1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
use serde::{Deserialize, Serialize};
use std::sync::Arc;

use crate::{sha256_mod, Hash};

/// Represents an inner node in the indexed Merkle Tree.
///
/// This structure is used for non-leaf nodes in the tree, containing references to its
/// left and right children along with its own hash value. There is no difference between
/// inner nodes of an indexed Merkle Tree and a classic Merkle Tree.
///
/// Fields:
/// - `hash`: The hash of the current node, derived from its children.
/// - `is_left_sibling`: Indicates whether this node is a left child of its parent.
/// - `left`: A reference-counted pointer to the left child node.
/// - `right`: A reference-counted pointer to the right child node.
#[derive(Serialize, Deserialize, Debug, Clone, PartialEq, Eq)]
pub struct InnerNode {
    pub hash: Hash,
    pub is_left_sibling: bool,
    pub left: Arc<Node>,
    pub right: Arc<Node>,
}

impl InnerNode {
    /// Creates a new inner node.
    ///
    /// This function generates an inner node from two child nodes (left and right) and an index.
    /// The index determines the new node's left sibling status. The hash for the inner node is
    /// calculated based on its children. This is crucial for constructing the tree and updating its structure.
    ///
    /// # Arguments
    /// * `left` - The left child node.
    /// * `right` - The right child node.
    /// * `index` - The position index of the new node in the tree.
    ///
    /// # Returns
    /// An `InnerNode` representing the newly created inner node.
    pub fn new(left: Node, right: Node, index: usize) -> Self {
        // we need to use the .as_ref() method to convert the Hash to a slice of bytes ([u8])
        let hash = sha256_mod(&[left.get_hash().as_ref(), right.get_hash().as_ref()].concat());
        InnerNode {
            hash,
            is_left_sibling: index % 2 == 0,
            left: Arc::new(left),
            right: Arc::new(right),
        }
    }
}

/// Represents a leaf node in the indexed Merkle Tree.
///
/// Leaf nodes contain the actual data stored in the tree structure as well as metadata that,
/// among other things, ensures the integrity and order of the tree structure.
/// Each leaf node contains a hash of its metadata consisting of a SHA256 value,
/// an active flag that indicates whether the leaf is active or not and links to neighboring elements for efficient traversal and verification.
/// The links lead to the label field which is also a SHA256 value, making it sortable, which is crucial for e.g. Non-Membership proofs.
/// For more information see https://eprint.iacr.org/2021/1263.pdf.
///
/// Fields:
/// - `hash`: The hash of the values below, expect of the is_left_sibling-value.
/// - `is_left_sibling`: Indicates if this node is a left child in its parent node.
/// - `value`: The actual data value stored in the node.
/// - `label`: A unique identifier for the node. This is used to sort by size and to link nodes together.
/// - `next`: A reference to the next node in the tree.
#[derive(Serialize, Deserialize, Debug, Clone, PartialEq, Eq)]
pub struct LeafNode {
    pub hash: Hash,
    pub is_left_sibling: bool,
    pub value: Hash,
    pub label: Hash,
    pub next: Hash,
}

impl LeafNode {
    /// Initializes a new leaf node with the specified properties.
    ///
    /// This function creates a leaf node with above defined attributes. The hash is generated based on
    /// its active status, label, value, and next pointer. Additionally, the node is marked as a left sibling or not.
    ///
    /// # Arguments
    /// * `is_left` - Boolean indicating if this is a left sibling.
    /// * `label` - Unique 256 bit identifier for the leaf.
    /// * `value` - 256 Bit data value of the leaf.
    /// * `next` - Reference to the next largest node (identified by the label value) in the sequence.
    ///
    /// # Returns
    /// * A new leaf node with the specified properties.
    pub fn new(is_left: bool, label: Hash, value: Hash, next: Hash) -> Self {
        let hash = sha256_mod(&[label.as_ref(), value.as_ref(), next.as_ref()].concat());
        LeafNode {
            hash,
            is_left_sibling: is_left,
            value,
            label,
            next,
        }
    }

    pub fn is_active(&self) -> bool {
        self.value != Node::HEAD
    }
}

impl Default for LeafNode {
    fn default() -> Self {
        LeafNode::new(false, Node::HEAD, Node::HEAD, Node::TAIL)
    }
}

/// An enum representing the types of nodes in the indexed Merkle Tree.
///
/// This enum allows for the differentiation between inner and leaf nodes in the tree,
/// facilitating operations like traversal, insertion, and proof generation.
/// It encapsulates either an `InnerNode` or a `LeafNode`, depending on the node's position
/// and role in the tree.
///
/// Variants:
/// - `Inner(InnerNode)`: An inner node of the tree, containing references to child nodes.
/// - `Leaf(LeafNode)`: A leaf node, containing the actual data (hash of its metadata).
#[derive(Serialize, Deserialize, Debug, Clone, PartialEq, Eq)]
pub enum Node {
    Inner(InnerNode),
    Leaf(LeafNode),
}

impl Default for Node {
    fn default() -> Self {
        Node::Leaf(LeafNode::default())
    }
}

impl Node {
    /// This constant represents the smallest possible value in the field Fp for the BLS12-381 curve.
    ///
    /// In the context of a Merkle tree with 256-bit SHA-256 hash outputs, this value is used to designate
    /// the first element or a null value. This is because the smallest possible value that can be generated
    /// by SHA-256 is zero, which is also the smallest value in the field Fp for the BLS12-381 curve.
    ///
    /// The value `HEAD` is used in the following ways:
    /// - As the starting point or initial value in the Merkle tree.
    /// - As a placeholder for empty or null nodes.
    pub const HEAD: Hash = Hash::new([0; 32]);

    /// This constant represents the largest possible value in the field Fp for the BLS12-381 curve.
    ///
    /// In the context of a Merkle tree with 256-bit SHA-256 hash outputs, this value is used to designate
    /// the last element. This is because we need to ensure that all values are within the field Fp for the
    /// BLS12-381 curve, and the largest possible value that we can use is just below the modulus.
    ///
    /// The value `TAIL` is used in the following ways:
    /// - As the next pointer from the largest label in the current Merkle tree.
    /// - As the next pointer from inactive leaf nodes, effectively "pointing" to it.
    ///
    /// The specific value of `TAIL` is:
    ///
    /// 0x73eda753299d7d483339d80809a1d80553bda402fffe5bfeffffffff00000000
    ///
    /// This ensures that no value in the Merkle tree exceeds the modulus, maintaining proper order
    /// and integrity within the BLS12-381 field.
    pub const TAIL: Hash = Hash::new([
        0x73, 0xed, 0xa7, 0x53, 0x29, 0x9d, 0x7d, 0x48, 0x33, 0x39, 0xd8, 0x08, 0x09, 0xa1, 0xd8,
        0x05, 0x53, 0xbd, 0xa4, 0x02, 0xff, 0xfe, 0x5b, 0xfe, 0xff, 0xff, 0xff, 0xff, 0x00, 0x00,
        0x00, 0x00,
    ]);

    /// Convenience method for creating a new leaf node.
    /// See `LeafNode::new` for more information.
    pub fn new_leaf(is_left: bool, label: Hash, value: Hash, next: Hash) -> Self {
        Node::Leaf(LeafNode::new(is_left, label, value, next))
    }

    /// Convenience method for creating a new inner node.
    /// See `InnerNode::new` for more information.
    pub fn new_inner(left: Node, right: Node, index: usize) -> Self {
        Node::Inner(InnerNode::new(left, right, index))
    }

    /// Returns the hash of the node.
    ///
    /// This function returns the hash of either an inner node or a leaf node, depending on the node type.
    pub fn get_hash(&self) -> Hash {
        match self {
            Node::Inner(inner_node) => inner_node.hash,
            Node::Leaf(leaf) => leaf.hash,
        }
    }

    /// Determines if the node is a left sibling.
    ///
    /// This function checks whether the node (either inner or leaf) is a left sibling
    /// in its parent node's context. This information is important in the tree's traversal
    /// and structure maintenance, ensuring the correct positioning and integrity of the nodes.
    pub fn is_left_sibling(&self) -> bool {
        match self {
            Node::Inner(inner_node) => inner_node.is_left_sibling,
            Node::Leaf(leaf) => leaf.is_left_sibling,
        }
    }

    /// Determines if the node is active.
    ///
    /// For inner nodes, this function always returns true. For leaf nodes, it checks the `active` flag.
    /// This method is important to understand the current state of a node within the tree,
    /// especially for insert operations to recognize the need for capacity duplication of the tree if necessary.
    pub fn is_active(&self) -> bool {
        match self {
            Node::Inner(_) => true,
            Node::Leaf(leaf) => leaf.is_active(),
        }
    }

    /// Returns the `next` node identifier.
    ///
    /// This function retrieves the `next` node identifier for a leaf node, or returns the `TAIL` identifier
    /// if the node is not a leaf. This is useful for traversing linked lists of leaf nodes.
    pub fn get_next(&self) -> Hash {
        match self {
            Node::Leaf(leaf) => leaf.next,
            _ => Node::TAIL,
        }
    }

    /// Sets the `next` node identifier.
    ///
    /// This function sets the `next` node identifier for a leaf node. This is important for maintaining
    /// the linked list structure of leaf nodes within the tree, enabling efficient traversal and modifications.
    pub fn set_next(&mut self, next: Hash) {
        if let Node::Leaf(leaf) = self {
            leaf.next = next;
        }
    }

    /// Returns the `label` of the node.
    ///
    /// This function retrieves the `label` for a leaf node, or returns the `EMPTY_HASH` identifier
    /// if the node is not a leaf. This is useful for accessing the label of leaf nodes within the tree,
    /// which may represent some data or key associated with that node.
    pub fn get_label(&self) -> Hash {
        match self {
            Node::Leaf(leaf) => leaf.label,
            _ => Node::HEAD,
        }
    }

    /// Sets the left sibling status of the node.
    ///
    /// This function updates whether the node (inner or leaf) is considered a left sibling.
    /// This is crucial for maintaining the structural integrity of the tree, especially when nodes
    /// are inserted or reorganized.
    pub fn set_left_sibling_value(&mut self, is_left: bool) {
        match self {
            Node::Inner(inner_node) => inner_node.is_left_sibling = is_left,
            Node::Leaf(leaf) => leaf.is_left_sibling = is_left,
        }
    }

    /// Attaches a node as the left child of an inner node.
    ///
    /// This function sets the provided node as the left child of the current inner node.
    ///
    /// # Arguments
    /// * `left` - An `Arc<Self>` pointing to the node to be set as the left child.
    pub fn add_left(&mut self, left: Arc<Self>) {
        if let Node::Inner(inner) = self {
            inner.left = left;
        }
    }

    /// Attaches a node as the right child of an inner node.
    ///
    /// This function sets the provided node as the right child of the current inner node.
    ///
    /// # Arguments
    /// * `right` - An `Arc<Self>` pointing to the node to be set as the right child.
    pub fn add_right(&mut self, right: Arc<Self>) {
        if let Node::Inner(inner) = self {
            inner.right = right;
        }
    }

    /// Updates the 'next' pointer of a leaf node.
    ///
    /// This function is used to update the reference to the next node in the indexed Merkle Tree.
    ///
    /// # Arguments
    /// * `existing_node` - The leaf node to update.
    /// * `new_node` - The new node whose label will be used for the 'next' pointer.
    pub fn update_next_pointer(existing_node: &mut Self, new_node: &Self) {
        if let Self::Leaf(ref mut existing_leaf) = existing_node {
            if let Self::Leaf(new_leaf) = new_node {
                existing_leaf.next = new_leaf.label;
            }
        }
    }

    /// Generates and updates the hash for the node.
    ///
    /// @todo: Deprecate this function by creating proper constructors for the nodes
    ///
    /// This function computes the hash of a node based on its type and properties.
    /// For an inner node, the hash is generated from the concatenated hashes of its left and right children in form of:
    ///     SHA256(left_child_hash || right_child_hash)
    /// For a leaf node, the hash is based on its active status, label, value, and the reference to the next node in the tree:
    ///     SHA256(active || label || value || next)
    pub fn generate_hash(&mut self) {
        match self {
            Node::Inner(node) => {
                let hash = sha256_mod(
                    &[
                        node.left.get_hash().as_ref(),
                        node.right.get_hash().as_ref(),
                    ]
                    .concat(),
                );
                node.hash = hash;
            }
            Node::Leaf(leaf) => {
                let hash = sha256_mod(
                    &[
                        // Question to reviewer: Does the active value really need to be part of the hash?
                        &[leaf.is_active() as u8],
                        leaf.label.as_ref(),
                        leaf.value.as_ref(),
                        leaf.next.as_ref(),
                    ]
                    .concat(),
                );
                leaf.hash = hash;
            }
        }
    }
}

#[cfg(test)]
mod tests {
    use super::*;

    #[test]
    fn test_leaf_node_creation() {
        let label = Hash::new([1; 32]);
        let value = Hash::new([2; 32]);
        let next = Hash::new([3; 32]);
        let leaf = LeafNode::new(true, label, value, next);

        assert!(leaf.is_active());
        assert!(leaf.is_left_sibling);
        assert_eq!(leaf.label, label);
        assert_eq!(leaf.value, value);
        assert_eq!(leaf.next, next);
    }

    #[test]
    fn test_inner_node_creation() {
        let left = Node::new_leaf(
            true,
            Hash::new([1; 32]),
            Hash::new([2; 32]),
            Hash::new([3; 32]),
        );
        let right = Node::new_leaf(
            false,
            Hash::new([4; 32]),
            Hash::new([5; 32]),
            Hash::new([6; 32]),
        );
        let inner = Node::new_inner(left.clone(), right.clone(), 0);

        if let Node::Inner(inner_node) = inner {
            assert!(inner_node.is_left_sibling);
            assert_eq!(*inner_node.left, left);
            assert_eq!(*inner_node.right, right);
        } else {
            panic!("Expected Inner node");
        }
    }

    #[test]
    fn test_node_is_active() {
        let active_leaf = Node::new_leaf(
            true,
            Hash::new([1; 32]),
            Hash::new([2; 32]),
            Hash::new([3; 32]),
        );
        let inactive_leaf = Node::new_leaf(true, Node::HEAD, Node::HEAD, Node::TAIL);
        let inner_node = Node::new_inner(active_leaf.clone(), inactive_leaf.clone(), 0);

        assert!(active_leaf.is_active());
        assert!(!inactive_leaf.is_active());
        assert!(inner_node.is_active());
    }

    #[test]
    fn test_node_get_next() {
        let leaf = Node::new_leaf(
            true,
            Hash::new([1; 32]),
            Hash::new([2; 32]),
            Hash::new([3; 32]),
        );
        let inner = Node::new_inner(leaf.clone(), leaf.clone(), 0);

        assert_eq!(leaf.get_next(), Hash::new([3; 32]));
        assert_eq!(inner.get_next(), Node::TAIL);
    }

    #[test]
    fn test_node_set_next() {
        let mut leaf = Node::new_leaf(
            true,
            Hash::new([1; 32]),
            Hash::new([2; 32]),
            Hash::new([3; 32]),
        );
        let new_next = Hash::new([4; 32]);
        leaf.set_next(new_next);

        if let Node::Leaf(leaf_node) = leaf {
            assert_eq!(leaf_node.next, new_next);
        } else {
            panic!("Expected Leaf node");
        }
    }

    #[test]
    fn test_node_update_next_pointer() {
        let mut existing_node = Node::new_leaf(
            true,
            Hash::new([1; 32]),
            Hash::new([2; 32]),
            Hash::new([3; 32]),
        );
        let new_node = Node::new_leaf(
            false,
            Hash::new([4; 32]),
            Hash::new([5; 32]),
            Hash::new([6; 32]),
        );

        Node::update_next_pointer(&mut existing_node, &new_node);

        if let Node::Leaf(leaf_node) = existing_node {
            assert_eq!(leaf_node.next, Hash::new([4; 32]));
        } else {
            panic!("Expected Leaf node");
        }
    }

    #[test]
    fn test_node_generate_hash() {
        let mut leaf = Node::new_leaf(
            true,
            Hash::new([1; 32]),
            Hash::new([2; 32]),
            Hash::new([3; 32]),
        );
        let original_hash = leaf.get_hash();

        if let Node::Leaf(ref mut leaf_node) = leaf {
            leaf_node.value = Hash::new([4; 32]);
        }

        leaf.generate_hash();
        let new_hash = leaf.get_hash();

        assert_ne!(original_hash, new_hash);
    }
}