1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885
use num::BigInt;
use num_bigint::Sign;
use serde::{Deserialize, Serialize};
use crate::error::MerkleTreeError;
use crate::node::{InnerNode, LeafNode, Node};
use crate::{sha256_mod, Hash};
use std::fmt;
// `MerkleProof` contains the root hash and a `Vec<Node>>` following the path from the leaf to the root.
#[derive(Serialize, Deserialize, Debug, Clone)]
pub struct MerkleProof {
// Root hash of the Merkle Tree.
pub root_hash: Hash,
// Path from the leaf to the root.
pub path: Vec<Node>,
}
// `NonMembershipProof` contains the `MerkleProof` of the node where the returned `missing_node: LeafNode` would be found.
#[derive(Serialize, Deserialize, Debug, Clone)]
pub struct NonMembershipProof {
// Merkle proof of the node that `missing_node` would be found between `label` and `next`.
pub merkle_proof: MerkleProof,
// Index of the node that `missing_node` would be found between `label` and `next`.
pub closest_index: usize,
// Node that would be found in the place of the node proved in `merkle_proof`.
pub missing_node: LeafNode,
}
// `UpdateProof` contains the old `MerkleProof` and the new `MerkleProof` after the update operation
#[derive(Serialize, Deserialize, Debug, Clone)]
pub struct UpdateProof {
// Merkle proof before the update.
pub old_proof: MerkleProof,
// Merkle proof after the update.
pub new_proof: MerkleProof,
}
// `InsertProof` contains the non-membership proof of the new `Node` (to guarantee uniqueness), and two `UpdateProof`s.
#[derive(Serialize, Deserialize, Debug, Clone)]
pub struct InsertProof {
// Non-membership proof of the new node.
pub non_membership_proof: NonMembershipProof,
// Update proof of the previous node's next pointer.
pub first_proof: UpdateProof,
// Update proof of the new node.
pub second_proof: UpdateProof,
}
impl NonMembershipProof {
/// Verifies the non-membership proof of a node in the indexed Merkle Tree.
///
/// This function checks the non-membership proof of a node to ensure that the node is not present in the tree.
/// It verifies the proof's path and the absence of the node in the tree.
///
/// # Returns
/// `true` if the proof is valid and the node is not present, `false` otherwise.
pub fn verify(&self) -> bool {
if let Some(Node::Leaf(leaf)) = self.merkle_proof.path.first() {
let current_label = BigInt::from_bytes_be(Sign::Plus, leaf.label.as_ref());
let current_next = BigInt::from_bytes_be(Sign::Plus, leaf.next.as_ref());
let new_label = BigInt::from_bytes_be(Sign::Plus, self.missing_node.label.as_ref());
if self.merkle_proof.verify() && new_label > current_label && new_label < current_next {
return true;
}
}
false
}
}
impl InsertProof {
/// Verifies the proofs associated with a node insertion in the indexed Merkle Tree.
///
/// This function confirms the non-membership of the node before insertion, and then verifies
/// the two update proofs representing the tree's state changes due to the insertion. Essential for
/// validating insert operations in the tree.
///
/// # Returns
/// `true` if all proofs are valid, `false` otherwise.
pub fn verify(&self) -> bool {
self.non_membership_proof.verify()
&& self.first_proof.verify()
&& self.second_proof.verify()
}
}
impl UpdateProof {
/// Verifies an update proof in the indexed Merkle Tree.
///
/// This function checks both the old and new "state" proofs of a node to ensure that the update
/// operation has been performed correctly and the tree's integrity is maintained.
///
/// # Returns
/// `true` if both proofs are valid, `false` otherwise.
pub fn verify(&self) -> bool {
self.old_proof.verify() && self.new_proof.verify()
}
}
impl MerkleProof {
/// Verifies a Merkle proof against a given root hash.
///
/// This function takes a Merkle proof and verifies that the hashes in the proof's path, when
/// combined in the correct order, match the given root hash. It's critical for ensuring the integrity
/// and correctness of proofs in the (indexed) Merkle Tree.
///
/// # Returns
/// `true` if the proof is valid and matches the root hash, `false` otherwise.
pub fn verify(&self) -> bool {
match (&self.root_hash, &self.path) {
(root, path) if !path.is_empty() => {
// Save the first hash as current_hash and skip it in the loop to start with the second
let mut current_hash = path[0].get_hash();
for node in path.iter().skip(1) {
let combined = if node.is_left_sibling() {
[node.get_hash().as_ref(), current_hash.as_ref()].concat()
} else {
[current_hash.as_ref(), node.get_hash().as_ref()].concat()
};
current_hash = sha256_mod(&combined);
}
¤t_hash == root
}
_ => false,
}
}
}
/// Represents different Proof variants of an `IndexedMerkleTree`.
///
/// Variants:
/// - `Update(UpdateProof)`: Represents a proof for an update operation.
/// - `Insert(InsertProof)`: Represents a proof for an insert operation.
#[derive(Serialize, Deserialize, Debug, Clone)]
pub enum Proof {
Update(UpdateProof),
Insert(InsertProof),
}
/// Represents an indexed merkle tree.
///
/// This structure encapsulates a merkle tree where `Node`s are indexed, facilitating efficient
/// updates and proofs, especially non-membership proofs.
///
/// Fields:
/// - `nodes`: A vector of `Node` elements, representing the nodes of the indexed merkle tree.
#[derive(Serialize, Deserialize, Clone)]
pub struct IndexedMerkleTree {
pub nodes: Vec<Node>,
}
impl fmt::Display for IndexedMerkleTree {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
if f.alternate() {
self.fmt_mermaid(f)
} else {
self.fmt_tree(f)
}
}
}
impl IndexedMerkleTree {
/// Creates a new `IndexedMerkleTree` from a given `nodes` vector.
///
/// # Arguments
/// * `nodes` - A vector of `Node` elements from which the Merkle tree will be built.
///
/// # Returns
/// A `Result<Self, MerkleTreeError>` representing the initialized tree or an error.
pub fn new(nodes: Vec<Node>) -> Result<Self, MerkleTreeError> {
// TODO(@distractedm1nd): Issue #3
let parsed_nodes = set_left_sibling_status_for_nodes(nodes);
let mut tree = Self {
nodes: parsed_nodes,
};
tree.calculate_root()?;
Ok(tree)
}
/// Creates a new `IndexedMerkleTree` of a given size
///
/// # Arguments
/// * `size` - The number of nodes in the tree.
///
/// # Returns
/// A `Result<Self, MerkleTreeError>` representing the initialized tree or an error.
pub fn new_with_size(size: usize) -> Result<Self, MerkleTreeError> {
let mut nodes: Vec<Node> = Vec::with_capacity(2 * size + 1);
let empty_hash = Node::HEAD;
let tail = Node::TAIL;
let active_node = Node::new_leaf(true, empty_hash, empty_hash, tail);
nodes.push(active_node);
let left_inactive_node = Node::new_leaf(true, empty_hash, empty_hash, tail);
let right_inactive_node = Node::new_leaf(false, empty_hash, empty_hash, tail);
let alternates = vec![left_inactive_node, right_inactive_node]
.into_iter()
.cycle();
nodes.extend(alternates.take(size - 1)); // 'size - 1' because one node is already pushed.
IndexedMerkleTree::new(nodes)
}
/// Recursively creates the inner nodes to the root of the indexed merkle tree from the passed nodes.
///
/// When called, this function expects the passed nodes to be leaf nodes.
/// It assumes these are the only nodes present in `self.nodes`.
fn rehash_inner_nodes(&mut self, current_layer: &[Node]) {
for (index, node) in current_layer.chunks(2).enumerate() {
let new_node = Node::Inner(InnerNode::new(node[0].clone(), node[1].clone(), index));
self.nodes.push(new_node);
}
let remaining = current_layer.len() / 2;
if remaining > 1 {
self.rehash_inner_nodes(&self.nodes[self.nodes.len() - remaining..].to_vec());
}
}
/// Rehashes the inner nodes of the indexed merkle tree from the existing leaf nodes.
///
/// This is done when first initializing the tree, as well as when nodes are updated.
fn rebuild_tree_from_leaves(&mut self) {
self.nodes.retain(|node| matches!(node, Node::Leaf(_)));
self.rehash_inner_nodes(&self.nodes.clone());
}
/// Calculates the root of an IndexedMerkleTree by aggregating the tree's nodes.
///
/// The function performs the followig (main) steps:
/// 1. Extracts all the leaf nodes from the tree.
/// 2. Resets the tree's nodes to the extracted leaves.
/// 3. Iteratively constructs parent nodes from pairs of child nodes until there is only one node left (the root).
///
/// # Arguments
///
/// * `self` - The mutable reference to the IndexedMerkleTree instance.
///
/// # Returns
///
/// * `Result<(), MerkleTreeError>` - A result indicating the success or failure of the operation.
fn calculate_root(&mut self) -> Result<(), MerkleTreeError> {
// self.rebuild_tree_from_leaves();
self.rebuild_tree_from_leaves();
// set root not as left sibling
let root = self
.nodes
.last_mut()
.ok_or(MerkleTreeError::EmptyMerkleTreeError)?; // TODO: are there possible other Errors? is it possible at all to have an empty tree at this point?
root.set_left_sibling_value(false);
Ok(())
}
/// # Returns
///
/// The current root node of the Indexed Merkle tree.
pub fn get_root(&self) -> Result<&Node, MerkleTreeError> {
self.nodes
.last()
.ok_or(MerkleTreeError::EmptyMerkleTreeError)
}
/// # Returns
///
/// The current commitment (hash of the root node) of the Indexed Merkle tree.
pub fn get_commitment(&self) -> Result<Hash, MerkleTreeError> {
Ok(self.get_root()?.get_hash())
}
/// Finds the index of a specific node in the indexed Merkle Tree.
///
/// This function searches through the tree's nodes to find the index of a given node.
/// It compares leaf nodes by label and inner nodes by hash. The function returns the node's
/// index if found, or `None` if the node is not present in the tree.
///
/// # Arguments
/// * `node` - A reference to the `Node` whose index is being searched for.
///
/// # Returns
/// An `Option<usize>` indicating the index of the node if found.
// TODO: is it better to return a Result here and in the next function?
pub fn find_node_index(&self, node: &Node) -> Option<usize> {
self.nodes
.iter()
.enumerate()
.find_map(|(index, current_node)| match (current_node, node) {
(Node::Leaf(current_leaf), Node::Leaf(leaf)) => {
if current_leaf.label == leaf.label {
Some(index)
} else {
None
}
}
(Node::Inner(current_inner), Node::Inner(inner)) => {
if current_inner.hash == inner.hash {
Some(index)
} else {
None
}
}
_ => None,
})
}
/// Searches for a leaf node by its label in the indexed Merkle Tree.
///
/// This function iterates through the tree's nodes to find a leaf node that matches the given label.
/// If a matching leaf is found, it is returned, otherwise the function returns `None`.
///
/// # Arguments
/// * `label` - A reference to the string label of the leaf node to find.
///
/// # Returns
/// An `Option<Node>` representing the found leaf node, if any.
///
pub fn find_leaf_by_label(&self, label: &Hash) -> Option<Node> {
self.nodes.iter().find_map(|node| match node {
Node::Leaf(leaf) if &leaf.label == label => Some(node.clone()),
_ => None,
})
}
/// Doubles the size of the Merkle Tree.
///
/// This function adds as many new inactive nodes to the tree as it currently contains,
/// effectively doubling its size. This is necessary when no inactive node is available for
/// the insertion of a new node. Each new node is marked inactive and initialized with
/// default values.
pub fn double_tree_size(&mut self) {
let current_size = self.nodes.len();
self.nodes.resize(current_size * 2 + 1, Node::default());
// update sibling status
let new_nodes = set_left_sibling_status_for_nodes(self.nodes.clone());
self.nodes = new_nodes;
}
/// Generates a membership proof for a node at a given index in the indexed merkle tree.
///
/// This function constructs a path of hashes leading from a specific node to the root of the tree,
/// serving as a merkle proof of the node's membership in the tree. If the index is invalid,
/// it returns an error, because the node doesnt exist and cant be proved as a member.
///
/// # Arguments
/// * `index` - The index of the node in the tree for which the proof is to be generated.
///
/// # Returns
/// A `Result<MerkleProof, MerkleTreeError>` containing the membership proof or an error.
pub fn generate_membership_proof(&self, index: usize) -> Result<MerkleProof, MerkleTreeError> {
// if the index is outside of the valid range of the tree, there is no proof
if index >= self.nodes.len() {
return Err(MerkleTreeError::IndexError(index.to_string()));
}
let mut proof_path: Vec<Node> = vec![];
let mut current_index = index;
let leaf_node = self.nodes[current_index].clone();
proof_path.push(leaf_node);
// climb the tree until we reach the root and add each parent node sibling of the current node to the proof list
while current_index < self.nodes.len() - 1 {
// if the current node is divisible by 2, it is a left node, then the sibling is right (index + 1) and vice versa
let sibling_index = if current_index % 2 == 0 {
current_index + 1
} else {
current_index - 1
};
let sibling_node = self.nodes[sibling_index].clone();
proof_path.push(sibling_node);
// we have to round up, because if there are e.g. 15 elements (8 leaves) the parent of index 0 would be 7 (or 7.5)
// but the actual parent of index 0 is 8
current_index =
((current_index as f64 + self.nodes.len() as f64) / 2.0).ceil() as usize;
}
Ok(MerkleProof {
root_hash: self.get_commitment()?,
path: proof_path,
})
}
/// Generates a non-membership proof for a given node in the indexed merkle tree.
///
/// This function verifies that a node is not part of the tree. It does so by finding a place in the
/// tree where the given node *should* exist based on its label and proving it is not there. Suitable
/// for scenarios where proving the absence of data is required, e.g. important for guaranteeing uniqueness.
///
/// # Arguments
/// * `node` - A reference to the `Node` for which the non-membership proof is required.
///
/// # Returns
/// A `Result<NonMembershipProof, MerkleTreeError>` containing the non-membership proof and
/// the index of the "closest" valid node, or an error.
pub fn generate_non_membership_proof(
&self,
node: &Node,
) -> Result<NonMembershipProof, MerkleTreeError> {
let given_node_as_leaf = match node {
Node::Leaf(leaf) => leaf,
_ => return Err(MerkleTreeError::NotFoundError("Leaf".to_string())),
};
let mut found_index = None;
for (index, current_node) in self.nodes.iter().enumerate() {
if let Node::Leaf(current_leaf) = current_node {
let current_label = BigInt::from_bytes_be(Sign::Plus, current_leaf.label.as_ref());
let current_next = BigInt::from_bytes_be(Sign::Plus, current_leaf.next.as_ref());
let new_label =
BigInt::from_bytes_be(Sign::Plus, given_node_as_leaf.label.as_ref());
if current_label < new_label && new_label < current_next {
found_index = Some(index);
break;
}
}
}
match found_index {
Some(_) => Ok(NonMembershipProof {
merkle_proof: self.generate_membership_proof(found_index.unwrap())?,
closest_index: found_index.unwrap(),
missing_node: given_node_as_leaf.clone(),
}),
None => Err(MerkleTreeError::MerkleProofError),
}
}
/// Updates the node with the given index in the merkle tree, returning the update proof.
///
/// This function first generates a proof of membership for the old node state, updates the node,
/// recalculates the root, and then generates a new proof of membership for the updated node. It returns
/// both the old and new proofs along with the updated tree.
///
/// # Arguments
/// * `index` - The index of the node to be updated.
/// * `new_node` - The new state of the node.
///
/// # Returns
/// A `Result<UpdateProof, MerkleTreeError>` containing the the old root, the old proof, the new root and the new proof.
pub fn update_node(
&mut self,
index: usize,
new_node: Node,
) -> Result<UpdateProof, MerkleTreeError> {
// generate old proof
let old_proof = self.generate_membership_proof(index)?;
// update node and calculate new root
self.nodes[index] = new_node;
self.calculate_root()?;
// generate new proof
let new_proof = self.generate_membership_proof(index)?;
// return old and new proof
Ok(UpdateProof {
old_proof,
new_proof,
})
}
/// Inserts a node into the merkle tree, returning the insertion proof.
///
/// This function starts with a non-membership check to ensure that the index (i.e. the label) does not yet exist in the tree
/// and thus to determine the index of the node to be changed.
/// It then generates two update proofs: one for updating the next pointer of the existing node, and another
/// for the actual insertion of the new node, i.e. updating an inactive and therefore empty leaf node.
/// If there are no more empty leaf nodes, the capacity in the tree is doubled.
///
/// # Arguments
/// * `new_node` - The new node to be inserted.
///
/// # Returns
/// A `Result<(MerkleProof, UpdateProof, UpdateProof), MerkleTreeError>` containing the non-membership proof and two update proofs.
pub fn insert_node(&mut self, new_node: &mut Node) -> Result<InsertProof, MerkleTreeError> {
// perform non-membership check in order to return the index of the node to be changed
let non_membership_proof = self.generate_non_membership_proof(new_node)?;
if non_membership_proof.merkle_proof.path.first().is_none() {
return Err(MerkleTreeError::MerkleProofError);
}
// generate first update proof, changing only the next pointer from the old node
let mut new_old_node = self.nodes[non_membership_proof.closest_index].clone();
// set the next pointer of the new node to the next pointer of the old node
new_node.set_next(new_old_node.get_next());
Node::update_next_pointer(&mut new_old_node, new_node);
new_old_node.generate_hash();
let first_proof =
self.update_node(non_membership_proof.closest_index, new_old_node.clone())?;
// we checked if the found index in the non-membership is from an incative node, if not we have to search for another inactive node to update and if we cant find one, we have to double the tree
let mut new_index = None;
for (i, node) in self.nodes.iter().enumerate() {
if !node.is_active() {
new_index = Some(i);
break;
}
}
let new_index = match new_index {
Some(index) => index,
None => {
// double the tree
self.double_tree_size();
// take the first inactive node
self.nodes
.iter_mut()
.enumerate()
.find(|(_, node)| !node.is_active())
.map(|(i, _)| i)
.expect("New inactive node not found after doubling the tree.")
}
};
// set the sibling status of the new node
new_node.set_left_sibling_value(new_index % 2 == 0);
new_node.generate_hash();
// generate second update proof
let second_proof = self.update_node(new_index, new_node.clone())?;
Ok(InsertProof {
non_membership_proof,
first_proof,
second_proof,
})
}
fn fmt_tree(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
fn write_node(
f: &mut fmt::Formatter<'_>,
node: &Node,
depth: usize,
is_last: bool,
prefix: &str,
) -> fmt::Result {
let indent = if is_last { "└── " } else { "├── " };
let node_prefix = format!("{}{}", prefix, indent);
match node {
Node::Inner(inner) => {
writeln!(f, "{}Inner Node (Hash: {})", node_prefix, inner.hash)?;
let new_prefix = format!("{}{} ", prefix, if is_last { " " } else { "│" });
write_node(f, &inner.left, depth + 1, false, &new_prefix)?;
write_node(f, &inner.right, depth + 1, true, &new_prefix)?;
}
Node::Leaf(leaf) => {
writeln!(
f,
"{}Leaf Node (Hash: {}, Active: {}, Label: {}, Value: {}, Next: {})",
node_prefix,
leaf.hash,
leaf.is_active(),
leaf.label,
leaf.value,
leaf.next
)?;
}
}
Ok(())
}
writeln!(f, "Indexed Merkle Tree:")?;
if let Some(root) = self.nodes.last() {
write_node(f, root, 0, true, "")?;
} else {
writeln!(f, "(Empty Tree)")?;
}
Ok(())
}
fn fmt_mermaid(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
writeln!(f, "graph TD")?;
let mut node_id = 0;
fn write_node(
f: &mut fmt::Formatter<'_>,
node: &Node,
parent_id: Option<usize>,
node_id: &mut usize,
) -> fmt::Result {
let current_id = *node_id;
*node_id += 1;
match node {
Node::Inner(inner) => {
writeln!(
f,
" N{current_id}[Inner {:.6}]",
&inner.hash.to_string()[..8]
)?;
if let Some(pid) = parent_id {
writeln!(f, " N{pid} --> N{current_id}")?;
}
write_node(f, &inner.left, Some(current_id), node_id)?;
write_node(f, &inner.right, Some(current_id), node_id)?;
}
Node::Leaf(leaf) => {
writeln!(
f,
" N{current_id}[Hash: n{:.6}...\\nNext: {:.6}...\\nLabel: {:.6}...\\nValue: {:.6}...\\n]",
&leaf.hash.to_string()[..8], &leaf.next.to_string()[..8], &leaf.label.to_string()[..8], &leaf.value.to_string()[..8]
)?;
if let Some(pid) = parent_id {
writeln!(f, " N{pid} --> N{current_id}")?;
}
}
}
Ok(())
}
if let Some(root) = self.nodes.last() {
write_node(f, root, None, &mut node_id)?;
} else {
writeln!(f, " N0[Empty Tree]")?;
}
// Add styling
writeln!(
f,
" classDef inner fill:#87CEFA,stroke:#4682B4,stroke-width:2px,color:black;"
)?;
writeln!(
f,
" classDef active fill:#98FB98,stroke:#006400,stroke-width:2px,color:black;"
)?;
writeln!(
f,
" classDef inactive fill:#FFA07A,stroke:#8B0000,stroke-width:2px,color:black;"
)?;
writeln!(f, " class N0 inner;")?;
for i in 1..node_id {
writeln!(
f,
" class N{} {};",
i,
if i < self.nodes.len() / 2 {
"inner"
} else if self.nodes[i].is_active() {
"active"
} else {
"inactive"
}
)?;
}
Ok(())
}
}
/// Updates the position attributes of nodes in a vector.
///
/// This function iterates over a vector of nodes, updating each node's left sibling status
/// based on its index. It's crucial for correctly setting up the structural properties of the nodes
/// in the tree, especially after modifications that might alter the node order.
///
/// # Arguments
/// * `nodes` - A vector of `Node` elements to update.
///
/// # Returns
/// A `Vec<Node>` with updated left sibling status for each node.
pub fn set_left_sibling_status_for_nodes(nodes: Vec<Node>) -> Vec<Node> {
let new: Vec<Node> = nodes
.into_iter()
.enumerate()
.map(|(i, mut node)| {
let is_left_sibling = i % 2 == 0;
node.set_left_sibling_value(is_left_sibling);
node
})
.collect();
new
}
/// Resorts based on a specified input order.
///
/// This function rearranges a given vector of nodes to match an input order defined by a vector of labels.
/// It filters out inner nodes and so it sorts only leaf nodes based on their label's position in the input vector.
///
/// # Arguments
/// * `nodes` - A vector of `Node` elements to be sorted.
/// * `input_order` - A vector of strings representing the desired order of leaf labels.
///
/// # Returns
/// A `Result<Vec<Node>, MerkleTreeError>` representing the sorted nodes or an error.
pub fn resort_nodes_by_input_order(
nodes: Vec<Node>,
input_order: Vec<Hash>,
) -> Result<Vec<Node>, MerkleTreeError> {
let valid_nodes: Vec<_> = nodes
.into_iter()
.filter_map(|node| {
let label = match &node {
Node::Inner(_) => None,
Node::Leaf(leaf) => Some(leaf.label.clone()),
};
label.and_then(|l| {
input_order
.iter()
.position(|k| k == &l)
.map(|index| (index, node))
})
})
.collect();
let mut sorted_nodes = valid_nodes;
sorted_nodes.sort_by_key(|(index, _)| *index); // sort by the index
let sorted_nodes = sorted_nodes.into_iter().map(|(_, node)| node).collect(); // remove the index from the tuple, we want the list of nodes
Ok(sorted_nodes)
}
#[cfg(test)]
mod tests {
use super::*;
use crate::node::Node;
fn create_test_hash(value: u8) -> Hash {
Hash::new([value; 32])
}
#[test]
fn test_new_indexed_merkle_tree() {
let nodes = vec![
Node::new_leaf(
true,
create_test_hash(1),
create_test_hash(2),
create_test_hash(3),
),
Node::new_leaf(
false,
create_test_hash(4),
create_test_hash(5),
create_test_hash(6),
),
];
let tree = IndexedMerkleTree::new(nodes).unwrap();
assert_eq!(tree.nodes.len(), 3); // 2 leaf nodes + 1 root node
}
#[test]
fn test_new_with_size() {
let tree = IndexedMerkleTree::new_with_size(4).unwrap();
assert_eq!(tree.nodes.len(), 7); // 4 leaf nodes + 3 inner nodes
}
#[test]
fn test_get_root() {
let tree = IndexedMerkleTree::new_with_size(4).unwrap();
let root = tree.get_root().unwrap();
assert!(matches!(root, Node::Inner(_)));
}
#[test]
fn test_get_commitment() {
let tree = IndexedMerkleTree::new_with_size(4).unwrap();
let commitment = tree.get_commitment().unwrap();
assert_eq!(commitment.as_ref().len(), 32);
}
#[test]
fn test_find_node_index() {
let mut tree = IndexedMerkleTree::new_with_size(4).unwrap();
let new_leaf = Node::new_leaf(
true,
create_test_hash(1),
create_test_hash(2),
create_test_hash(3),
);
tree.nodes[0] = new_leaf.clone();
assert_eq!(tree.find_node_index(&new_leaf), Some(0));
}
#[test]
fn test_find_leaf_by_label() {
let mut tree = IndexedMerkleTree::new_with_size(4).unwrap();
let label = create_test_hash(1);
let new_leaf = Node::new_leaf(true, label, create_test_hash(2), create_test_hash(3));
tree.nodes[0] = new_leaf.clone();
assert_eq!(tree.find_leaf_by_label(&label), Some(new_leaf));
}
#[test]
fn test_double_tree_size() {
let mut tree = IndexedMerkleTree::new_with_size(4).unwrap();
let original_size = tree.nodes.len();
tree.double_tree_size();
assert_eq!(tree.nodes.len(), original_size * 2 + 1);
}
#[test]
fn test_generate_membership_proof() {
let mut tree = IndexedMerkleTree::new_with_size(4).unwrap();
let new_leaf = Node::new_leaf(
true,
create_test_hash(1),
create_test_hash(2),
create_test_hash(3),
);
tree.nodes[0] = new_leaf;
let proof = tree.generate_membership_proof(0).unwrap();
assert_eq!(proof.path.len(), 3); // leaf + 2 inner nodes
}
#[test]
fn test_generate_non_membership_proof() {
let mut tree = IndexedMerkleTree::new_with_size(4).unwrap();
let mut existing_leaf = Node::new_leaf(
true,
create_test_hash(1),
create_test_hash(2),
create_test_hash(3),
);
let insert_proof = tree.insert_node(&mut existing_leaf);
assert!(insert_proof.is_ok());
let non_existent_leaf = Node::new_leaf(
true,
create_test_hash(4),
create_test_hash(5),
create_test_hash(6),
);
let proof = tree
.generate_non_membership_proof(&non_existent_leaf)
.unwrap();
println!("{}", tree);
assert_eq!(proof.closest_index, 0);
}
#[test]
fn test_update_node() {
let mut tree = IndexedMerkleTree::new_with_size(4).unwrap();
let original_leaf = Node::new_leaf(
true,
create_test_hash(1),
create_test_hash(2),
create_test_hash(3),
);
tree.nodes[0] = original_leaf.clone();
let new_leaf = Node::new_leaf(
true,
create_test_hash(4),
create_test_hash(5),
create_test_hash(6),
);
let update_proof = tree.update_node(0, new_leaf.clone()).unwrap();
assert_eq!(tree.nodes[0], new_leaf);
assert!(update_proof.old_proof.path[0] == original_leaf);
assert!(update_proof.new_proof.path[0] == new_leaf);
}
#[test]
fn test_insert_node() {
let mut tree = IndexedMerkleTree::new_with_size(4).unwrap();
let mut new_leaf = Node::new_leaf(
true,
create_test_hash(1),
create_test_hash(2),
create_test_hash(3),
);
let insert_proof = tree.insert_node(&mut new_leaf).unwrap();
assert!(tree.nodes.iter().any(|node| node == &new_leaf));
assert_eq!(
insert_proof.non_membership_proof.missing_node.label,
new_leaf.get_label()
);
}
}