.)
140    #[inline]
141    pub fn new() -> Self {
142        Self::with_capacity(0)
143    }
144
145    /// Create a new map with capacity for `n` key-value pairs. (Does not
146    /// allocate if `n` is zero.)
147    ///
148    /// Computes in **O(n)** time.
149    #[inline]
150    pub fn with_capacity(n: usize) -> Self {
151        Self::with_capacity_and_hasher(n, <_>::default())
152    }
153}
154
155impl<K, V, S> IndexMap<K, V, S> {
156    /// Create a new map with capacity for `n` key-value pairs. (Does not
157    /// allocate if `n` is zero.)
158    ///
159    /// Computes in **O(n)** time.
160    #[inline]
161    pub fn with_capacity_and_hasher(n: usize, hash_builder: S) -> Self {
162        if n == 0 {
163            Self::with_hasher(hash_builder)
164        } else {
165            IndexMap {
166                core: IndexMapCore::with_capacity(n),
167                hash_builder,
168            }
169        }
170    }
171
172    /// Create a new map with `hash_builder`.
173    ///
174    /// This function is `const`, so it
175    /// can be called in `static` contexts.
176    pub const fn with_hasher(hash_builder: S) -> Self {
177        IndexMap {
178            core: IndexMapCore::new(),
179            hash_builder,
180        }
181    }
182
183    #[inline]
184    pub(crate) fn into_entries(self) -> Vec<Bucket<K, V>> {
185        self.core.into_entries()
186    }
187
188    #[inline]
189    pub(crate) fn as_entries(&self) -> &[Bucket<K, V>] {
190        self.core.as_entries()
191    }
192
193    #[inline]
194    pub(crate) fn as_entries_mut(&mut self) -> &mut [Bucket<K, V>] {
195        self.core.as_entries_mut()
196    }
197
198    pub(crate) fn with_entries<F>(&mut self, f: F)
199    where
200        F: FnOnce(&mut [Bucket<K, V>]),
201    {
202        self.core.with_entries(f);
203    }
204
205    /// Return the number of elements the map can hold without reallocating.
206    ///
207    /// This number is a lower bound; the map might be able to hold more,
208    /// but is guaranteed to be able to hold at least this many.
209    ///
210    /// Computes in **O(1)** time.
211    pub fn capacity(&self) -> usize {
212        self.core.capacity()
213    }
214
215    /// Return a reference to the map's `BuildHasher`.
216    pub fn hasher(&self) -> &S {
217        &self.hash_builder
218    }
219
220    /// Return the number of key-value pairs in the map.
221    ///
222    /// Computes in **O(1)** time.
223    #[inline]
224    pub fn len(&self) -> usize {
225        self.core.len()
226    }
227
228    /// Returns true if the map contains no elements.
229    ///
230    /// Computes in **O(1)** time.
231    #[inline]
232    pub fn is_empty(&self) -> bool {
233        self.len() == 0
234    }
235
236    /// Return an iterator over the key-value pairs of the map, in their order
237    pub fn iter(&self) -> Iter<'_, K, V> {
238        Iter::new(self.as_entries())
239    }
240
241    /// Return an iterator over the key-value pairs of the map, in their order
242    pub fn iter_mut(&mut self) -> IterMut<'_, K, V> {
243        IterMut::new(self.as_entries_mut())
244    }
245
246    /// Return an iterator over the keys of the map, in their order
247    pub fn keys(&self) -> Keys<'_, K, V> {
248        Keys::new(self.as_entries())
249    }
250
251    /// Return an owning iterator over the keys of the map, in their order
252    pub fn into_keys(self) -> IntoKeys<K, V> {
253        IntoKeys::new(self.into_entries())
254    }
255
256    /// Return an iterator over the values of the map, in their order
257    pub fn values(&self) -> Values<'_, K, V> {
258        Values::new(self.as_entries())
259    }
260
261    /// Return an iterator over mutable references to the values of the map,
262    /// in their order
263    pub fn values_mut(&mut self) -> ValuesMut<'_, K, V> {
264        ValuesMut::new(self.as_entries_mut())
265    }
266
267    /// Return an owning iterator over the values of the map, in their order
268    pub fn into_values(self) -> IntoValues<K, V> {
269        IntoValues::new(self.into_entries())
270    }
271
272    /// Remove all key-value pairs in the map, while preserving its capacity.
273    ///
274    /// Computes in **O(n)** time.
275    pub fn clear(&mut self) {
276        self.core.clear();
277    }
278
279    /// Shortens the map, keeping the first `len` elements and dropping the rest.
280    ///
281    /// If `len` is greater than the map's current length, this has no effect.
282    pub fn truncate(&mut self, len: usize) {
283        self.core.truncate(len);
284    }
285
286    /// Clears the `IndexMap` in the given index range, returning those
287    /// key-value pairs as a drain iterator.
288    ///
289    /// The range may be any type that implements [`RangeBounds<usize>`],
290    /// including all of the `std::ops::Range*` types, or even a tuple pair of
291    /// `Bound` start and end values. To drain the map entirely, use `RangeFull`
292    /// like `map.drain(..)`.
293    ///
294    /// This shifts down all entries following the drained range to fill the
295    /// gap, and keeps the allocated memory for reuse.
296    ///
297    /// ***Panics*** if the starting point is greater than the end point or if
298    /// the end point is greater than the length of the map.
299    #[track_caller]
300    pub fn drain<R>(&mut self, range: R) -> Drain<'_, K, V>
301    where
302        R: RangeBounds<usize>,
303    {
304        Drain::new(self.core.drain(range))
305    }
306
307    /// Creates an iterator which uses a closure to determine if an element should be removed,
308    /// for all elements in the given range.
309    ///
310    /// If the closure returns true, the element is removed from the map and yielded.
311    /// If the closure returns false, or panics, the element remains in the map and will not be
312    /// yielded.
313    ///
314    /// Note that `extract_if` lets you mutate every value in the filter closure, regardless of
315    /// whether you choose to keep or remove it.
316    ///
317    /// The range may be any type that implements [`RangeBounds<usize>`],
318    /// including all of the `std::ops::Range*` types, or even a tuple pair of
319    /// `Bound` start and end values. To check the entire map, use `RangeFull`
320    /// like `map.extract_if(.., predicate)`.
321    ///
322    /// If the returned `ExtractIf` is not exhausted, e.g. because it is dropped without iterating
323    /// or the iteration short-circuits, then the remaining elements will be retained.
324    /// Use [`retain`] with a negated predicate if you do not need the returned iterator.
325    ///
326    /// [`retain`]: IndexMap::retain
327    ///
328    /// ***Panics*** if the starting point is greater than the end point or if
329    /// the end point is greater than the length of the map.
330    ///
331    /// # Examples
332    ///
333    /// Splitting a map into even and odd keys, reusing the original map:
334    ///
335    /// ```
336    /// use indexmap::IndexMap;
337    ///
338    /// let mut map: IndexMap<i32, i32> = (0..8).map(|x| (x, x)).collect();
339    /// let extracted: IndexMap<i32, i32> = map.extract_if(.., |k, _v| k % 2 == 0).collect();
340    ///
341    /// let evens = extracted.keys().copied().collect::<Vec<_>>();
342    /// let odds = map.keys().copied().collect::<Vec<_>>();
343    ///
344    /// assert_eq!(evens, vec![0, 2, 4, 6]);
345    /// assert_eq!(odds, vec![1, 3, 5, 7]);
346    /// ```
347    #[track_caller]
348    pub fn extract_if<F, R>(&mut self, range: R, pred: F) -> ExtractIf<'_, K, V, F>
349    where
350        F: FnMut(&K, &mut V) -> bool,
351        R: RangeBounds<usize>,
352    {
353        ExtractIf::new(&mut self.core, range, pred)
354    }
355
356    /// Splits the collection into two at the given index.
357    ///
358    /// Returns a newly allocated map containing the elements in the range
359    /// `[at, len)`. After the call, the original map will be left containing
360    /// the elements `[0, at)` with its previous capacity unchanged.
361    ///
362    /// ***Panics*** if `at > len`.
363    #[track_caller]
364    pub fn split_off(&mut self, at: usize) -> Self
365    where
366        S: Clone,
367    {
368        Self {
369            core: self.core.split_off(at),
370            hash_builder: self.hash_builder.clone(),
371        }
372    }
373
374    /// Reserve capacity for `additional` more key-value pairs.
375    ///
376    /// Computes in **O(n)** time.
377    pub fn reserve(&mut self, additional: usize) {
378        self.core.reserve(additional);
379    }
380
381    /// Reserve capacity for `additional` more key-value pairs, without over-allocating.
382    ///
383    /// Unlike `reserve`, this does not deliberately over-allocate the entry capacity to avoid
384    /// frequent re-allocations. However, the underlying data structures may still have internal
385    /// capacity requirements, and the allocator itself may give more space than requested, so this
386    /// cannot be relied upon to be precisely minimal.
387    ///
388    /// Computes in **O(n)** time.
389    pub fn reserve_exact(&mut self, additional: usize) {
390        self.core.reserve_exact(additional);
391    }
392
393    /// Try to reserve capacity for `additional` more key-value pairs.
394    ///
395    /// Computes in **O(n)** time.
396    pub fn try_reserve(&mut self, additional: usize) -> Result<(), TryReserveError> {
397        self.core.try_reserve(additional)
398    }
399
400    /// Try to reserve capacity for `additional` more key-value pairs, without over-allocating.
401    ///
402    /// Unlike `try_reserve`, this does not deliberately over-allocate the entry capacity to avoid
403    /// frequent re-allocations. However, the underlying data structures may still have internal
404    /// capacity requirements, and the allocator itself may give more space than requested, so this
405    /// cannot be relied upon to be precisely minimal.
406    ///
407    /// Computes in **O(n)** time.
408    pub fn try_reserve_exact(&mut self, additional: usize) -> Result<(), TryReserveError> {
409        self.core.try_reserve_exact(additional)
410    }
411
412    /// Shrink the capacity of the map as much as possible.
413    ///
414    /// Computes in **O(n)** time.
415    pub fn shrink_to_fit(&mut self) {
416        self.core.shrink_to(0);
417    }
418
419    /// Shrink the capacity of the map with a lower limit.
420    ///
421    /// Computes in **O(n)** time.
422    pub fn shrink_to(&mut self, min_capacity: usize) {
423        self.core.shrink_to(min_capacity);
424    }
425}
426
427impl<K, V, S> IndexMap<K, V, S>
428where
429    K: Hash + Eq,
430    S: BuildHasher,
431{
432    /// Insert a key-value pair in the map.
433    ///
434    /// If an equivalent key already exists in the map: the key remains and
435    /// retains in its place in the order, its corresponding value is updated
436    /// with `value`, and the older value is returned inside `Some(_)`.
437    ///
438    /// If no equivalent key existed in the map: the new key-value pair is
439    /// inserted, last in order, and `None` is returned.
440    ///
441    /// Computes in **O(1)** time (amortized average).
442    ///
443    /// See also [`entry`][Self::entry] if you want to insert *or* modify,
444    /// or [`insert_full`][Self::insert_full] if you need to get the index of
445    /// the corresponding key-value pair.
446    pub fn insert(&mut self, key: K, value: V) -> Option<V> {
447        self.insert_full(key, value).1
448    }
449
450    /// Insert a key-value pair in the map, and get their index.
451    ///
452    /// If an equivalent key already exists in the map: the key remains and
453    /// retains in its place in the order, its corresponding value is updated
454    /// with `value`, and the older value is returned inside `(index, Some(_))`.
455    ///
456    /// If no equivalent key existed in the map: the new key-value pair is
457    /// inserted, last in order, and `(index, None)` is returned.
458    ///
459    /// Computes in **O(1)** time (amortized average).
460    ///
461    /// See also [`entry`][Self::entry] if you want to insert *or* modify.
462    pub fn insert_full(&mut self, key: K, value: V) -> (usize, Option<V>) {
463        let hash = self.hash(&key);
464        self.core.insert_full(hash, key, value)
465    }
466
467    /// Insert a key-value pair in the map at its ordered position among sorted keys.
468    ///
469    /// This is equivalent to finding the position with
470    /// [`binary_search_keys`][Self::binary_search_keys], then either updating
471    /// it or calling [`insert_before`][Self::insert_before] for a new key.
472    ///
473    /// If the sorted key is found in the map, its corresponding value is
474    /// updated with `value`, and the older value is returned inside
475    /// `(index, Some(_))`. Otherwise, the new key-value pair is inserted at
476    /// the sorted position, and `(index, None)` is returned.
477    ///
478    /// If the existing keys are **not** already sorted, then the insertion
479    /// index is unspecified (like [`slice::binary_search`]), but the key-value
480    /// pair is moved to or inserted at that position regardless.
481    ///
482    /// Computes in **O(n)** time (average). Instead of repeating calls to
483    /// `insert_sorted`, it may be faster to call batched [`insert`][Self::insert]
484    /// or [`extend`][Self::extend] and only call [`sort_keys`][Self::sort_keys]
485    /// or [`sort_unstable_keys`][Self::sort_unstable_keys] once.
486    pub fn insert_sorted(&mut self, key: K, value: V) -> (usize, Option<V>)
487    where
488        K: Ord,
489    {
490        match self.binary_search_keys(&key) {
491            Ok(i) => (i, Some(mem::replace(&mut self[i], value))),
492            Err(i) => self.insert_before(i, key, value),
493        }
494    }
495
496    /// Insert a key-value pair in the map at its ordered position among keys
497    /// sorted by `cmp`.
498    ///
499    /// This is equivalent to finding the position with
500    /// [`binary_search_by`][Self::binary_search_by], then calling
501    /// [`insert_before`][Self::insert_before] with the given key and value.
502    ///
503    /// If the existing keys are **not** already sorted, then the insertion
504    /// index is unspecified (like [`slice::binary_search`]), but the key-value
505    /// pair is moved to or inserted at that position regardless.
506    ///
507    /// Computes in **O(n)** time (average).
508    pub fn insert_sorted_by<F>(&mut self, key: K, value: V, mut cmp: F) -> (usize, Option<V>)
509    where
510        F: FnMut(&K, &V, &K, &V) -> Ordering,
511    {
512        let (Ok(i) | Err(i)) = self.binary_search_by(|k, v| cmp(k, v, &key, &value));
513        self.insert_before(i, key, value)
514    }
515
516    /// Insert a key-value pair in the map at its ordered position
517    /// using a sort-key extraction function.
518    ///
519    /// This is equivalent to finding the position with
520    /// [`binary_search_by_key`][Self::binary_search_by_key] with `sort_key(key)`, then
521    /// calling [`insert_before`][Self::insert_before] with the given key and value.
522    ///
523    /// If the existing keys are **not** already sorted, then the insertion
524    /// index is unspecified (like [`slice::binary_search`]), but the key-value
525    /// pair is moved to or inserted at that position regardless.
526    ///
527    /// Computes in **O(n)** time (average).
528    pub fn insert_sorted_by_key<B, F>(
529        &mut self,
530        key: K,
531        value: V,
532        mut sort_key: F,
533    ) -> (usize, Option<V>)
534    where
535        B: Ord,
536        F: FnMut(&K, &V) -> B,
537    {
538        let search_key = sort_key(&key, &value);
539        let (Ok(i) | Err(i)) = self.binary_search_by_key(&search_key, sort_key);
540        self.insert_before(i, key, value)
541    }
542
543    /// Insert a key-value pair in the map before the entry at the given index, or at the end.
544    ///
545    /// If an equivalent key already exists in the map: the key remains and
546    /// is moved to the new position in the map, its corresponding value is updated
547    /// with `value`, and the older value is returned inside `Some(_)`. The returned index
548    /// will either be the given index or one less, depending on how the entry moved.
549    /// (See [`shift_insert`](Self::shift_insert) for different behavior here.)
550    ///
551    /// If no equivalent key existed in the map: the new key-value pair is
552    /// inserted exactly at the given index, and `None` is returned.
553    ///
554    /// ***Panics*** if `index` is out of bounds.
555    /// Valid indices are `0..=map.len()` (inclusive).
556    ///
557    /// Computes in **O(n)** time (average).
558    ///
559    /// See also [`entry`][Self::entry] if you want to insert *or* modify,
560    /// perhaps only using the index for new entries with [`VacantEntry::shift_insert`].
561    ///
562    /// # Examples
563    ///
564    /// ```
565    /// use indexmap::IndexMap;
566    /// let mut map: IndexMap<char, ()> = ('a'..='z').map(|c| (c, ())).collect();
567    ///
568    /// // The new key '*' goes exactly at the given index.
569    /// assert_eq!(map.get_index_of(&'*'), None);
570    /// assert_eq!(map.insert_before(10, '*', ()), (10, None));
571    /// assert_eq!(map.get_index_of(&'*'), Some(10));
572    ///
573    /// // Moving the key 'a' up will shift others down, so this moves *before* 10 to index 9.
574    /// assert_eq!(map.insert_before(10, 'a', ()), (9, Some(())));
575    /// assert_eq!(map.get_index_of(&'a'), Some(9));
576    /// assert_eq!(map.get_index_of(&'*'), Some(10));
577    ///
578    /// // Moving the key 'z' down will shift others up, so this moves to exactly 10.
579    /// assert_eq!(map.insert_before(10, 'z', ()), (10, Some(())));
580    /// assert_eq!(map.get_index_of(&'z'), Some(10));
581    /// assert_eq!(map.get_index_of(&'*'), Some(11));
582    ///
583    /// // Moving or inserting before the endpoint is also valid.
584    /// assert_eq!(map.len(), 27);
585    /// assert_eq!(map.insert_before(map.len(), '*', ()), (26, Some(())));
586    /// assert_eq!(map.get_index_of(&'*'), Some(26));
587    /// assert_eq!(map.insert_before(map.len(), '+', ()), (27, None));
588    /// assert_eq!(map.get_index_of(&'+'), Some(27));
589    /// assert_eq!(map.len(), 28);
590    /// ```
591    #[track_caller]
592    pub fn insert_before(&mut self, mut index: usize, key: K, value: V) -> (usize, Option<V>) {
593        let len = self.len();
594
595        assert!(
596            index <= len,
597            "index out of bounds: the len is {len} but the index is {index}. Expected index <= len"
598        );
599
600        match self.entry(key) {
601            Entry::Occupied(mut entry) => {
602                if index > entry.index() {
603                    // Some entries will shift down when this one moves up,
604                    // so "insert before index" becomes "move to index - 1",
605                    // keeping the entry at the original index unmoved.
606                    index -= 1;
607                }
608                let old = mem::replace(entry.get_mut(), value);
609                entry.move_index(index);
610                (index, Some(old))
611            }
612            Entry::Vacant(entry) => {
613                entry.shift_insert(index, value);
614                (index, None)
615            }
616        }
617    }
618
619    /// Insert a key-value pair in the map at the given index.
620    ///
621    /// If an equivalent key already exists in the map: the key remains and
622    /// is moved to the given index in the map, its corresponding value is updated
623    /// with `value`, and the older value is returned inside `Some(_)`.
624    /// Note that existing entries **cannot** be moved to `index == map.len()`!
625    /// (See [`insert_before`](Self::insert_before) for different behavior here.)
626    ///
627    /// If no equivalent key existed in the map: the new key-value pair is
628    /// inserted at the given index, and `None` is returned.
629    ///
630    /// ***Panics*** if `index` is out of bounds.
631    /// Valid indices are `0..map.len()` (exclusive) when moving an existing entry, or
632    /// `0..=map.len()` (inclusive) when inserting a new key.
633    ///
634    /// Computes in **O(n)** time (average).
635    ///
636    /// See also [`entry`][Self::entry] if you want to insert *or* modify,
637    /// perhaps only using the index for new entries with [`VacantEntry::shift_insert`].
638    ///
639    /// # Examples
640    ///
641    /// ```
642    /// use indexmap::IndexMap;
643    /// let mut map: IndexMap<char, ()> = ('a'..='z').map(|c| (c, ())).collect();
644    ///
645    /// // The new key '*' goes exactly at the given index.
646    /// assert_eq!(map.get_index_of(&'*'), None);
647    /// assert_eq!(map.shift_insert(10, '*', ()), None);
648    /// assert_eq!(map.get_index_of(&'*'), Some(10));
649    ///
650    /// // Moving the key 'a' up to 10 will shift others down, including the '*' that was at 10.
651    /// assert_eq!(map.shift_insert(10, 'a', ()), Some(()));
652    /// assert_eq!(map.get_index_of(&'a'), Some(10));
653    /// assert_eq!(map.get_index_of(&'*'), Some(9));
654    ///
655    /// // Moving the key 'z' down to 9 will shift others up, including the '*' that was at 9.
656    /// assert_eq!(map.shift_insert(9, 'z', ()), Some(()));
657    /// assert_eq!(map.get_index_of(&'z'), Some(9));
658    /// assert_eq!(map.get_index_of(&'*'), Some(10));
659    ///
660    /// // Existing keys can move to len-1 at most, but new keys can insert at the endpoint.
661    /// assert_eq!(map.len(), 27);
662    /// assert_eq!(map.shift_insert(map.len() - 1, '*', ()), Some(()));
663    /// assert_eq!(map.get_index_of(&'*'), Some(26));
664    /// assert_eq!(map.shift_insert(map.len(), '+', ()), None);
665    /// assert_eq!(map.get_index_of(&'+'), Some(27));
666    /// assert_eq!(map.len(), 28);
667    /// ```
668    ///
669    /// ```should_panic
670    /// use indexmap::IndexMap;
671    /// let mut map: IndexMap<char, ()> = ('a'..='z').map(|c| (c, ())).collect();
672    ///
673    /// // This is an invalid index for moving an existing key!
674    /// map.shift_insert(map.len(), 'a', ());
675    /// ```
676    #[track_caller]
677    pub fn shift_insert(&mut self, index: usize, key: K, value: V) -> Option<V> {
678        let len = self.len();
679        match self.entry(key) {
680            Entry::Occupied(mut entry) => {
681                assert!(
682                    index < len,
683                    "index out of bounds: the len is {len} but the index is {index}"
684                );
685
686                let old = mem::replace(entry.get_mut(), value);
687                entry.move_index(index);
688                Some(old)
689            }
690            Entry::Vacant(entry) => {
691                assert!(
692                    index <= len,
693                    "index out of bounds: the len is {len} but the index is {index}. Expected index <= len"
694                );
695
696                entry.shift_insert(index, value);
697                None
698            }
699        }
700    }
701
702    /// Replaces the key at the given index. The new key does not need to be
703    /// equivalent to the one it is replacing, but it must be unique to the rest
704    /// of the map.
705    ///
706    /// Returns `Ok(old_key)` if successful, or `Err((other_index, key))` if an
707    /// equivalent key already exists at a different index. The map will be
708    /// unchanged in the error case.
709    ///
710    /// Direct indexing can be used to change the corresponding value: simply
711    /// `map[index] = value`, or `mem::replace(&mut map[index], value)` to
712    /// retrieve the old value as well.
713    ///
714    /// ***Panics*** if `index` is out of bounds.
715    ///
716    /// Computes in **O(1)** time (average).
717    #[track_caller]
718    pub fn replace_index(&mut self, index: usize, key: K) -> Result<K, (usize, K)> {
719        // If there's a direct match, we don't even need to hash it.
720        let entry = &mut self.as_entries_mut()[index];
721        if key == entry.key {
722            return Ok(mem::replace(&mut entry.key, key));
723        }
724
725        let hash = self.hash(&key);
726        if let Some(i) = self.core.get_index_of(hash, &key) {
727            debug_assert_ne!(i, index);
728            return Err((i, key));
729        }
730        Ok(self.core.replace_index_unique(index, hash, key))
731    }
732
733    /// Get the given key's corresponding entry in the map for insertion and/or
734    /// in-place manipulation.
735    ///
736    /// Computes in **O(1)** time (amortized average).
737    pub fn entry(&mut self, key: K) -> Entry<'_, K, V> {
738        let hash = self.hash(&key);
739        self.core.entry(hash, key)
740    }
741
742    /// Creates a splicing iterator that replaces the specified range in the map
743    /// with the given `replace_with` key-value iterator and yields the removed
744    /// items. `replace_with` does not need to be the same length as `range`.
745    ///
746    /// The `range` is removed even if the iterator is not consumed until the
747    /// end. It is unspecified how many elements are removed from the map if the
748    /// `Splice` value is leaked.
749    ///
750    /// The input iterator `replace_with` is only consumed when the `Splice`
751    /// value is dropped. If a key from the iterator matches an existing entry
752    /// in the map (outside of `range`), then the value will be updated in that
753    /// position. Otherwise, the new key-value pair will be inserted in the
754    /// replaced `range`.
755    ///
756    /// ***Panics*** if the starting point is greater than the end point or if
757    /// the end point is greater than the length of the map.
758    ///
759    /// # Examples
760    ///
761    /// ```
762    /// use indexmap::IndexMap;
763    ///
764    /// let mut map = IndexMap::from([(0, '_'), (1, 'a'), (2, 'b'), (3, 'c'), (4, 'd')]);
765    /// let new = [(5, 'E'), (4, 'D'), (3, 'C'), (2, 'B'), (1, 'A')];
766    /// let removed: Vec<_> = map.splice(2..4, new).collect();
767    ///
768    /// // 1 and 4 got new values, while 5, 3, and 2 were newly inserted.
769    /// assert!(map.into_iter().eq([(0, '_'), (1, 'A'), (5, 'E'), (3, 'C'), (2, 'B'), (4, 'D')]));
770    /// assert_eq!(removed, &[(2, 'b'), (3, 'c')]);
771    /// ```
772    #[track_caller]
773    pub fn splice<R, I>(&mut self, range: R, replace_with: I) -> Splice<'_, I::IntoIter, K, V, S>
774    where
775        R: RangeBounds<usize>,
776        I: IntoIterator<Item = (K, V)>,
777    {
778        Splice::new(self, range, replace_with.into_iter())
779    }
780
781    /// Moves all key-value pairs from `other` into `self`, leaving `other` empty.
782    ///
783    /// This is equivalent to calling [`insert`][Self::insert] for each
784    /// key-value pair from `other` in order, which means that for keys that
785    /// already exist in `self`, their value is updated in the current position.
786    ///
787    /// # Examples
788    ///
789    /// ```
790    /// use indexmap::IndexMap;
791    ///
792    /// // Note: Key (3) is present in both maps.
793    /// let mut a = IndexMap::from([(3, "c"), (2, "b"), (1, "a")]);
794    /// let mut b = IndexMap::from([(3, "d"), (4, "e"), (5, "f")]);
795    /// let old_capacity = b.capacity();
796    ///
797    /// a.append(&mut b);
798    ///
799    /// assert_eq!(a.len(), 5);
800    /// assert_eq!(b.len(), 0);
801    /// assert_eq!(b.capacity(), old_capacity);
802    ///
803    /// assert!(a.keys().eq(&[3, 2, 1, 4, 5]));
804    /// assert_eq!(a[&3], "d"); // "c" was overwritten.
805    /// ```
806    pub fn append<S2>(&mut self, other: &mut IndexMap<K, V, S2>) {
807        self.extend(other.drain(..));
808    }
809}
810
811impl<K, V, S> IndexMap<K, V, S>
812where
813    S: BuildHasher,
814{
815    pub(crate) fn hash<Q: ?Sized + Hash>(&self, key: &Q) -> HashValue {
816        let h = self.hash_builder.hash_one(key);
817        HashValue(h as usize)
818    }
819
820    /// Return `true` if an equivalent to `key` exists in the map.
821    ///
822    /// Computes in **O(1)** time (average).
823    pub fn contains_key<Q>(&self, key: &Q) -> bool
824    where
825        Q: ?Sized + Hash + Equivalent<K>,
826    {
827        self.get_index_of(key).is_some()
828    }
829
830    /// Return a reference to the stored value for `key`, if it is present,
831    /// else `None`.
832    ///
833    /// Computes in **O(1)** time (average).
834    pub fn get<Q>(&self, key: &Q) -> Option<&V>
835    where
836        Q: ?Sized + Hash + Equivalent<K>,
837    {
838        if let Some(i) = self.get_index_of(key) {
839            let entry = &self.as_entries()[i];
840            Some(&entry.value)
841        } else {
842            None
843        }
844    }
845
846    /// Return references to the stored key-value pair for the lookup `key`,
847    /// if it is present, else `None`.
848    ///
849    /// Computes in **O(1)** time (average).
850    pub fn get_key_value<Q>(&self, key: &Q) -> Option<(&K, &V)>
851    where
852        Q: ?Sized + Hash + Equivalent<K>,
853    {
854        if let Some(i) = self.get_index_of(key) {
855            let entry = &self.as_entries()[i];
856            Some((&entry.key, &entry.value))
857        } else {
858            None
859        }
860    }
861
862    /// Return the index with references to the stored key-value pair for the
863    /// lookup `key`, if it is present, else `None`.
864    ///
865    /// Computes in **O(1)** time (average).
866    pub fn get_full<Q>(&self, key: &Q) -> Option<(usize, &K, &V)>
867    where
868        Q: ?Sized + Hash + Equivalent<K>,
869    {
870        if let Some(i) = self.get_index_of(key) {
871            let entry = &self.as_entries()[i];
872            Some((i, &entry.key, &entry.value))
873        } else {
874            None
875        }
876    }
877
878    /// Return the item index for `key`, if it is present, else `None`.
879    ///
880    /// Computes in **O(1)** time (average).
881    pub fn get_index_of<Q>(&self, key: &Q) -> Option<usize>
882    where
883        Q: ?Sized + Hash + Equivalent<K>,
884    {
885        match self.as_entries() {
886            [] => None,
887            [x] => key.equivalent(&x.key).then_some(0),
888            _ => {
889                let hash = self.hash(key);
890                self.core.get_index_of(hash, key)
891            }
892        }
893    }
894
895    /// Return a mutable reference to the stored value for `key`,
896    /// if it is present, else `None`.
897    ///
898    /// Computes in **O(1)** time (average).
899    pub fn get_mut<Q>(&mut self, key: &Q) -> Option<&mut V>
900    where
901        Q: ?Sized + Hash + Equivalent<K>,
902    {
903        if let Some(i) = self.get_index_of(key) {
904            let entry = &mut self.as_entries_mut()[i];
905            Some(&mut entry.value)
906        } else {
907            None
908        }
909    }
910
911    /// Return a reference and mutable references to the stored key-value pair
912    /// for the lookup `key`, if it is present, else `None`.
913    ///
914    /// Computes in **O(1)** time (average).
915    pub fn get_key_value_mut<Q>(&mut self, key: &Q) -> Option<(&K, &mut V)>
916    where
917        Q: ?Sized + Hash + Equivalent<K>,
918    {
919        if let Some(i) = self.get_index_of(key) {
920            let entry = &mut self.as_entries_mut()[i];
921            Some((&entry.key, &mut entry.value))
922        } else {
923            None
924        }
925    }
926
927    /// Return the index with a reference and mutable reference to the stored
928    /// key-value pair for the lookup `key`, if it is present, else `None`.
929    ///
930    /// Computes in **O(1)** time (average).
931    pub fn get_full_mut<Q>(&mut self, key: &Q) -> Option<(usize, &K, &mut V)>
932    where
933        Q: ?Sized + Hash + Equivalent<K>,
934    {
935        if let Some(i) = self.get_index_of(key) {
936            let entry = &mut self.as_entries_mut()[i];
937            Some((i, &entry.key, &mut entry.value))
938        } else {
939            None
940        }
941    }
942
943    /// Return the values for `N` keys. If any key is duplicated, this function will panic.
944    ///
945    /// # Examples
946    ///
947    /// ```
948    /// let mut map = indexmap::IndexMap::from([(1, 'a'), (3, 'b'), (2, 'c')]);
949    /// assert_eq!(map.get_disjoint_mut([&2, &1]), [Some(&mut 'c'), Some(&mut 'a')]);
950    /// ```
951    pub fn get_disjoint_mut<Q, const N: usize>(&mut self, keys: [&Q; N]) -> [Option<&mut V>; N]
952    where
953        Q: ?Sized + Hash + Equivalent<K>,
954    {
955        let indices = keys.map(|key| self.get_index_of(key));
956        match self.as_mut_slice().get_disjoint_opt_mut(indices) {
957            Err(GetDisjointMutError::IndexOutOfBounds) => {
958                unreachable!(
959                    "Internal error: indices should never be OOB as we got them from get_index_of"
960                );
961            }
962            Err(GetDisjointMutError::OverlappingIndices) => {
963                panic!("duplicate keys found");
964            }
965            Ok(key_values) => key_values.map(|kv_opt| kv_opt.map(|kv| kv.1)),
966        }
967    }
968
969    /// Remove the key-value pair equivalent to `key` and return
970    /// its value.
971    ///
972    /// **NOTE:** This is equivalent to [`.swap_remove(key)`][Self::swap_remove], replacing this
973    /// entry's position with the last element, and it is deprecated in favor of calling that
974    /// explicitly. If you need to preserve the relative order of the keys in the map, use
975    /// [`.shift_remove(key)`][Self::shift_remove] instead.
976    #[deprecated(note = "`remove` disrupts the map order -- \
977        use `swap_remove` or `shift_remove` for explicit behavior.")]
978    pub fn remove<Q>(&mut self, key: &Q) -> Option<V>
979    where
980        Q: ?Sized + Hash + Equivalent<K>,
981    {
982        self.swap_remove(key)
983    }
984
985    /// Remove and return the key-value pair equivalent to `key`.
986    ///
987    /// **NOTE:** This is equivalent to [`.swap_remove_entry(key)`][Self::swap_remove_entry],
988    /// replacing this entry's position with the last element, and it is deprecated in favor of
989    /// calling that explicitly. If you need to preserve the relative order of the keys in the map,
990    /// use [`.shift_remove_entry(key)`][Self::shift_remove_entry] instead.
991    #[deprecated(note = "`remove_entry` disrupts the map order -- \
992        use `swap_remove_entry` or `shift_remove_entry` for explicit behavior.")]
993    pub fn remove_entry<Q>(&mut self, key: &Q) -> Option<(K, V)>
994    where
995        Q: ?Sized + Hash + Equivalent<K>,
996    {
997        self.swap_remove_entry(key)
998    }
999
1000    /// Remove the key-value pair equivalent to `key` and return
1001    /// its value.
1002    ///
1003    /// Like [`Vec::swap_remove`], the pair is removed by swapping it with the
1004    /// last element of the map and popping it off. **This perturbs
1005    /// the position of what used to be the last element!**
1006    ///
1007    /// Return `None` if `key` is not in map.
1008    ///
1009    /// Computes in **O(1)** time (average).
1010    pub fn swap_remove<Q>(&mut self, key: &Q) -> Option<V>
1011    where
1012        Q: ?Sized + Hash + Equivalent<K>,
1013    {
1014        self.swap_remove_full(key).map(third)
1015    }
1016
1017    /// Remove and return the key-value pair equivalent to `key`.
1018    ///
1019    /// Like [`Vec::swap_remove`], the pair is removed by swapping it with the
1020    /// last element of the map and popping it off. **This perturbs
1021    /// the position of what used to be the last element!**
1022    ///
1023    /// Return `None` if `key` is not in map.
1024    ///
1025    /// Computes in **O(1)** time (average).
1026    pub fn swap_remove_entry<Q>(&mut self, key: &Q) -> Option<(K, V)>
1027    where
1028        Q: ?Sized + Hash + Equivalent<K>,
1029    {
1030        match self.swap_remove_full(key) {
1031            Some((_, key, value)) => Some((key, value)),
1032            None => None,
1033        }
1034    }
1035
1036    /// Remove the key-value pair equivalent to `key` and return it and
1037    /// the index it had.
1038    ///
1039    /// Like [`Vec::swap_remove`], the pair is removed by swapping it with the
1040    /// last element of the map and popping it off. **This perturbs
1041    /// the position of what used to be the last element!**
1042    ///
1043    /// Return `None` if `key` is not in map.
1044    ///
1045    /// Computes in **O(1)** time (average).
1046    pub fn swap_remove_full<Q>(&mut self, key: &Q) -> Option<(usize, K, V)>
1047    where
1048        Q: ?Sized + Hash + Equivalent<K>,
1049    {
1050        match self.as_entries() {
1051            [x] if key.equivalent(&x.key) => {
1052                let (k, v) = self.core.pop()?;
1053                Some((0, k, v))
1054            }
1055            [_] | [] => None,
1056            _ => {
1057                let hash = self.hash(key);
1058                self.core.swap_remove_full(hash, key)
1059            }
1060        }
1061    }
1062
1063    /// Remove the key-value pair equivalent to `key` and return
1064    /// its value.
1065    ///
1066    /// Like [`Vec::remove`], the pair is removed by shifting all of the
1067    /// elements that follow it, preserving their relative order.
1068    /// **This perturbs the index of all of those elements!**
1069    ///
1070    /// Return `None` if `key` is not in map.
1071    ///
1072    /// Computes in **O(n)** time (average).
1073    pub fn shift_remove<Q>(&mut self, key: &Q) -> Option<V>
1074    where
1075        Q: ?Sized + Hash + Equivalent<K>,
1076    {
1077        self.shift_remove_full(key).map(third)
1078    }
1079
1080    /// Remove and return the key-value pair equivalent to `key`.
1081    ///
1082    /// Like [`Vec::remove`], the pair is removed by shifting all of the
1083    /// elements that follow it, preserving their relative order.
1084    /// **This perturbs the index of all of those elements!**
1085    ///
1086    /// Return `None` if `key` is not in map.
1087    ///
1088    /// Computes in **O(n)** time (average).
1089    pub fn shift_remove_entry<Q>(&mut self, key: &Q) -> Option<(K, V)>
1090    where
1091        Q: ?Sized + Hash + Equivalent<K>,
1092    {
1093        match self.shift_remove_full(key) {
1094            Some((_, key, value)) => Some((key, value)),
1095            None => None,
1096        }
1097    }
1098
1099    /// Remove the key-value pair equivalent to `key` and return it and
1100    /// the index it had.
1101    ///
1102    /// Like [`Vec::remove`], the pair is removed by shifting all of the
1103    /// elements that follow it, preserving their relative order.
1104    /// **This perturbs the index of all of those elements!**
1105    ///
1106    /// Return `None` if `key` is not in map.
1107    ///
1108    /// Computes in **O(n)** time (average).
1109    pub fn shift_remove_full<Q>(&mut self, key: &Q) -> Option<(usize, K, V)>
1110    where
1111        Q: ?Sized + Hash + Equivalent<K>,
1112    {
1113        match self.as_entries() {
1114            [x] if key.equivalent(&x.key) => {
1115                let (k, v) = self.core.pop()?;
1116                Some((0, k, v))
1117            }
1118            [_] | [] => None,
1119            _ => {
1120                let hash = self.hash(key);
1121                self.core.shift_remove_full(hash, key)
1122            }
1123        }
1124    }
1125}
1126
1127impl<K, V, S> IndexMap<K, V, S> {
1128    /// Remove the last key-value pair
1129    ///
1130    /// This preserves the order of the remaining elements.
1131    ///
1132    /// Computes in **O(1)** time (average).
1133    #[doc(alias = "pop_last")] // like `BTreeMap`
1134    pub fn pop(&mut self) -> Option<(K, V)> {
1135        self.core.pop()
1136    }
1137
1138    /// Removes and returns the last key-value pair from a map if the predicate
1139    /// returns `true`, or [`None`] if the predicate returns false or the map
1140    /// is empty (the predicate will not be called in that case).
1141    ///
1142    /// This preserves the order of the remaining elements.
1143    ///
1144    /// Computes in **O(1)** time (average).
1145    ///
1146    /// # Examples
1147    ///
1148    /// ```
1149    /// use indexmap::IndexMap;
1150    ///
1151    /// let init = [(1, 'a'), (2, 'b'), (3, 'c'), (4, 'd')];
1152    /// let mut map = IndexMap::from(init);
1153    /// let pred = |key: &i32, _value: &mut char| *key % 2 == 0;
1154    ///
1155    /// assert_eq!(map.pop_if(pred), Some((4, 'd')));
1156    /// assert_eq!(map.as_slice(), &init[..3]);
1157    /// assert_eq!(map.pop_if(pred), None);
1158    /// ```
1159    pub fn pop_if(&mut self, predicate: impl FnOnce(&K, &mut V) -> bool) -> Option<(K, V)> {
1160        let (last_key, last_value) = self.last_mut()?;
1161        if predicate(last_key, last_value) {
1162            self.core.pop()
1163        } else {
1164            None
1165        }
1166    }
1167
1168    /// Scan through each key-value pair in the map and keep those where the
1169    /// closure `keep` returns `true`.
1170    ///
1171    /// The elements are visited in order, and remaining elements keep their
1172    /// order.
1173    ///
1174    /// Computes in **O(n)** time (average).
1175    pub fn retain<F>(&mut self, mut keep: F)
1176    where
1177        F: FnMut(&K, &mut V) -> bool,
1178    {
1179        self.core.retain_in_order(move |k, v| keep(k, v));
1180    }
1181
1182    /// Sort the map's key-value pairs by the default ordering of the keys.
1183    ///
1184    /// This is a stable sort -- but equivalent keys should not normally coexist in
1185    /// a map at all, so [`sort_unstable_keys`][Self::sort_unstable_keys] is preferred
1186    /// because it is generally faster and doesn't allocate auxiliary memory.
1187    ///
1188    /// See [`sort_by`](Self::sort_by) for details.
1189    pub fn sort_keys(&mut self)
1190    where
1191        K: Ord,
1192    {
1193        self.with_entries(move |entries| {
1194            entries.sort_by(move |a, b| K::cmp(&a.key, &b.key));
1195        });
1196    }
1197
1198    /// Sort the map's key-value pairs in place using the comparison
1199    /// function `cmp`.
1200    ///
1201    /// The comparison function receives two key and value pairs to compare (you
1202    /// can sort by keys or values or their combination as needed).
1203    ///
1204    /// Computes in **O(n log n + c)** time and **O(n)** space where *n* is
1205    /// the length of the map and *c* the capacity. The sort is stable.
1206    pub fn sort_by<F>(&mut self, mut cmp: F)
1207    where
1208        F: FnMut(&K, &V, &K, &V) -> Ordering,
1209    {
1210        self.with_entries(move |entries| {
1211            entries.sort_by(move |a, b| cmp(&a.key, &a.value, &b.key, &b.value));
1212        });
1213    }
1214
1215    /// Sort the key-value pairs of the map and return a by-value iterator of
1216    /// the key-value pairs with the result.
1217    ///
1218    /// The sort is stable.
1219    pub fn sorted_by<F>(self, mut cmp: F) -> IntoIter<K, V>
1220    where
1221        F: FnMut(&K, &V, &K, &V) -> Ordering,
1222    {
1223        let mut entries = self.into_entries();
1224        entries.sort_by(move |a, b| cmp(&a.key, &a.value, &b.key, &b.value));
1225        IntoIter::new(entries)
1226    }
1227
1228    /// Sort the map's key-value pairs in place using a sort-key extraction function.
1229    ///
1230    /// Computes in **O(n log n + c)** time and **O(n)** space where *n* is
1231    /// the length of the map and *c* the capacity. The sort is stable.
1232    pub fn sort_by_key<T, F>(&mut self, mut sort_key: F)
1233    where
1234        T: Ord,
1235        F: FnMut(&K, &V) -> T,
1236    {
1237        self.with_entries(move |entries| {
1238            entries.sort_by_key(move |a| sort_key(&a.key, &a.value));
1239        });
1240    }
1241
1242    /// Sort the map's key-value pairs by the default ordering of the keys, but
1243    /// may not preserve the order of equal elements.
1244    ///
1245    /// See [`sort_unstable_by`](Self::sort_unstable_by) for details.
1246    pub fn sort_unstable_keys(&mut self)
1247    where
1248        K: Ord,
1249    {
1250        self.with_entries(move |entries| {
1251            entries.sort_unstable_by(move |a, b| K::cmp(&a.key, &b.key));
1252        });
1253    }
1254
1255    /// Sort the map's key-value pairs in place using the comparison function `cmp`, but
1256    /// may not preserve the order of equal elements.
1257    ///
1258    /// The comparison function receives two key and value pairs to compare (you
1259    /// can sort by keys or values or their combination as needed).
1260    ///
1261    /// Computes in **O(n log n + c)** time where *n* is
1262    /// the length of the map and *c* is the capacity. The sort is unstable.
1263    pub fn sort_unstable_by<F>(&mut self, mut cmp: F)
1264    where
1265        F: FnMut(&K, &V, &K, &V) -> Ordering,
1266    {
1267        self.with_entries(move |entries| {
1268            entries.sort_unstable_by(move |a, b| cmp(&a.key, &a.value, &b.key, &b.value));
1269        });
1270    }
1271
1272    /// Sort the key-value pairs of the map and return a by-value iterator of
1273    /// the key-value pairs with the result.
1274    ///
1275    /// The sort is unstable.
1276    #[inline]
1277    pub fn sorted_unstable_by<F>(self, mut cmp: F) -> IntoIter<K, V>
1278    where
1279        F: FnMut(&K, &V, &K, &V) -> Ordering,
1280    {
1281        let mut entries = self.into_entries();
1282        entries.sort_unstable_by(move |a, b| cmp(&a.key, &a.value, &b.key, &b.value));
1283        IntoIter::new(entries)
1284    }
1285
1286    /// Sort the map's key-value pairs in place using a sort-key extraction function.
1287    ///
1288    /// Computes in **O(n log n + c)** time where *n* is
1289    /// the length of the map and *c* is the capacity. The sort is unstable.
1290    pub fn sort_unstable_by_key<T, F>(&mut self, mut sort_key: F)
1291    where
1292        T: Ord,
1293        F: FnMut(&K, &V) -> T,
1294    {
1295        self.with_entries(move |entries| {
1296            entries.sort_unstable_by_key(move |a| sort_key(&a.key, &a.value));
1297        });
1298    }
1299
1300    /// Sort the map's key-value pairs in place using a sort-key extraction function.
1301    ///
1302    /// During sorting, the function is called at most once per entry, by using temporary storage
1303    /// to remember the results of its evaluation. The order of calls to the function is
1304    /// unspecified and may change between versions of `indexmap` or the standard library.
1305    ///
1306    /// Computes in **O(m n + n log n + c)** time () and **O(n)** space, where the function is
1307    /// **O(m)**, *n* is the length of the map, and *c* the capacity. The sort is stable.
1308    pub fn sort_by_cached_key<T, F>(&mut self, mut sort_key: F)
1309    where
1310        T: Ord,
1311        F: FnMut(&K, &V) -> T,
1312    {
1313        self.with_entries(move |entries| {
1314            entries.sort_by_cached_key(move |a| sort_key(&a.key, &a.value));
1315        });
1316    }
1317
1318    /// Search over a sorted map for a key.
1319    ///
1320    /// Returns the position where that key is present, or the position where it can be inserted to
1321    /// maintain the sort. See [`slice::binary_search`] for more details.
1322    ///
1323    /// Computes in **O(log(n))** time, which is notably less scalable than looking the key up
1324    /// using [`get_index_of`][IndexMap::get_index_of], but this can also position missing keys.
1325    pub fn binary_search_keys(&self, x: &K) -> Result<usize, usize>
1326    where
1327        K: Ord,
1328    {
1329        self.as_slice().binary_search_keys(x)
1330    }
1331
1332    /// Search over a sorted map with a comparator function.
1333    ///
1334    /// Returns the position where that value is present, or the position where it can be inserted
1335    /// to maintain the sort. See [`slice::binary_search_by`] for more details.
1336    ///
1337    /// Computes in **O(log(n))** time.
1338    #[inline]
1339    pub fn binary_search_by<'a, F>(&'a self, f: F) -> Result<usize, usize>
1340    where
1341        F: FnMut(&'a K, &'a V) -> Ordering,
1342    {
1343        self.as_slice().binary_search_by(f)
1344    }
1345
1346    /// Search over a sorted map with an extraction function.
1347    ///
1348    /// Returns the position where that value is present, or the position where it can be inserted
1349    /// to maintain the sort. See [`slice::binary_search_by_key`] for more details.
1350    ///
1351    /// Computes in **O(log(n))** time.
1352    #[inline]
1353    pub fn binary_search_by_key<'a, B, F>(&'a self, b: &B, f: F) -> Result<usize, usize>
1354    where
1355        F: FnMut(&'a K, &'a V) -> B,
1356        B: Ord,
1357    {
1358        self.as_slice().binary_search_by_key(b, f)
1359    }
1360
1361    /// Checks if the keys of this map are sorted.
1362    #[inline]
1363    pub fn is_sorted(&self) -> bool
1364    where
1365        K: PartialOrd,
1366    {
1367        self.as_slice().is_sorted()
1368    }
1369
1370    /// Checks if this map is sorted using the given comparator function.
1371    #[inline]
1372    pub fn is_sorted_by<'a, F>(&'a self, cmp: F) -> bool
1373    where
1374        F: FnMut(&'a K, &'a V, &'a K, &'a V) -> bool,
1375    {
1376        self.as_slice().is_sorted_by(cmp)
1377    }
1378
1379    /// Checks if this map is sorted using the given sort-key function.
1380    #[inline]
1381    pub fn is_sorted_by_key<'a, F, T>(&'a self, sort_key: F) -> bool
1382    where
1383        F: FnMut(&'a K, &'a V) -> T,
1384        T: PartialOrd,
1385    {
1386        self.as_slice().is_sorted_by_key(sort_key)
1387    }
1388
1389    /// Returns the index of the partition point of a sorted map according to the given predicate
1390    /// (the index of the first element of the second partition).
1391    ///
1392    /// See [`slice::partition_point`] for more details.
1393    ///
1394    /// Computes in **O(log(n))** time.
1395    #[must_use]
1396    pub fn partition_point<P>(&self, pred: P) -> usize
1397    where
1398        P: FnMut(&K, &V) -> bool,
1399    {
1400        self.as_slice().partition_point(pred)
1401    }
1402
1403    /// Reverses the order of the map's key-value pairs in place.
1404    ///
1405    /// Computes in **O(n)** time and **O(1)** space.
1406    pub fn reverse(&mut self) {
1407        self.core.reverse()
1408    }
1409
1410    /// Returns a slice of all the key-value pairs in the map.
1411    ///
1412    /// Computes in **O(1)** time.
1413    pub fn as_slice(&self) -> &Slice<K, V> {
1414        Slice::from_slice(self.as_entries())
1415    }
1416
1417    /// Returns a mutable slice of all the key-value pairs in the map.
1418    ///
1419    /// Computes in **O(1)** time.
1420    pub fn as_mut_slice(&mut self) -> &mut Slice<K, V> {
1421        Slice::from_mut_slice(self.as_entries_mut())
1422    }
1423
1424    /// Converts into a boxed slice of all the key-value pairs in the map.
1425    ///
1426    /// Note that this will drop the inner hash table and any excess capacity.
1427    pub fn into_boxed_slice(self) -> Box<Slice<K, V>> {
1428        Slice::from_boxed(self.into_entries().into_boxed_slice())
1429    }
1430
1431    /// Get a key-value pair by index
1432    ///
1433    /// Valid indices are `0 <= index < self.len()`.
1434    ///
1435    /// Computes in **O(1)** time.
1436    pub fn get_index(&self, index: usize) -> Option<(&K, &V)> {
1437        self.as_entries().get(index).map(Bucket::refs)
1438    }
1439
1440    /// Get a key-value pair by index
1441    ///
1442    /// Valid indices are `0 <= index < self.len()`.
1443    ///
1444    /// Computes in **O(1)** time.
1445    pub fn get_index_mut(&mut self, index: usize) -> Option<(&K, &mut V)> {
1446        self.as_entries_mut().get_mut(index).map(Bucket::ref_mut)
1447    }
1448
1449    /// Get an entry in the map by index for in-place manipulation.
1450    ///
1451    /// Valid indices are `0 <= index < self.len()`.
1452    ///
1453    /// Computes in **O(1)** time.
1454    pub fn get_index_entry(&mut self, index: usize) -> Option<IndexedEntry<'_, K, V>> {
1455        if index >= self.len() {
1456            return None;
1457        }
1458        Some(IndexedEntry::new(&mut self.core, index))
1459    }
1460
1461    /// Get an array of `N` key-value pairs by `N` indices
1462    ///
1463    /// Valid indices are *0 <= index < self.len()* and each index needs to be unique.
1464    ///
1465    /// # Examples
1466    ///
1467    /// ```
1468    /// let mut map = indexmap::IndexMap::from([(1, 'a'), (3, 'b'), (2, 'c')]);
1469    /// assert_eq!(map.get_disjoint_indices_mut([2, 0]), Ok([(&2, &mut 'c'), (&1, &mut 'a')]));
1470    /// ```
1471    pub fn get_disjoint_indices_mut<const N: usize>(
1472        &mut self,
1473        indices: [usize; N],
1474    ) -> Result<[(&K, &mut V); N], GetDisjointMutError> {
1475        self.as_mut_slice().get_disjoint_mut(indices)
1476    }
1477
1478    /// Returns a slice of key-value pairs in the given range of indices.
1479    ///
1480    /// Valid indices are `0 <= index < self.len()`.
1481    ///
1482    /// Computes in **O(1)** time.
1483    pub fn get_range<R: RangeBounds<usize>>(&self, range: R) -> Option<&Slice<K, V>> {
1484        let entries = self.as_entries();
1485        let range = try_simplify_range(range, entries.len())?;
1486        entries.get(range).map(Slice::from_slice)
1487    }
1488
1489    /// Returns a mutable slice of key-value pairs in the given range of indices.
1490    ///
1491    /// Valid indices are `0 <= index < self.len()`.
1492    ///
1493    /// Computes in **O(1)** time.
1494    pub fn get_range_mut<R: RangeBounds<usize>>(&mut self, range: R) -> Option<&mut Slice<K, V>> {
1495        let entries = self.as_entries_mut();
1496        let range = try_simplify_range(range, entries.len())?;
1497        entries.get_mut(range).map(Slice::from_mut_slice)
1498    }
1499
1500    /// Get the first key-value pair
1501    ///
1502    /// Computes in **O(1)** time.
1503    #[doc(alias = "first_key_value")] // like `BTreeMap`
1504    pub fn first(&self) -> Option<(&K, &V)> {
1505        self.as_entries().first().map(Bucket::refs)
1506    }
1507
1508    /// Get the first key-value pair, with mutable access to the value
1509    ///
1510    /// Computes in **O(1)** time.
1511    pub fn first_mut(&mut self) -> Option<(&K, &mut V)> {
1512        self.as_entries_mut().first_mut().map(Bucket::ref_mut)
1513    }
1514
1515    /// Get the first entry in the map for in-place manipulation.
1516    ///
1517    /// Computes in **O(1)** time.
1518    pub fn first_entry(&mut self) -> Option<IndexedEntry<'_, K, V>> {
1519        self.get_index_entry(0)
1520    }
1521
1522    /// Get the last key-value pair
1523    ///
1524    /// Computes in **O(1)** time.
1525    #[doc(alias = "last_key_value")] // like `BTreeMap`
1526    pub fn last(&self) -> Option<(&K, &V)> {
1527        self.as_entries().last().map(Bucket::refs)
1528    }
1529
1530    /// Get the last key-value pair, with mutable access to the value
1531    ///
1532    /// Computes in **O(1)** time.
1533    pub fn last_mut(&mut self) -> Option<(&K, &mut V)> {
1534        self.as_entries_mut().last_mut().map(Bucket::ref_mut)
1535    }
1536
1537    /// Get the last entry in the map for in-place manipulation.
1538    ///
1539    /// Computes in **O(1)** time.
1540    pub fn last_entry(&mut self) -> Option<IndexedEntry<'_, K, V>> {
1541        self.get_index_entry(self.len().checked_sub(1)?)
1542    }
1543
1544    /// Remove the key-value pair by index
1545    ///
1546    /// Valid indices are `0 <= index < self.len()`.
1547    ///
1548    /// Like [`Vec::swap_remove`], the pair is removed by swapping it with the
1549    /// last element of the map and popping it off. **This perturbs
1550    /// the position of what used to be the last element!**
1551    ///
1552    /// Computes in **O(1)** time (average).
1553    pub fn swap_remove_index(&mut self, index: usize) -> Option<(K, V)> {
1554        self.core.swap_remove_index(index)
1555    }
1556
1557    /// Remove the key-value pair by index
1558    ///
1559    /// Valid indices are `0 <= index < self.len()`.
1560    ///
1561    /// Like [`Vec::remove`], the pair is removed by shifting all of the
1562    /// elements that follow it, preserving their relative order.
1563    /// **This perturbs the index of all of those elements!**
1564    ///
1565    /// Computes in **O(n)** time (average).
1566    pub fn shift_remove_index(&mut self, index: usize) -> Option<(K, V)> {
1567        self.core.shift_remove_index(index)
1568    }
1569
1570    /// Moves the position of a key-value pair from one index to another
1571    /// by shifting all other pairs in-between.
1572    ///
1573    /// * If `from < to`, the other pairs will shift down while the targeted pair moves up.
1574    /// * If `from > to`, the other pairs will shift up while the targeted pair moves down.
1575    ///
1576    /// ***Panics*** if `from` or `to` are out of bounds.
1577    ///
1578    /// Computes in **O(n)** time (average).
1579    #[track_caller]
1580    pub fn move_index(&mut self, from: usize, to: usize) {
1581        self.core.move_index(from, to)
1582    }
1583
1584    /// Swaps the position of two key-value pairs in the map.
1585    ///
1586    /// ***Panics*** if `a` or `b` are out of bounds.
1587    ///
1588    /// Computes in **O(1)** time (average).
1589    #[track_caller]
1590    pub fn swap_indices(&mut self, a: usize, b: usize) {
1591        self.core.swap_indices(a, b)
1592    }
1593}
1594
1595/// Access [`IndexMap`] values corresponding to a key.
1596///
1597/// # Examples
1598///
1599/// ```
1600/// use indexmap::IndexMap;
1601///
1602/// let mut map = IndexMap::new();
1603/// for word in "Lorem ipsum dolor sit amet".split_whitespace() {
1604///     map.insert(word.to_lowercase(), word.to_uppercase());
1605/// }
1606/// assert_eq!(map["lorem"], "LOREM");
1607/// assert_eq!(map["ipsum"], "IPSUM");
1608/// ```
1609///
1610/// ```should_panic
1611/// use indexmap::IndexMap;
1612///
1613/// let mut map = IndexMap::new();
1614/// map.insert("foo", 1);
1615/// println!("{:?}", map["bar"]); // panics!
1616/// ```
1617impl<K, V, Q: ?Sized, S> Index<&Q> for IndexMap<K, V, S>
1618where
1619    Q: Hash + Equivalent<K>,
1620    S: BuildHasher,
1621{
1622    type Output = V;
1623
1624    /// Returns a reference to the value corresponding to the supplied `key`.
1625    ///
1626    /// ***Panics*** if `key` is not present in the map.
1627    fn index(&self, key: &Q) -> &V {
1628        self.get(key).expect("no entry found for key")
1629    }
1630}
1631
1632/// Access [`IndexMap`] values corresponding to a key.
1633///
1634/// Mutable indexing allows changing / updating values of key-value
1635/// pairs that are already present.
1636///
1637/// You can **not** insert new pairs with index syntax, use `.insert()`.
1638///
1639/// # Examples
1640///
1641/// ```
1642/// use indexmap::IndexMap;
1643///
1644/// let mut map = IndexMap::new();
1645/// for word in "Lorem ipsum dolor sit amet".split_whitespace() {
1646///     map.insert(word.to_lowercase(), word.to_string());
1647/// }
1648/// let lorem = &mut map["lorem"];
1649/// assert_eq!(lorem, "Lorem");
1650/// lorem.retain(char::is_lowercase);
1651/// assert_eq!(map["lorem"], "orem");
1652/// ```
1653///
1654/// ```should_panic
1655/// use indexmap::IndexMap;
1656///
1657/// let mut map = IndexMap::new();
1658/// map.insert("foo", 1);
1659/// map["bar"] = 1; // panics!
1660/// ```
1661impl<K, V, Q: ?Sized, S> IndexMut<&Q> for IndexMap<K, V, S>
1662where
1663    Q: Hash + Equivalent<K>,
1664    S: BuildHasher,
1665{
1666    /// Returns a mutable reference to the value corresponding to the supplied `key`.
1667    ///
1668    /// ***Panics*** if `key` is not present in the map.
1669    fn index_mut(&mut self, key: &Q) -> &mut V {
1670        self.get_mut(key).expect("no entry found for key")
1671    }
1672}
1673
1674/// Access [`IndexMap`] values at indexed positions.
1675///
1676/// See [`Index<usize> for Keys`][keys] to access a map's keys instead.
1677///
1678/// [keys]: Keys#impl-Index<usize>-for-Keys<'a,+K,+V>
1679///
1680/// # Examples
1681///
1682/// ```
1683/// use indexmap::IndexMap;
1684///
1685/// let mut map = IndexMap::new();
1686/// for word in "Lorem ipsum dolor sit amet".split_whitespace() {
1687///     map.insert(word.to_lowercase(), word.to_uppercase());
1688/// }
1689/// assert_eq!(map[0], "LOREM");
1690/// assert_eq!(map[1], "IPSUM");
1691/// map.reverse();
1692/// assert_eq!(map[0], "AMET");
1693/// assert_eq!(map[1], "SIT");
1694/// map.sort_keys();
1695/// assert_eq!(map[0], "AMET");
1696/// assert_eq!(map[1], "DOLOR");
1697/// ```
1698///
1699/// ```should_panic
1700/// use indexmap::IndexMap;
1701///
1702/// let mut map = IndexMap::new();
1703/// map.insert("foo", 1);
1704/// println!("{:?}", map[10]); // panics!
1705/// ```
1706impl<K, V, S> Index<usize> for IndexMap<K, V, S> {
1707    type Output = V;
1708
1709    /// Returns a reference to the value at the supplied `index`.
1710    ///
1711    /// ***Panics*** if `index` is out of bounds.
1712    fn index(&self, index: usize) -> &V {
1713        if let Some((_, value)) = self.get_index(index) {
1714            value
1715        } else {
1716            panic!(
1717                "index out of bounds: the len is {len} but the index is {index}",
1718                len = self.len()
1719            );
1720        }
1721    }
1722}
1723
1724/// Access [`IndexMap`] values at indexed positions.
1725///
1726/// Mutable indexing allows changing / updating indexed values
1727/// that are already present.
1728///
1729/// You can **not** insert new values with index syntax -- use [`.insert()`][IndexMap::insert].
1730///
1731/// # Examples
1732///
1733/// ```
1734/// use indexmap::IndexMap;
1735///
1736/// let mut map = IndexMap::new();
1737/// for word in "Lorem ipsum dolor sit amet".split_whitespace() {
1738///     map.insert(word.to_lowercase(), word.to_string());
1739/// }
1740/// let lorem = &mut map[0];
1741/// assert_eq!(lorem, "Lorem");
1742/// lorem.retain(char::is_lowercase);
1743/// assert_eq!(map["lorem"], "orem");
1744/// ```
1745///
1746/// ```should_panic
1747/// use indexmap::IndexMap;
1748///
1749/// let mut map = IndexMap::new();
1750/// map.insert("foo", 1);
1751/// map[10] = 1; // panics!
1752/// ```
1753impl<K, V, S> IndexMut<usize> for IndexMap<K, V, S> {
1754    /// Returns a mutable reference to the value at the supplied `index`.
1755    ///
1756    /// ***Panics*** if `index` is out of bounds.
1757    fn index_mut(&mut self, index: usize) -> &mut V {
1758        let len: usize = self.len();
1759
1760        if let Some((_, value)) = self.get_index_mut(index) {
1761            value
1762        } else {
1763            panic!("index out of bounds: the len is {len} but the index is {index}");
1764        }
1765    }
1766}
1767
1768impl<K, V, S> FromIterator<(K, V)> for IndexMap<K, V, S>
1769where
1770    K: Hash + Eq,
1771    S: BuildHasher + Default,
1772{
1773    /// Create an `IndexMap` from the sequence of key-value pairs in the
1774    /// iterable.
1775    ///
1776    /// `from_iter` uses the same logic as `extend`. See
1777    /// [`extend`][IndexMap::extend] for more details.
1778    fn from_iter<I: IntoIterator<Item = (K, V)>>(iterable: I) -> Self {
1779        let iter = iterable.into_iter();
1780        let (low, _) = iter.size_hint();
1781        let mut map = Self::with_capacity_and_hasher(low, <_>::default());
1782        map.extend(iter);
1783        map
1784    }
1785}
1786
1787#[cfg(feature = "std")]
1788#[cfg_attr(docsrs, doc(cfg(feature = "std")))]
1789impl<K, V, const N: usize> From<[(K, V); N]> for IndexMap<K, V, RandomState>
1790where
1791    K: Hash + Eq,
1792{
1793    /// # Examples
1794    ///
1795    /// ```
1796    /// use indexmap::IndexMap;
1797    ///
1798    /// let map1 = IndexMap::from([(1, 2), (3, 4)]);
1799    /// let map2: IndexMap<_, _> = [(1, 2), (3, 4)].into();
1800    /// assert_eq!(map1, map2);
1801    /// ```
1802    fn from(arr: [(K, V); N]) -> Self {
1803        Self::from_iter(arr)
1804    }
1805}
1806
1807impl<K, V, S> Extend<(K, V)> for IndexMap<K, V, S>
1808where
1809    K: Hash + Eq,
1810    S: BuildHasher,
1811{
1812    /// Extend the map with all key-value pairs in the iterable.
1813    ///
1814    /// This is equivalent to calling [`insert`][IndexMap::insert] for each of
1815    /// them in order, which means that for keys that already existed
1816    /// in the map, their value is updated but it keeps the existing order.
1817    ///
1818    /// New keys are inserted in the order they appear in the sequence. If
1819    /// equivalents of a key occur more than once, the last corresponding value
1820    /// prevails.
1821    fn extend<I: IntoIterator<Item = (K, V)>>(&mut self, iterable: I) {
1822        // (Note: this is a copy of `std`/`hashbrown`'s reservation logic.)
1823        // Keys may be already present or show multiple times in the iterator.
1824        // Reserve the entire hint lower bound if the map is empty.
1825        // Otherwise reserve half the hint (rounded up), so the map
1826        // will only resize twice in the worst case.
1827        let iter = iterable.into_iter();
1828        let (lower_len, _) = iter.size_hint();
1829        let reserve = if self.is_empty() {
1830            lower_len
1831        } else {
1832            lower_len.div_ceil(2)
1833        };
1834        self.reserve(reserve);
1835        iter.for_each(move |(k, v)| {
1836            self.insert(k, v);
1837        });
1838    }
1839}
1840
1841impl<'a, K, V, S> Extend<(&'a K, &'a V)> for IndexMap<K, V, S>
1842where
1843    K: Hash + Eq + Copy,
1844    V: Copy,
1845    S: BuildHasher,
1846{
1847    /// Extend the map with all key-value pairs in the iterable.
1848    ///
1849    /// See the first extend method for more details.
1850    fn extend<I: IntoIterator<Item = (&'a K, &'a V)>>(&mut self, iterable: I) {
1851        self.extend(iterable.into_iter().map(|(&key, &value)| (key, value)));
1852    }
1853}
1854
1855impl<K, V, S> Default for IndexMap<K, V, S>
1856where
1857    S: Default,
1858{
1859    /// Return an empty [`IndexMap`]
1860    fn default() -> Self {
1861        Self::with_capacity_and_hasher(0, S::default())
1862    }
1863}
1864
1865impl<K, V1, S1, V2, S2> PartialEq<IndexMap<K, V2, S2>> for IndexMap<K, V1, S1>
1866where
1867    K: Hash + Eq,
1868    V1: PartialEq<V2>,
1869    S1: BuildHasher,
1870    S2: BuildHasher,
1871{
1872    fn eq(&self, other: &IndexMap<K, V2, S2>) -> bool {
1873        if self.len() != other.len() {
1874            return false;
1875        }
1876
1877        self.iter()
1878            .all(|(key, value)| other.get(key).map_or(false, |v| *value == *v))
1879    }
1880}
1881
1882impl<K, V, S> Eq for IndexMap<K, V, S>
1883where
1884    K: Eq + Hash,
1885    V: Eq,
1886    S: BuildHasher,
1887{
1888}