1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
//! # Inc
//!
//! Incremental approach to compiler construction.
//!
//!
use nom::types::CompleteByteSlice as S;
use std::fs::File;
use std::io::Write;
use std::str::FromStr;

/// Control behavior and external interaction of the program.
pub struct Config {
    /// Program is the input source
    pub program: String,
    /// Name of the generated asm and executable, stdout otherwise
    pub output: String,
}

impl Config {
    pub fn asm(&self) -> String {
        let stdout = String::from("/dev/stdout");
        if self.output == stdout {
            stdout
        } else {
            format!("{}.s", self.output)
        }
    }
}

/// Custom error type for all of inc.
// This might not be idiomatic Rust, revisit later.
#[derive(Debug)]
pub struct Error {
    message: String,
}

/// The LISP AST
///
/// The canonical type to represent lisp programs. The parser parses the input
/// program to generate an AST. See tests for several examples.
//
// TODO: Implement `Display` trait to pretty print the AST
#[derive(Debug, PartialEq)]
pub enum AST {
    Nil,
    Number(i64),
    Boolean(bool),
    /// A unicode char encoded in UTF-8 can take upto 4 bytes and won't fit in a
    /// word; so this implementation makes sense only for ASCII.
    Char(u8),
    Identifier(String),
    /// Since Rust needs to know the size of the AST type upfront, we need an
    /// indirection here with `Vec<>` for recursive types. In this context, Vec
    /// is just a convenient way to have a `Box<[AST]>`
    List(Vec<AST>),

    Let {
        bindings: Vec<(String, AST)>,
        body: Vec<AST>,
    },
}

/// Idiomatic type conversions from the primitive types to AST
///
/// https://doc.rust-lang.org/rust-by-example/conversion/from_into.html
/// https://ricardomartins.cc/2016/08/03/convenient_and_idiomatic_conversions_in_rust
impl From<i64> for AST {
    fn from(i: i64) -> Self {
        AST::Number(i)
    }
}

impl From<bool> for AST {
    fn from(b: bool) -> Self {
        AST::Boolean(b)
    }
}

impl From<char> for AST {
    fn from(c: char) -> Self {
        AST::Char(c as u8)
    }
}

impl From<&str> for AST {
    fn from(i: &str) -> Self {
        AST::Identifier(String::from(i))
    }
}

/// A scheme parser in nom.
///
/// See http://www.scheme.com/tspl2d/grammar.html for formal grammar
/// specification. This module tries to describe this BNF grammar in Rust as
/// closely as posible using the nom parser combinator library.
///
/// Ported from https://github.com/jaseemabid/lisper/blob/master/src/Lisper/Parser.hs
///
pub mod parser {

    use super::*;
    use nom::types::CompleteByteSlice as S;
    use nom::{self, *};
    use std::str;

    // Identifiers may denote variables, keywords, or symbols, depending upon
    // context. They are formed from sequences of letters, digits, and special
    // characters. With three exceptions, identifiers cannot begin with a
    // character that can also begin a number, i.e., they cannot begin with .,
    // +, -, or a digit. The three exceptions are the identifiers ..., +, and -.
    // Case is insignificant in symbols so that, for example, newspaper,
    // NewsPaper, and NEWSPAPER all represent the same identifier.
    //
    // <identifier> → <initial> <subsequent>* | + | - | ...
    // <initial>    → <letter> | ! | $ | % | & | * | / | : | < | = | > | ? | ~ | _ | ^
    // <subsequent> → <initial> | <digit> | . | + | -
    // <letter>     → a | b | ... | z
    // <digit>      → 0 | 1 | ... | 9
    //
    named!(identifier <S , String>, alt!(
        value!(String::from("+"), tag!("+"))
      | value!(String::from("-"), tag!("-"))
      | value!(String::from("..."), tag!("..."))
      | do_parse!(
          i: initial >>
          s: many0!(subsequent) >>
          (format!("{}{}", i, s.into_iter().collect::<String>())))
    ));

    named!(initial <S, char>, alt!(letter | symbol));

    named!(subsequent <S, char>, alt!(initial | digit | one_of!(".+-")));

    named!(symbol <S, char>, one_of!("!$%&*/:<=>?~_^"));

    named!(letter <S, char>, one_of!("abcdefghijklmnopqrstuvwxyzABCDEFGHIJKLMNOPQRSTUVWXYZ"));

    named!(digit <S, char>, one_of!("0123456789"));

    // Data include booleans, numbers, characters, strings, symbols, lists, and
    // vectors. Case is insignificant in the syntax for booleans, numbers, and
    // character names, but it is significant in other character constants and
    // in strings. For example, #T is equivalent to #t, #E1E3 is equivalent to
    // #e1e3, #X2aBc is equivalent to #x2abc, and #\NewLine is equivalent to
    // #\newline; but #\A is distinct from #\a and "String" is distinct from
    // string".
    //
    // <datum>            → <boolean> | <number> | <character> | <string> | <symbol> | <list> | <vector>
    // <boolean>          → #t | #f
    // <number>           → <num 2> | <num 8> | <num 10> | <num 16>
    // <character>        → #\ <any character> | #\newline | #\space
    // <string>           → " <string character>* "
    // <string character> → \" | \\ | <any character other than" or \>
    // <symbol>           →  <identifier>
    // <list>             →  (<datum>*) | (<datum>+ . <datum>) | <abbreviation>
    // <abbreviation>     →  ' <datum> | ` <datum> | , <datum> | ,@ <datum>
    // <vector>           → #(<datum>*)

    named!(sign <S, i64>, alt!(
        tag!("-") => { |_| -1 } |
        tag!("+") => { |_|  1 }));

    named!(boolean <S, bool>, alt!(
        tag!("#t") => { |_| true } |
        tag!("#f") => { |_| false }));

    // ASCII Characters for now
    named!(ascii <S, u8>, alt!(

        // $ man ascii
        value!(9  as u8, tag!(r"#\tab")) |
        value!(10 as u8, tag!(r"#\newline")) |
        value!(13 as u8, tag!(r"#\return")) |
        value!(32 as u8, tag!(r"#\space")) |

        // Picking the first byte is quite unsafe, fix for UTF8
        preceded!(tag!(r"#\"), map!(take!(1), { |e: S| e.0[0] }))
    ));

    // This isn't quite right
    named!(number <S, i64>, do_parse!(
        s: opt!(sign) >>
        n: map!(take_while1!(is_digit),
                { |e: S| str::from_utf8(e.0)
                   .expect("Failed to parse string into UTF-8")
                   .parse::<i64>()
                   .expect(&format!("Failed to parse digits into i64: `{:?}`\n", e.0)[..])
                }) >>
            (s.unwrap_or(1) * n)
    ));

    named!(datum <S, AST>, alt!(
        value!(AST::Nil, tag!("()"))            |
        boolean    => { |b| AST::Boolean(b) }   |
        ascii      => { |c| AST::Char(c) }      |
        number     => { |i| AST::Number(i) }    |
        identifier => { |i| AST::Identifier(i) }|
        list
    ));

    // <list> → (<datum>*) | (<datum>+ . <datum>) | <abbreviation>
    named!(list <S, AST>, do_parse!(
        char!('(') >>
        opt!(many0!(space)) >>
        d: map!(separated_list!(space, datum),
                {|ls: Vec<AST> |
                 if ls.is_empty() {
                     AST::Nil
                 } else {
                     AST::List(ls)
                 }}) >>
        opt!(many0!(space)) >>
        char!(')') >>
        (d)));

    named!(pub program <S, AST>, do_parse!(
        e: alt!(let_syntax | datum) >>
        opt!(many0!(space)) >> (e)));

    // named → (name value)
    named!(binding <S, (String, AST)>, do_parse!(
        opt!(many0!(space)) >>
        char!('(') >>
        opt!(many0!(space)) >>
        name: identifier >>
        opt!(many0!(space)) >>
        value: datum >>
        opt!(many0!(space)) >>
        char!(')') >>
        opt!(many0!(space)) >>
        ((name, value))));

    // (let-syntax (<syntax binding>*) <expression>+)
    named!(let_syntax <S, AST>, do_parse!(
        char!('(') >>
        opt!(many0!(space)) >>
        tag!("let") >>
        opt!(many0!(space)) >>
        char!('(') >>
        b: many0!(binding) >>
        char!(')') >>
        opt!(many0!(space)) >>
        e: many1!(program) >>
        opt!(many0!(space)) >>
        char!(')') >>
      (AST::Let{bindings: b, body: e})));

    #[cfg(test)]
    mod tests {
        use super::*;

        // The complete input is parsed and there is nothing left.
        const EMPTY: S<'static> = S(b"");

        // OK consumes all of the input and succeeds
        fn ok<T>(t: T) -> Result<(S<'static>, T), nom::Err<S<'static>, u32>> {
            partial(EMPTY, t)
        }

        // Partial consumes some of the input and succeeds
        fn partial<T>(
            unconsumed: S<'static>,
            t: T,
        ) -> Result<(S<'_>, T), nom::Err<S<'_>, u32>> {
            Ok((unconsumed, t))
        }

        // Fail denotes a parser failing without consuming any of its input
        fn fail<T>(unconsumed: S<'_>) -> Result<(S<'_>, T), nom::Err<S, u32>> {
            Err(Err::Error(Context::Code(unconsumed, ErrorKind::Alt)))
        }

        #[test]
        fn assorted() {
            assert_eq!(ok(true), boolean(S(b"#t")));
            assert_eq!(ok(false), boolean(S(b"#f")));
            assert_eq!(fail(S(b"A")), boolean(S(b"A")));

            assert_eq!(ok('?'), symbol(S(b"?")));

            assert_eq!(ok(42), number(S(b"42")));
            assert_eq!(ok(-42), number(S(b"-42")));

            assert_eq!(ok('j' as u8), ascii(S(b"#\\j")));
            assert_eq!(ok('^' as u8), ascii(S(b"#\\^")));

            // Character parser must not consume anything unless it starts with
            // an explicit tag.
            assert_eq!(fail(S(b"test")), ascii(S(b"test")));
        }

        #[test]
        fn identifiers() {
            assert_eq!(ok(String::from("x")), identifier(S(b"x")));
            assert_eq!(ok(String::from("one")), identifier(S(b"one")));
            assert_eq!(ok(String::from("!bang")), identifier(S(b"!bang")));
            assert_eq!(ok(String::from("a->b")), identifier(S(b"a->b")));
            assert_eq!(ok(String::from("+")), identifier(S(b"+")));
            assert_eq!(ok(String::from("-")), identifier(S(b"-")));
            assert_eq!(ok(String::from("i64")), identifier(S(b"i64")));

            // -> is not an identifier, consume the - as an id and return the >
            assert_eq!(
                partial(S(b">"), String::from("-")),
                identifier(S(b"->"))
            );

            // Identifiers must split at space and not consume anything
            // afterwards
            assert_eq!(
                partial(S(b" b"), String::from("a")),
                identifier(S(b"a b"))
            );
        }

        // #[test]
        // fn unicode() {
        //     assert_eq!(fail(S(b"അ")), identifier(S(b"അ")))
        // }

        #[test]
        fn data() {
            assert_eq!(ok(AST::Nil), datum(S(b"()")));
            assert_eq!(ok("one".into()), datum(S(b"one")));
            assert_eq!(ok(42.into()), datum(S(b"42")))
        }

        #[test]
        fn lists() {
            assert_eq!(
                ok(AST::List(vec!["+".into(), 1.into()])),
                list(S(b"(+ 1)"))
            );

            assert_eq!(
                ok(AST::List(vec![
                    1.into(),
                    2.into(),
                    3.into(),
                    "a".into(),
                    "b".into(),
                    "c".into()
                ])),
                list(S(b"(1 2 3 a b c)"))
            );

            assert_eq!(
                ok(AST::List(vec![
                    "inc".into(),
                    AST::List(vec!["inc".into(), 42.into()]),
                ],)),
                list(S(b"(inc (inc 42))"))
            );

            // Lists should throw away all spaces in between
            assert_eq!(program(S(b"(   +   1 )")), program(S(b"(+ 1)")));
        }

        #[test]
        fn binary() {
            assert_eq!(
                ok(AST::List(vec!["+".into(), "x".into(), 1776.into()])),
                list(S(b"(+ x 1776)"))
            );

            assert_eq!(
                ok(AST::List(vec![
                    "+".into(),
                    "x".into(),
                    AST::List(vec!["*".into(), "a".into(), "b".into()],),
                ],)),
                list(S(b"(+ x (* a b))"))
            );
        }

        #[test]
        fn top() {
            assert_eq!(ok(true.into()), program(S(b"#t")));
            assert_eq!(ok(false.into()), program(S(b"#f")));

            assert_eq!(ok('?'.into()), program(S(b"#\\?")));

            assert_eq!(ok(42.into()), program(S(b"42")));
            assert_eq!(ok((-42).into()), program(S(b"-42")));

            assert_eq!(ok('j'.into()), program(S(b"#\\j")));
            assert_eq!(ok('^'.into()), program(S(b"#\\^")));
        }

        #[test]
        fn let_binding() {
            let prog = S(b"(let ((x 1) (y 2)) (+ x y))");

            let exp = AST::Let {
                bindings: vec![
                    ("x".to_string(), AST::Number(1)),
                    ("y".to_string(), AST::Number(2)),
                ],
                body: vec![AST::List(vec![
                    AST::Identifier("+".to_string()),
                    AST::Identifier("x".to_string()),
                    AST::Identifier("y".to_string()),
                ])],
            };

            assert_eq!(ok(exp), program(prog));
        }
    }
}

/// A thin wrapper around x86 assembly.
///
/// This module should be a general purpose x86 library without importing
/// anything else from the rest of the compiler.
pub mod x86 {
    use std::fmt;
    use std::ops::{Add, AddAssign};

    /// ASM is a list of instructions.
    ///
    /// `Display` trait converts this type to valid code that can be compiled
    /// and executed. For now this is pretty dumb, but over time this could be
    /// made into something a lot smarter and safe rather than concatenating so
    /// many tiny strings together.
    #[derive(Clone)]
    pub struct ASM(pub Vec<Ins>);

    pub const WORDSIZE: i64 = 8;

    #[derive(Debug, PartialEq, Clone)]
    pub enum Register {
        RAX,
        RBX,
        RCX,
        RDX,
        RSP,
        RBP,
    }

    /// Operand is a register, address or a constant; the argument to several
    /// instructions.
    ///
    /// This is an extremely simplified view of the reality; `mov` alone with
    /// the address access semantics x86 supports is Turning Complete.
    /// https://esolangs.org/wiki/Mov
    #[derive(Debug, Clone)]
    pub enum Operand {
        Const(i64),
        Reg(Register),
        Stack(i64),
    }

    /// Each x86 instruction this compiler understands.
    ///
    /// This type fundamentally limits what code can be generated and ideally no
    /// other part of the compiler should generate ASM with strings.
    #[derive(Debug, Clone)]
    pub enum Ins {
        /// Add `v` to register `r`
        Add { r: Register, v: Operand },

        /// Logical and of `v` to register `r`
        And { r: Register, v: Operand },

        /// Unconditional function call
        Call(String),

        /// Compare the value to register RAX
        Cmp { r: Register, with: i64 },

        /// x86 function preamble
        ///
        /// Not really a single instruction but having this as a single
        /// operation makes it easier for callers of this module.
        Enter,

        /// Jump to the specified label if last comparison resulted in equality
        Je(String),

        /// Unconditionally jump to the specified label
        Jmp(String),

        /// A label is a target to jump to
        Label(String),

        /// Exit a function and clean up. See `Enter`
        Leave,

        /// Save a register `r` to stack at index `si`
        Save { r: Register, si: i64 },

        /// Load a value at stack index `si` to register `r`
        Load { r: Register, si: i64 },

        /// Mov! At least one of the operands must be a register, moving from
        /// RAM to RAM isn't a valid op.
        Mov { from: Operand, to: Operand },

        /// Multiply register AX with value `v` and move result to register RAX
        // The destination operand is of `mul` is an implied operand located in
        // register AX. GCC throws `Error: ambiguous operand size for `mul'`
        // without size quantifier
        Mul { v: Operand },

        /// Pop a register `r` from stack
        Pop(Register),

        /// Push a register `r` to stack
        Push(Register),

        /// Return from the calling function
        Ret,

        // Shift Operations fall into `arithmetic` (`SAR` & `SAL`) and `logical`
        // (`SHR` & `SHL`) types and they differ in the way signs are preserved.
        //
        // Shifting left works the same for both because multiplying by 2^n wont
        // change the sign, but logical right shifting a negative number with
        // `SHR` will throw away the sign while `SAR` will preserve it. Prior
        // versions of this compiler and paper used both, but unless there is a
        // very good reason use shift arithmetic right (`SAR`) instead of shift
        // logical right (`SHR`) everywhere.
        /// Shift register `r` right by `v` bits; `r = r / 2^v`
        Sar { r: Register, v: i64 },

        /// Shift register `r` left by `v` bits; `r = r * 2^v`
        Sal { r: Register, v: i64 },

        /// Sub `k` from register `r`
        Sub { r: Register, v: Operand },

        /// Raw slices for compatibility
        ///
        /// Often it can be just convenient to hand write some assembly and
        /// eventually port it to a sensible type here. Till then this Variant
        /// is a goods stop gap.
        Slice(String),
    }

    /// Convert a single operation to ASM
    impl From<Ins> for ASM {
        fn from(op: Ins) -> Self {
            ASM { 0: vec![op] }
        }
    }

    /// Convert a String to ASM
    impl From<String> for ASM {
        fn from(s: String) -> Self {
            ASM { 0: vec![Ins::Slice(s)] }
        }
    }

    /// Convert a string literal to ASM
    impl From<&str> for ASM {
        fn from(s: &str) -> Self {
            ASM { 0: vec![Ins::Slice(s.to_string())] }
        }
    }

    /// Display for a register is the same as Debug
    impl fmt::Display for Register {
        fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
            write!(f, "{}", format!("{:?}", self).to_lowercase())
        }
    }

    /// Display an Operand
    impl fmt::Display for Operand {
        fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
            match &self {
                Operand::Const(i) => write!(f, "{}", i),
                Operand::Reg(r) => write!(f, "{}", r),
                Operand::Stack(si) => writeln!(f, "{}", &stack(*si)),
            }
        }
    }

    /// Pretty print a single ASM instruction.
    impl fmt::Display for Ins {
        fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
            match self {
                Ins::Add { r, v } => writeln!(f, "    add {}, {}", r, v),
                Ins::And { r, v } => writeln!(f, "    and {}, {}", r, v),
                Ins::Call(l) => writeln!(f, "    call {}", l),
                Ins::Cmp { r, with } => writeln!(f, "    cmp {}, {}", r, with),
                Ins::Enter => {
                    let op = Ins::Push(Register::RBP)
                        + Ins::Mov {
                            from: Operand::Reg(Register::RSP),
                            to: Operand::Reg(Register::RBP),
                        };
                    write!(f, "{}", op)
                }
                Ins::Je(l) => writeln!(f, "    je {}", l),
                Ins::Jmp(l) => writeln!(f, "    jmp {}", l),
                Ins::Label(l) => writeln!(f, "{}", label(l)),
                Ins::Leave => {
                    let op = Ins::Pop(Register::RBP) + Ins::Ret;
                    writeln!(f, "{}", op)
                }
                Ins::Load { r, si } => {
                    writeln!(f, "    mov {}, {}", r, &stack(*si))
                }
                Ins::Mov { from, to } => {
                    writeln!(f, "    mov {}, {}", to, from)
                }
                Ins::Mul { v } => writeln!(f, "    mul qword ptr {}", v),
                Ins::Pop(r) => writeln!(f, "    pop {}", r),
                Ins::Push(r) => writeln!(f, "    push {}", r),
                Ins::Ret => writeln!(f, "    ret"),
                Ins::Save { r, si } => {
                    writeln!(f, "    mov {}, {}", &stack(*si), r)
                }
                Ins::Sal { r, v } => writeln!(f, "    sal {}, {}", r, v),
                Ins::Sar { r, v } => writeln!(f, "    sar {}, {}", r, v),
                Ins::Sub { r, v } => writeln!(f, "    sub {}, {}", r, v),
                Ins::Slice(s) => write!(f, "{}", s),
            }
        }
    }

    /// Collect all the bits and pieces together into valid assembly
    impl fmt::Display for ASM {
        fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
            let mut ctx = String::new();
            for op in self.0.iter() {
                ctx.push_str(&op.to_string());
            }
            writeln!(f, "{}", ctx)
        }
    }

    /// Add operations with a easy to read `asm += op` short hand.
    ///
    /// This is pretty efficient at the cost of owning the value.
    impl AddAssign<Ins> for ASM {
        fn add_assign(&mut self, op: Ins) {
            self.0.push(op)
        }
    }

    /// Add operations to ASM with overloaded `asm' = asm + op`.
    ///
    /// NOTE: This is pretty inefficient due to copying of self.
    impl Add<Ins> for ASM {
        type Output = Self;

        fn add(self, op: Ins) -> Self {
            let mut t = self.clone();
            t.0.push(op);
            t
        }
    }

    /// Concat ASM; `asm + asm`
    ///
    /// NOTE: This is pretty inefficient due to copying both arguments.
    impl Add<ASM> for ASM {
        type Output = Self;

        fn add(self, asm: ASM) -> Self {
            let mut rhs = self.clone();
            let mut lhs = asm.0.clone();
            rhs.0.append(&mut lhs);
            rhs
        }
    }

    /// Concat Ins to get ASM; `asm = op + op`
    ///
    /// NOTE: This is pretty inefficient due to copying both arguments.
    impl Add<Ins> for Ins {
        type Output = ASM;

        fn add(self, op: Ins) -> ASM {
            ASM { 0: vec![self, op] }
        }
    }

    // ¶ Module helpers

    #[cfg(target_os = "macos")]
    fn label(label: &str) -> String {
        format!("_{}:", label)
    }

    #[cfg(target_os = "linux")]
    fn label(label: &str) -> String {
        format!("{}:", label)
    }

    /// Stack gives stack address relative to base pointer
    pub fn stack(si: i64) -> String {
        match si {
            index if index > 0 => format!("[rbp + {}]", index),
            index if index < 0 => format!("[rbp - {}]", (-index)),
            _ => panic!("Effective stack index cannot be 0"),
        }
    }

    #[cfg(target_os = "macos")]
    pub fn function_header(name: &str) -> ASM {
        let mut ctx = String::new();

        ctx.push_str("    .section __TEXT,__text\n");
        ctx.push_str("    .intel_syntax noprefix\n");
        ctx.push_str(&format!("    .globl _{}\n", &name));
        ctx.push_str(&Ins::Label(String::from(name)).to_string());
        ctx.into()
    }

    #[cfg(target_os = "linux")]
    pub fn function_header(name: &str) -> ASM {
        let mut ctx = String::new();

        ctx.push_str("    .text\n");
        ctx.push_str("    .intel_syntax noprefix\n");
        ctx.push_str(&format!("    .globl {}\n", &name));
        ctx.push_str(&format!("    .type {}, @function\n", &name));
        ctx.push_str(&Ins::Label(String::from(name)).to_string());
        ctx.into()
    }

    #[cfg(test)]
    mod tests {
        use crate::x86::{Ins::*, Operand::*, Register::*};

        #[test]
        fn mov() {
            assert_eq!(
                String::from("    mov rax, 16\n"),
                Mov { from: Const(16), to: Reg(RAX) }.to_string()
            );
        }
    }
}

/// State for the code generator
mod state {
    use super::x86::{ASM, WORDSIZE};
    use std::collections::HashMap;

    /// State for the code generator; easier to bundle it all into a struct than
    /// pass several arguments in.
    ///
    /// Stack index points to the current available empty slot. Use and then
    /// decrement the index to add a new variable. Default to `-word size`
    ///
    /// State should also implement some form of register allocation.
    pub struct State {
        pub si: i64,
        pub asm: ASM,
        env: Env,
    }

    impl Default for State {
        fn default() -> Self {
            State { si: -WORDSIZE, asm: ASM(vec![]), env: new() }
        }
    }

    impl State {
        pub fn enter(&mut self) {
            self.env.enter();
        }

        pub fn leave(&mut self) {
            let unwind = self.env.0.first().expect("unexpected empty env").len()
                as i64
                * WORDSIZE;
            self.si += unwind;
            self.env.leave()
        }

        pub fn get(&mut self, i: &str) -> Option<i64> {
            self.env.get(i)
        }

        // Set a new binding in the current local environment
        pub fn set(&mut self, i: &str, index: i64) {
            self.env.set(i, index);
            self.alloc();
        }

        /// Allocate a word on the stack
        fn alloc(&mut self) {
            self.si -= WORDSIZE;
        }
    }

    // Environment is an *ordered* list of bindings.
    #[derive(Debug)]
    struct Env(Vec<HashMap<String, i64>>);

    fn new() -> Env {
        Env(vec![HashMap::new()])
    }

    impl Env {
        pub fn enter(&mut self) {
            self.0.insert(0, HashMap::new());
        }

        pub fn leave(&mut self) {
            self.0.remove(0);
        }

        pub fn set(&mut self, i: &str, index: i64) {
            self.0
                .first_mut()
                .map(|binding| binding.insert(i.to_string(), index));
        }

        pub fn get(&mut self, i: &str) -> Option<i64> {
            for bindings in self.0.iter() {
                if let Some(t) = bindings.get(i) {
                    return Some(*t);
                }
            }
            None
        }
    }

    #[cfg(test)]
    mod tests {
        use super::*;

        #[test]
        fn t() {
            let mut e = new();
            assert_eq!(e.0.len(), 1);

            // default global scope
            e.set("x", -8);
            assert_eq!(e.get("x"), Some(-8));

            // overwrite in current scope
            e.set("x", -16);
            assert_eq!(e.get("x"), Some(-16));

            e.enter();
            assert_eq!(e.0.len(), 2);
            // read variables from parent scope
            assert_eq!(e.get("x"), Some(-16));

            e.set("y", -24);
            // local variable shadows global
            e.set("x", -32);
            assert_eq!(e.get("x"), Some(-32));

            e.leave();

            assert_eq!(e.0.len(), 1);
            assert_eq!(e.get("y"), None);
            assert_eq!(e.get("x"), Some(-16));
        }
    }
}

/// Emit machine code for inc AST.
///
/// This module implements bulk of the compiler and is a good place to start
/// reading code. Platform specific code is annotated with `cfg(target_os)` for
/// both linux and mac. This module implements code gen specific to inc and
/// anything generic goes into `x86` module.
pub mod emit {
    use super::{
        immediate,
        state::State,
        x86::{Ins::*, Operand::*, Register::*, *},
        *,
    };

    /// Clear (mask) all except the least significant 3 tag bits
    pub fn mask() -> Ins {
        And { r: RAX, v: Const(immediate::MASK) }
    }

    /// Convert the result in RAX into a boolean
    pub fn cmp_bool() -> ASM {
        // SETE sets the destination operand to 0 or 1 depending on the settings
        // of the status flags (CF, SF, OF, ZF, and PF) in the EFLAGS register.
        (String::from("    sete al \n") +

         // MOVZX copies the contents of the source operand (register or
         // memory location) to the destination operand (register) and zero
         // extends the value.
         "    movzx rax, al \n" +
         &format!("    sal al, {} \n", immediate::SHIFT) +
         &format!("    or al, {} \n", immediate::BOOL))
            .into()
    }

    /// Emit code for a let expression
    ///
    /// A new environment is created to hold the bindings, which map the name to
    /// a stack index. All the space allocated by the let expression for local
    /// variables can be freed at the end of the body. This implies the `si`
    /// stays the same before and after a let expression. There is no need to
    /// keep track of the amount of space allocated inside the let expression
    /// and free it afterwards.

    pub fn binding(
        s: &mut State,
        bindings: &[(String, AST)],
        body: &[AST],
    ) -> ASM {
        let mut ctx = String::new();

        s.enter();

        for (name, expr) in bindings.iter() {
            let x = eval(s, expr) + Save { r: RAX, si: s.si };
            s.set(name, s.si);
            ctx.push_str(&x.to_string());
        }

        for b in body.iter() {
            let x = eval(s, &b);
            ctx.push_str(&x.to_string());
        }

        s.leave();
        ctx.into()
    }

    /// Evaluate an expression into RAX
    ///
    /// If the expression fits in a machine word, immediately return with the
    /// immediate repr, recurse for anything else till the base case.
    ///
    // TODO: eval should dispatch based on first atom alone, not necessarily
    // care about arity here. `let` and other variadic syntax forms won't fit
    // into any specific branch here.
    pub fn eval(s: &mut State, prog: &AST) -> ASM {
        match prog {
            AST::Identifier(i) => match s.get(i) {
                Some(i) => Ins::Load { r: Register::RAX, si: i }.into(),
                None => panic!("Undefined variable {}", i),
            },

            AST::Let { bindings, body } => binding(s, bindings, body),

            AST::List(list) => match list.as_slice() {
                [AST::Identifier(i), arg] => match &i[..] {
                    "inc" => primitives::inc(s, arg),
                    "dec" => primitives::dec(s, arg),
                    "null?" => primitives::nullp(s, arg),
                    "zero?" => primitives::zerop(s, arg),
                    "not" => primitives::not(s, arg),
                    "fixnum?" => primitives::fixnump(s, arg),
                    "boolean?" => primitives::booleanp(s, arg),
                    "char?" => primitives::charp(s, arg),
                    n => panic!("Unknown unary primitive: {}", n),
                },

                [AST::Identifier(name), x, y] => match &name[..] {
                    "+" => primitives::plus(s, x, y),
                    "-" => primitives::minus(s, x, y),
                    "*" => primitives::mul(s, x, y),
                    "/" => primitives::quotient(s, x, y),
                    "%" => primitives::remainder(s, x, y),

                    n => panic!("Unknown binary primitive: {}", n),
                },

                l => panic!("Unknown expression: {:?}", l),
            },

            _ => Mov {
                to: Operand::Reg(RAX),
                from: Operand::Const(immediate::to(&prog)),
            }
            .into(),
        }
    }

    /// Top level interface to the emit module
    pub fn program(prog: &AST) -> String {
        let mut s: State = Default::default();
        let gen = x86::function_header("init")
            + Ins::Enter
            + eval(&mut s, prog)
            + Ins::Leave;

        gen.to_string()
    }
}

/// Scheme primitives implemented directly in the compiler
///
/// Several scheme functions like `(add ...` are implemented by the compiler in
/// assembly rather than in scheme. All of them live in this module.
pub mod primitives {

    use super::state::State;
    use super::x86::{Ins::*, Register::*, *};
    use super::*;

    // Unary Primitives

    /// Increment number by 1
    pub fn inc(s: &mut State, x: &AST) -> ASM {
        emit::eval(s, x) + Add { r: RAX, v: Operand::Const(immediate::n(1)) }
    }

    /// Decrement by 1
    pub fn dec(s: &mut State, x: &AST) -> ASM {
        emit::eval(s, x) + Sub { r: RAX, v: Operand::Const(immediate::n(1)) }
    }

    /// Is the expression a fixnum?
    ///
    /// # Examples
    ///
    /// ```scheme
    /// (fixnum? 42) => #t
    /// (fixnum? "hello") => #f
    /// ```
    pub fn fixnump(s: &mut State, expr: &AST) -> ASM {
        emit::eval(s, expr)
            + emit::mask()
            + Cmp { r: RAX, with: immediate::NUM }
            + emit::cmp_bool()
    }

    /// Is the expression a boolean?
    pub fn booleanp(s: &mut State, expr: &AST) -> ASM {
        emit::eval(s, expr)
            + emit::mask()
            + Cmp { r: RAX, with: immediate::BOOL }
            + emit::cmp_bool()
    }

    /// Is the expression a char?
    pub fn charp(s: &mut State, expr: &AST) -> ASM {
        emit::eval(s, expr)
            + emit::mask()
            + Cmp { r: RAX, with: immediate::CHAR }
            + emit::cmp_bool()
    }

    /// Is the expression null?
    pub fn nullp(s: &mut State, expr: &AST) -> ASM {
        emit::eval(s, expr)
            + Cmp { r: RAX, with: immediate::NIL }
            + emit::cmp_bool()
    }

    /// Is the expression zero?
    pub fn zerop(s: &mut State, expr: &AST) -> ASM {
        emit::eval(s, expr)
            + Cmp { r: RAX, with: immediate::NUM }
            + emit::cmp_bool()
    }

    /// Logical not
    pub fn not(s: &mut State, expr: &AST) -> ASM {
        emit::eval(s, expr)
            + Cmp { r: RAX, with: immediate::FALSE }
            + emit::cmp_bool()
    }

    // Binary Primitives

    /// Evaluate arguments for a binary primitive and store them in stack
    fn binop(s: &mut State, x: &AST, y: &AST) -> ASM {
        emit::eval(s, x) + Save { r: RAX, si: s.si } + emit::eval(s, y)
    }

    /// Add `x` and `y` and move result to register RAX
    pub fn plus(s: &mut State, x: &AST, y: &AST) -> ASM {
        binop(s, &x, &y) + Add { r: RAX, v: Operand::Stack(s.si) }
    }

    /// Subtract `x` from `y` and move result to register RAX
    //
    // `sub` Subtracts the 2nd op from the first and stores the result in the
    // 1st. This is pretty inefficient to update result in stack and load it
    // back. Reverse the order and fix it up.
    pub fn minus(s: &mut State, x: &AST, y: &AST) -> ASM {
        binop(s, &x, &y)
            + Sub { r: RAX, v: Operand::Stack(s.si) }
            + Load { r: RAX, si: s.si }
    }

    /// Multiply `x` and `y` and move result to register RAX
    // The destination operand is of `mul` is an implied operand located in
    // register AX. GCC throws `Error: ambiguous operand size for `mul'` without
    // size quantifier
    pub fn mul(s: &mut State, x: &AST, y: &AST) -> ASM {
        binop(s, &x, &y)
            + Sar { r: RAX, v: immediate::SHIFT }
            + Mul { v: Operand::Stack(s.si) }
    }

    /// Divide `x` by `y` and move result to register RAX
    // Division turned out to be much more trickier than I expected it to be.
    // Unlike @namin's code, I'm using a shift arithmetic right (SAR) instead of
    // shift logical right (SHR) and I don't know how the original examples
    // worked at all for negative numbers. I also had to use the CQO instruction
    // to Sign-Extend RAX which the 32 bit version is obviously not concerned
    // with. I got the idea from GCC disassembly.
    //
    // Dividend is passed in RDX:RAX and IDIV instruction takes the divisor as the
    // argument. the quotient is stored in RAX and the remainder in RDX.
    fn div(s: &mut State, x: &AST, y: &AST) -> ASM {
        let mut ctx = String::new();

        ctx.push_str(&(emit::eval(s, y).to_string()));
        ctx.push_str(
            &Ins::Sar { r: Register::RAX, v: immediate::SHIFT }.to_string(),
        );
        ctx.push_str("    mov rcx, rax \n");
        ctx.push_str(&emit::eval(s, x).to_string());
        ctx.push_str(
            &Ins::Sar { r: Register::RAX, v: immediate::SHIFT }.to_string(),
        );
        ctx.push_str("    mov rdx, 0 \n");
        ctx.push_str("    cqo \n");
        ctx.push_str("    idiv rcx \n");
        ctx.into()
    }

    pub fn quotient(s: &mut State, x: &AST, y: &AST) -> ASM {
        div(s, x, y) + Sal { r: Register::RAX, v: immediate::SHIFT }
    }

    pub fn remainder(s: &mut State, x: &AST, y: &AST) -> ASM {
        div(s, x, y)
            + Mov {
                to: Operand::Reg(Register::RAX),
                from: Operand::Reg(Register::RDX),
            }
            + Sal { r: Register::RAX, v: immediate::SHIFT }
    }
}

/// Runtime representation of typed scheme values
///
/// Immediate values (values that can be fit in one machine word) are tagged for
/// distinguising them from heap allocated pointers. The last 3 bits effectively
/// serve as the runtime type of the value. Always using 3 bits is a simpler
/// approach than the multi bit technique the paper uses. This is a very
/// efficient and low overhead technique at the cost of losing precision -
/// completely acceptable for types like characters and booleans but having to
/// live with 61bit numerics instead of native 64 and some overhead for
/// operations like multiplication & division.
///
/// See the paper for details. See tests for examples.
pub mod immediate {
    use super::*;

    pub const NUM: i64 = 0;
    pub const BOOL: i64 = 1;
    pub const CHAR: i64 = 2;
    pub const NIL: i64 = 4;

    pub const SHIFT: i64 = 3;
    pub const MASK: i64 = 0b0000_0111;

    pub const FALSE: i64 = (0 << SHIFT) | BOOL;
    pub const TRUE: i64 = (1 << SHIFT) | BOOL;

    /// Immediate representation of an expression.
    ///
    /// Immediate representation is only defined for some types and this
    /// function is partial. The caller for this function must make sure of it,
    /// rather than make this module complicated. It would be great if the type
    /// system could ensure that, but till then fail with a panic.
    pub fn to(prog: &AST) -> i64 {
        match prog {
            AST::Number(i) => (i << SHIFT) | NUM,
            AST::Boolean(true) => TRUE,
            AST::Boolean(false) => FALSE,
            // An ASCII char is a single byte, so most of these shifts should be
            // OK. This is going to go wrong pretty badly with Unicode.
            AST::Char(c) => {
                // Expand u8 to i64 before shifting right, this will easily
                // overflow and give bogus results otherwise. Unit testing FTW!
                (i64::from(*c) << SHIFT) | CHAR
            }
            AST::Nil => NIL,
            AST::Identifier(i) => unimplemented!(
                "immediate repr is undefined for identifier {}",
                i
            ),
            AST::List(..) => {
                unimplemented!("immediate repr is undefined for lists")
            }
            AST::Let { .. } => {
                unimplemented!("immediate repr is undefined for let binding")
            }
        }
    }

    // Immediate representation of numbers is required so often a helper is
    // useful.
    pub fn n(i: i64) -> i64 {
        (i << SHIFT) | NUM
    }

    #[cfg(test)]
    mod tests {
        use super::*;

        // As of now, there is no need for this function in Rust other than
        // testing, but good to have :) There is an equivalent C implementation
        // to pretty print the values. Leaving this along with `to` leads to
        // dead code warnings.
        //
        // TODO: Switch to match, rely on exhaustive pattern matching rather
        // than the panic in the end.
        pub fn from(val: i64) -> AST {
            if (val & MASK) == NUM {
                return AST::Number(val >> SHIFT);
            } else if (val & MASK) == CHAR {
                return AST::Char((val >> SHIFT) as u8);
            } else if val == TRUE {
                return true.into();
            } else if val == FALSE {
                return false.into();
            } else if val == NIL {
                return AST::Nil;
            } else {
                panic!("Oops");
            }
        }

        #[test]
        fn numbers() {
            assert_eq!(to(&0.into()), 0);
            assert_eq!(to(&1.into()), 8);

            assert_eq!(from(0), 0.into());
            assert_eq!(from(8), 1.into());
        }

        #[test]
        fn chars() {
            let expect = (65 << SHIFT) + CHAR;

            assert_eq!(to(&('A').into()), expect);
            assert_eq!(from(expect), 'A'.into());
        }
    }
}

/// Parse the input from user into the form the top level of the compiler
/// understands.
impl FromStr for AST {
    type Err = Error;

    fn from_str(program: &str) -> Result<Self, Error> {
        match parser::program(S(program.as_bytes())) {
            Ok((_rest, ast)) => Ok(ast),
            // Ok((parser::EMPTY, ast)) => Ok(ast),
            // Ok((_rest, _ast)) => Err(Error {
            //     message: String::from("All of input not consumed"),
            // }),
            Err(e) => Err(Error { message: format!("{}", e) }),
        }
    }
}

/// Top level API for inc
///
/// Compile a scheme program into x86 asm; input program and output file is
/// passed with Config.
pub fn compile(config: &mut Config) -> Result<(), Error> {
    let prog: AST = config.program.parse::<AST>()?;

    let mut handler = File::create(&config.asm())
        .unwrap_or_else(|_| panic!("Failed to create {}", &config.asm()));

    match handler.write_all(emit::program(&prog).as_bytes()) {
        Ok(_) => Ok(()),
        Err(e) => Err(Error {
            message: format!("Failed to write generated code: {}", e),
        }),
    }
}