1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063
//! Host-side configurations for the target.
//!
//! See [`RuntimeBuilder::build`] to understand the linker script generation
//! steps.
// Please explicitly match all `Family` variants. If someone wants to add
// a new `Family`, this will show help them find all the settings they need
// to consider.
#![warn(clippy::wildcard_enum_match_arm)]
use std::{
env,
fmt::Display,
fs,
io::{self, Write},
path::PathBuf,
};
/// Memory partitions.
///
/// Use with [`RuntimeBuilder`] to specify the placement of sections
/// in the final program. Note that the `RuntimeBuilder` only does limited
/// checks on memory placements. Generally, it's OK to place data in ITCM,
/// and instructions in DTCM; however, this isn't recommended for optimal
/// performance.
#[non_exhaustive]
#[derive(Debug, Clone, Copy, PartialEq, Eq)]
pub enum Memory {
/// Place the section in (external) flash.
///
/// Reads and writes are translated into commands on an external
/// bus, like FlexSPI.
Flash,
/// Place the section in data tightly coupled memory (DTCM).
Dtcm,
/// Place the section in instruction tightly coupled memory (ITCM).
Itcm,
/// Place the section in on-chip RAM (OCRAM).
///
/// If your chip includes dedicated OCRAM memory, the implementation
/// utilizes that OCRAM before utilizing any FlexRAM OCRAM banks.
Ocram,
}
/// The FlexSPI peripheral that interfaces your flash chip.
///
/// The [`RuntimeBuilder`] selects `FlexSpi1` for nearly all chip
/// families. However, it selects `FlexSpi2` for the 1064 in order
/// to utilize its on-board flash. You can override the selection
/// using [`RuntimeBuilder::flexspi()`].
#[non_exhaustive]
#[derive(Debug, Clone, Copy, PartialEq, Eq)]
pub enum FlexSpi {
/// Interface flash using FlexSPI 1.
FlexSpi1,
/// Interface flash using FlexSPI 2.
FlexSpi2,
}
impl FlexSpi {
fn family_default(family: Family) -> Self {
match family {
Family::Imxrt1064 => FlexSpi::FlexSpi2,
Family::Imxrt1010
| Family::Imxrt1015
| Family::Imxrt1020
| Family::Imxrt1050
| Family::Imxrt1060
| Family::Imxrt1170 => FlexSpi::FlexSpi1,
}
}
fn start_address(self, family: Family) -> Option<u32> {
match (self, family) {
// FlexSPI1, 10xx
(
FlexSpi::FlexSpi1,
Family::Imxrt1010
| Family::Imxrt1015
| Family::Imxrt1020
| Family::Imxrt1050
| Family::Imxrt1060
| Family::Imxrt1064,
) => Some(0x6000_0000),
// FlexSPI2 not available on 10xx families
(
FlexSpi::FlexSpi2,
Family::Imxrt1010 | Family::Imxrt1015 | Family::Imxrt1020 | Family::Imxrt1050,
) => None,
// FlexSPI 2 available on 10xx families
(FlexSpi::FlexSpi2, Family::Imxrt1060 | Family::Imxrt1064) => Some(0x7000_0000),
// 11xx support
(FlexSpi::FlexSpi1, Family::Imxrt1170) => Some(0x3000_0000),
(FlexSpi::FlexSpi2, Family::Imxrt1170) => Some(0x6000_0000),
}
}
fn supported_for_family(self, family: Family) -> bool {
self.start_address(family).is_some()
}
}
impl Display for Memory {
fn fmt(&self, f: &mut core::fmt::Formatter<'_>) -> core::fmt::Result {
match self {
Self::Flash => f.write_str("FLASH"),
Self::Itcm => f.write_str("ITCM"),
Self::Dtcm => f.write_str("DTCM"),
Self::Ocram => f.write_str("OCRAM"),
}
}
}
/// Define an alias for `name` that maps to a memory block named `placement`.
fn region_alias(output: &mut dyn Write, name: &str, placement: Memory) -> io::Result<()> {
writeln!(output, "REGION_ALIAS(\"REGION_{}\", {});", name, placement)
}
#[derive(Debug, Clone, PartialEq, Eq)]
struct FlashOpts {
size: usize,
flexspi: FlexSpi,
}
#[derive(Debug, Clone, PartialEq, Eq)]
struct EnvOverride {
default: usize,
env: Option<String>,
}
impl EnvOverride {
const fn new(default: usize) -> Self {
Self { default, env: None }
}
fn set_env_key(&mut self, key: String) {
self.env = Some(key);
}
fn read(&self) -> Result<usize, Box<dyn std::error::Error>> {
if let Some(env) = &self.env {
// If the user sets multiple environment variables for the same runtime
// property (like stack, heap), we will only re-run when the variable
// we care about changes. An example might help:
//
// let mut bldr = RuntimeBuilder::from_flexspi(/* ... */);
// bldr.stack_size_env_override("COMMON_STACK");
// if special_condition() {
// bldr.stack_size_env_override("SPECIAL_STACK");
// }
//
// If we take the branch, then we re-run the build if SPECIAL_STACK
// changes. Otherwise, we re-run if COMMON_STACK changes.
//
// I previously put this into `set_env_key`. That would mean we re-run
// the build if _either_ enviroment variable changes. But then I thought
// about the user who writes their build script like
//
// if special_condition() {
// bldr.stack_size_env_override("SPECIAL_STACK");
// } else {
// bldr.stack_size_env_override("COMMON_STACK");
// }
//
// and how that would introduce different re-run behavior than the first
// example, even though the variable selection is the same. Coupling the
// re-run behavior to the variable selection behavior seems less surprising.
println!("cargo:rerun-if-env-changed={env}");
}
if let Some(val) = self.env.as_ref().and_then(|key| env::var(key).ok()) {
let val = if val.ends_with('k') || val.ends_with('K') {
val[..val.len() - 1].parse::<usize>()? * 1024
} else {
val.parse::<usize>()?
};
Ok(val)
} else {
Ok(self.default)
}
}
}
/// Builder for the i.MX RT runtime.
///
/// `RuntimeBuilder` let you assign sections to memory regions. It also lets
/// you partition FlexRAM DTCM/ITCM/OCRAM. Call [`build()`](RuntimeBuilder::build) to commit the
/// runtime configuration.
///
/// # Behaviors
///
/// The implementation tries to place the stack in the lowest-possible memory addresses.
/// This means the stack will grow down into reserved memory below DTCM and OCRAM for most
/// chip families. The outlier is the 1170, where the stack will grow into OCRAM backdoor for
/// the CM4 coprocessor. Be careful here...
///
/// Similarly, the implementation tries to place the heap in the highest-possible memory
/// addresses. This means the heap will grow up into reserved memory above DTCM and OCRAM
/// for most chip families.
///
/// The vector table requires a 1024-byte alignment. The vector table's placement is prioritized
/// above all other sections, except the stack. If placing the stack and vector table in the
/// same section (which is the default behavior), consider keeping the stack size as a multiple
/// of 1 KiB to minimize internal fragmentation.
///
/// # Default values
///
/// The example below demonstrates the default `RuntimeBuilder` memory placements,
/// stack sizes, and heap sizes.
///
/// ```
/// use imxrt_rt::{Family, RuntimeBuilder, Memory};
///
/// const FLASH_SIZE: usize = 16 * 1024;
/// let family = Family::Imxrt1060;
///
/// let mut b = RuntimeBuilder::from_flexspi(family, FLASH_SIZE);
/// // FlexRAM banks represent default fuse values.
/// b.flexram_banks(family.default_flexram_banks());
/// b.text(Memory::Itcm); // Copied from flash.
/// b.rodata(Memory::Ocram); // Copied from flash.
/// b.data(Memory::Ocram); // Copied from flash.
/// b.vectors(Memory::Dtcm); // Copied from flash.
/// b.bss(Memory::Ocram);
/// b.uninit(Memory::Ocram);
/// b.stack(Memory::Dtcm);
/// b.stack_size(8 * 1024); // 8 KiB stack.
/// b.heap(Memory::Dtcm); // Heap in DTCM...
/// b.heap_size(0); // ...but no space given to the heap.
///
/// assert_eq!(b, RuntimeBuilder::from_flexspi(family, FLASH_SIZE));
/// ```
///
/// # Environment overrides
///
/// Certain memory regions, like the stack and heap, can be sized using environment
/// variables. As the provider of the runtime, you can use `*_env_override` methods
/// to select the environment variable(s) that others may use to set the size, in bytes,
/// for these memory regions.
///
/// The rest of this section describes how environment variables interact with other
/// methods on this builder. Although the examples use stack size, the concepts apply
/// to all regions that can be sized with environment variables.
///
/// ```no_run
/// # use imxrt_rt::{Family, RuntimeBuilder, Memory};
/// # const FLASH_SIZE: usize = 16 * 1024;
/// # let family = Family::Imxrt1060;
/// RuntimeBuilder::from_flexspi(family, FLASH_SIZE)
/// .stack_size_env_override("YOUR_STACK_SIZE")
/// // ...
/// # .build().unwrap();
/// ```
///
/// In the above example, if a user set an environment variable `YOUR_STACK_SIZE=1024`, then
/// the runtime's stack size is 1024. Otherwise, the stack size is the default stack size.
///
/// > As a convenience, a user can use a `k` or `K` suffix to specify multiples of 1024 bytes.
/// > For example, the environment variables `YOUR_STACK_SIZE=4k` and `YOUR_STACK_SIZE=4K` are
/// > each equivalent to `YOUR_STACK_SIZE=4096`.
///
/// ```no_run
/// # use imxrt_rt::{Family, RuntimeBuilder, Memory};
/// # const FLASH_SIZE: usize = 16 * 1024;
/// # let family = Family::Imxrt1060;
/// RuntimeBuilder::from_flexspi(family, FLASH_SIZE)
/// .stack_size_env_override("YOUR_STACK_SIZE")
/// .stack_size(2048)
/// // ...
/// # .build().unwrap();
///
/// RuntimeBuilder::from_flexspi(family, FLASH_SIZE)
/// .stack_size(2048)
/// .stack_size_env_override("YOUR_STACK_SIZE")
/// // ...
/// # .build().unwrap();
/// ```
///
/// In the above example, the two builders produce the same runtime. The builder
/// selects the stack size from the environment variable, if available. Otherwise,
/// the stack size is 2048 bytes. The call order is irrelevant, since the builder
/// doesn't consult the environment until you invoke [`build()`](Self::build).
///
/// ```no_run
/// # use imxrt_rt::{Family, RuntimeBuilder, Memory};
/// # const FLASH_SIZE: usize = 16 * 1024;
/// # let family = Family::Imxrt1060;
/// RuntimeBuilder::from_flexspi(family, FLASH_SIZE)
/// .stack_size_env_override("INVALIDATED")
/// .stack_size_env_override("YOUR_STACK_SIZE")
/// // ...
/// # .build().unwrap();
/// ````
///
/// In the above example, `YOUR_STACK_SIZE` invalidates the call with `INVALIDATED`.
/// Therefore, `YOUR_STACK_SIZE` controls the stack size, if set. Otherwise, the stack
/// size is the default stack size.
#[derive(Debug, Clone, PartialEq, Eq)]
pub struct RuntimeBuilder {
family: Family,
flexram_banks: FlexRamBanks,
text: Memory,
rodata: Memory,
data: Memory,
vectors: Memory,
bss: Memory,
uninit: Memory,
stack: Memory,
stack_size: EnvOverride,
heap: Memory,
heap_size: EnvOverride,
flash_opts: Option<FlashOpts>,
linker_script_name: String,
}
const DEFAULT_LINKER_SCRIPT_NAME: &str = "imxrt-link.x";
impl RuntimeBuilder {
/// Creates a runtime that can execute and load contents from
/// FlexSPI flash.
///
/// `flash_size` is the size of your flash component, in bytes.
pub fn from_flexspi(family: Family, flash_size: usize) -> Self {
Self {
family,
flexram_banks: family.default_flexram_banks(),
text: Memory::Itcm,
rodata: Memory::Ocram,
data: Memory::Ocram,
vectors: Memory::Dtcm,
bss: Memory::Ocram,
uninit: Memory::Ocram,
stack: Memory::Dtcm,
stack_size: EnvOverride::new(8 * 1024),
heap: Memory::Dtcm,
heap_size: EnvOverride::new(0),
flash_opts: Some(FlashOpts {
size: flash_size,
flexspi: FlexSpi::family_default(family),
}),
linker_script_name: DEFAULT_LINKER_SCRIPT_NAME.into(),
}
}
/// Set the FlexRAM bank allocation.
///
/// Use this to customize the sizes of DTCM, ITCM, and OCRAM.
/// See the `FlexRamBanks` documentation for requirements on the
/// bank allocations.
pub fn flexram_banks(&mut self, flexram_banks: FlexRamBanks) -> &mut Self {
self.flexram_banks = flexram_banks;
self
}
/// Set the memory placement for code.
pub fn text(&mut self, memory: Memory) -> &mut Self {
self.text = memory;
self
}
/// Set the memory placement for read-only data.
pub fn rodata(&mut self, memory: Memory) -> &mut Self {
self.rodata = memory;
self
}
/// Set the memory placement for mutable data.
pub fn data(&mut self, memory: Memory) -> &mut Self {
self.data = memory;
self
}
/// Set the memory placement for the vector table.
pub fn vectors(&mut self, memory: Memory) -> &mut Self {
self.vectors = memory;
self
}
/// Set the memory placement for zero-initialized data.
pub fn bss(&mut self, memory: Memory) -> &mut Self {
self.bss = memory;
self
}
/// Set the memory placement for uninitialized data.
pub fn uninit(&mut self, memory: Memory) -> &mut Self {
self.uninit = memory;
self
}
/// Set the memory placement for stack memory.
pub fn stack(&mut self, memory: Memory) -> &mut Self {
self.stack = memory;
self
}
/// Set the size, in bytes, of the stack.
pub fn stack_size(&mut self, bytes: usize) -> &mut Self {
self.stack_size.default = bytes;
self
}
/// Let end users override the stack size using an environment variable.
///
/// See the [environment overrides](Self#environment-overrides) documentation
/// for more information.
pub fn stack_size_env_override(&mut self, key: impl AsRef<str>) -> &mut Self {
self.stack_size.set_env_key(key.as_ref().into());
self
}
/// Set the memory placement for the heap.
///
/// Note that the default heap has no size. Use [`heap_size`](Self::heap_size)
/// to allocate space for a heap.
pub fn heap(&mut self, memory: Memory) -> &mut Self {
self.heap = memory;
self
}
/// Set the size, in bytes, of the heap.
pub fn heap_size(&mut self, bytes: usize) -> &mut Self {
self.heap_size.default = bytes;
self
}
/// Let end users override the heap size using an environment variable.
///
/// See the [environment overrides](Self#environment-overrides) documentation
/// for more information.
pub fn heap_size_env_override(&mut self, key: impl AsRef<str>) -> &mut Self {
self.heap_size.set_env_key(key.as_ref().into());
self
}
/// Set the FlexSPI peripheral that interfaces flash.
///
/// See the [`FlexSpi`] to understand the default values.
/// If this builder is not configuring a flash-loaded runtime, this
/// call is silently ignored.
pub fn flexspi(&mut self, peripheral: FlexSpi) -> &mut Self {
if let Some(flash_opts) = &mut self.flash_opts {
flash_opts.flexspi = peripheral;
}
self
}
/// Set the name of the linker script file.
///
/// You can use this to customize the linker script name for your users.
/// See the [crate-level documentation](crate#linker-script) for more
/// information.
pub fn linker_script_name(&mut self, name: &str) -> &mut Self {
self.linker_script_name = name.into();
self
}
/// Commit the runtime configuration.
///
/// `build()` ensures that the generated linker script is available to the
/// linker.
///
/// # Errors
///
/// The implementation ensures that your chip can support the FlexRAM bank
/// allocation. An invalid allocation is signaled by an error.
///
/// Returns an error if any of the following sections are placed in flash:
///
/// - data
/// - vectors
/// - bss
/// - uninit
/// - stack
/// - heap
///
/// The implementation may rely on the _linker_ to signal other errors.
/// For example, suppose a runtime configuration with no ITCM banks. If a
/// section is placed in ITCM, that error could be signaled here, or through
/// the linker. No matter the error path, the implementation ensures that there
/// will be an error.
pub fn build(&self) -> Result<(), Box<dyn std::error::Error>> {
// Since `build` is called from a build script, the output directory
// represents the path to the _user's_ crate.
let out_dir = PathBuf::from(env::var("OUT_DIR")?);
println!("cargo:rustc-link-search={}", out_dir.display());
// The main linker script expects to INCLUDE this file. This file
// uses region aliases to associate region names to actual memory
// regions (see the Memory enum).
let mut in_memory = Vec::new();
self.write_linker_script(&mut in_memory)?;
fs::write(out_dir.join(&self.linker_script_name), &in_memory)?;
Ok(())
}
/// Write the generated linker script into the provided writer.
///
/// Use this if you want more control over where the generated linker script
/// ends up. Otherwise, you should prefer [`build()`](Self::build) for an
/// easier experience.
///
/// Unlike `build()`, this method does not ensure that the linker script is
/// available to the linker. Additionally, this method does not consider
/// the value set by [`linker_script_name`](Self::linker_script_name).
///
/// # Errors
///
/// See [`build()`](Self::build) to understand the possible errors.
fn write_linker_script(
&self,
writer: &mut dyn Write,
) -> Result<(), Box<dyn std::error::Error>> {
self.check_configurations()?;
if let Some(flash_opts) = &self.flash_opts {
write_flash_memory_map(writer, self.family, flash_opts, &self.flexram_banks)?;
let boot_header_x = include_bytes!("host/imxrt-boot-header.x");
writer.write_all(boot_header_x)?;
} else {
write_ram_memory_map(writer, self.family, &self.flexram_banks)?;
}
#[cfg(feature = "device")]
writeln!(writer, "INCLUDE device.x")?;
// Keep these alias names in sync with the primary linker script.
// The main linker script uses these region aliases for placing
// sections. Then, the user specifies the actual placement through
// the builder. This saves us the step of actually generating SECTION
// commands.
region_alias(writer, "TEXT", self.text)?;
region_alias(writer, "VTABLE", self.vectors)?;
region_alias(writer, "RODATA", self.rodata)?;
region_alias(writer, "DATA", self.data)?;
region_alias(writer, "BSS", self.bss)?;
region_alias(writer, "UNINIT", self.uninit)?;
region_alias(writer, "STACK", self.stack)?;
region_alias(writer, "HEAP", self.heap)?;
// Used in the linker script and / or target code.
writeln!(writer, "__stack_size = {:#010X};", self.stack_size.read()?)?;
writeln!(writer, "__heap_size = {:#010X};", self.heap_size.read()?)?;
if self.flash_opts.is_some() {
// Runtime will see different VMA and LMA, and copy the sections.
region_alias(writer, "LOAD_VTABLE", Memory::Flash)?;
region_alias(writer, "LOAD_TEXT", Memory::Flash)?;
region_alias(writer, "LOAD_RODATA", Memory::Flash)?;
region_alias(writer, "LOAD_DATA", Memory::Flash)?;
} else {
// When the VMA and LMA are equal, the runtime performs no copies.
region_alias(writer, "LOAD_VTABLE", self.vectors)?;
region_alias(writer, "LOAD_TEXT", self.text)?;
region_alias(writer, "LOAD_RODATA", self.rodata)?;
region_alias(writer, "LOAD_DATA", self.data)?;
}
// Referenced in target code.
writeln!(
writer,
"__flexram_config = {:#010X};",
self.flexram_banks.config()
)?;
// The target runtime looks at this value to predicate some pre-init instructions.
// Could be helpful for binary identification, but it's an undocumented feature.
writeln!(writer, "__imxrt_family = {};", self.family.id(),)?;
let link_x = include_bytes!("host/imxrt-link.x");
writer.write_all(link_x)?;
Ok(())
}
/// Implement i.MX RT specific sanity checks.
///
/// This might not check everything! If the linker may detect a condition, we'll
/// let the linker do that.
fn check_configurations(&self) -> Result<(), String> {
if self.family.flexram_bank_count() < self.flexram_banks.bank_count() {
return Err(format!(
"Chip {:?} only has {} total FlexRAM banks. Cannot allocate {:?}, a total of {} banks",
self.family,
self.family.flexram_bank_count(),
self.flexram_banks,
self.flexram_banks.bank_count()
));
}
if self.flexram_banks.ocram < self.family.bootrom_ocram_banks() {
return Err(format!(
"Chip {:?} requires at least {} OCRAM banks for the bootloader ROM",
self.family,
self.family.bootrom_ocram_banks()
));
}
if let Some(flash_opts) = &self.flash_opts {
if !flash_opts.flexspi.supported_for_family(self.family) {
return Err(format!(
"Chip {:?} does not support {:?}",
self.family, flash_opts.flexspi
));
}
}
fn prevent_flash(name: &str, memory: Memory) -> Result<(), String> {
if memory == Memory::Flash {
Err(format!("Section '{}' cannot be placed in flash", name))
} else {
Ok(())
}
}
macro_rules! prevent_flash {
($sec:ident) => {
prevent_flash(stringify!($sec), self.$sec)
};
}
prevent_flash!(data)?;
prevent_flash!(vectors)?;
prevent_flash!(bss)?;
prevent_flash!(uninit)?;
prevent_flash!(stack)?;
prevent_flash!(heap)?;
Ok(())
}
}
/// Write RAM-like memory blocks.
///
/// Skips a section if there's no FlexRAM block allocated. If a user references one
/// of this skipped sections, linking fails.
fn write_flexram_memories(
output: &mut dyn Write,
family: Family,
flexram_banks: &FlexRamBanks,
) -> io::Result<()> {
if flexram_banks.itcm > 0 {
writeln!(
output,
"ITCM (RWX) : ORIGIN = 0x00000000, LENGTH = {:#X}",
flexram_banks.itcm * family.flexram_bank_size(),
)?;
}
if flexram_banks.dtcm > 0 {
writeln!(
output,
"DTCM (RWX) : ORIGIN = 0x20000000, LENGTH = {:#X}",
flexram_banks.dtcm * family.flexram_bank_size(),
)?;
}
let ocram_size =
flexram_banks.ocram * family.flexram_bank_size() + family.dedicated_ocram_size();
if ocram_size > 0 {
writeln!(
output,
"OCRAM (RWX) : ORIGIN = {:#X}, LENGTH = {:#X}",
family.ocram_start(),
ocram_size,
)?;
}
Ok(())
}
/// Generate a linker script MEMORY command that includes a FLASH block.
fn write_flash_memory_map(
output: &mut dyn Write,
family: Family,
flash_opts: &FlashOpts,
flexram_banks: &FlexRamBanks,
) -> io::Result<()> {
writeln!(
output,
"/* Memory map for '{:?}' with custom flash length {}. */",
family, flash_opts.size
)?;
writeln!(output, "MEMORY {{")?;
writeln!(
output,
"FLASH (RX) : ORIGIN = {:#X}, LENGTH = {:#X}",
flash_opts
.flexspi
.start_address(family)
.expect("Already checked"),
flash_opts.size
)?;
write_flexram_memories(output, family, flexram_banks)?;
writeln!(output, "}}")?;
writeln!(output, "__fcb_offset = {:#X};", family.fcb_offset())?;
Ok(())
}
/// Generate a linker script MEMORY command that supports RAM execution.
///
/// It's like [`write_flash_memory_map`], but it doesn't include the flash
/// important tidbits.
fn write_ram_memory_map(
output: &mut dyn Write,
family: Family,
flexram_banks: &FlexRamBanks,
) -> io::Result<()> {
writeln!(
output,
"/* Memory map for '{:?}' that executes from RAM. */",
family,
)?;
writeln!(output, "MEMORY {{")?;
write_flexram_memories(output, family, flexram_banks)?;
writeln!(output, "}}")?;
Ok(())
}
/// i.MX RT chip family.
///
/// Chip families are designed by reference manuals and produce categories.
/// Supply this to a [`RuntimeBuilder`] in order to check runtime configurations.
#[non_exhaustive]
#[derive(Debug, Clone, Copy, PartialEq, Eq)]
pub enum Family {
Imxrt1010,
Imxrt1015,
Imxrt1020,
Imxrt1050,
Imxrt1060,
Imxrt1064,
Imxrt1170,
}
impl Family {
/// Family identifier.
///
/// These values may be stored in the image and observe by the runtime
/// initialzation routine. Make sure these numbers are kept in sync with
/// any hard-coded values.
const fn id(self) -> u32 {
match self {
Family::Imxrt1010 => 1010,
Family::Imxrt1015 => 1015,
Family::Imxrt1020 => 1020,
Family::Imxrt1050 => 1050,
Family::Imxrt1060 => 1060,
Family::Imxrt1064 => 1064,
Family::Imxrt1170 => 1170,
}
}
/// How many FlexRAM banks are available?
pub const fn flexram_bank_count(self) -> u32 {
match self {
Family::Imxrt1010 | Family::Imxrt1015 => 4,
Family::Imxrt1020 => 8,
Family::Imxrt1050 | Family::Imxrt1060 | Family::Imxrt1064 => 16,
// No ECC support; treating all banks as equal.
Family::Imxrt1170 => 16,
}
}
/// How large (bytes) is each FlexRAM bank?
const fn flexram_bank_size(self) -> u32 {
32 * 1024
}
/// How many OCRAM banks does the boot ROM need?
const fn bootrom_ocram_banks(self) -> u32 {
match self {
Family::Imxrt1010 | Family::Imxrt1015 | Family::Imxrt1020 | Family::Imxrt1050 => 1,
// 9.5.1. memory maps point at OCRAM2.
Family::Imxrt1060 | Family::Imxrt1064 => 0,
// Boot ROM uses dedicated OCRAM1.
Family::Imxrt1170 => 0,
}
}
/// Where's the FlexSPI configuration bank located?
fn fcb_offset(self) -> usize {
match self {
Family::Imxrt1010 | Family::Imxrt1170 => 0x400,
Family::Imxrt1015
| Family::Imxrt1020
| Family::Imxrt1050
| Family::Imxrt1060
| Family::Imxrt1064 => 0x000,
}
}
/// Where does the OCRAM region begin?
///
/// This includes dedicated any OCRAM regions, if any exist for the chip.
fn ocram_start(self) -> u32 {
match self {
// 256 KiB offset from the OCRAM M4 backdoor.
Family::Imxrt1170 => 0x2024_0000,
// Either starts the FlexRAM OCRAM banks, or the
// dedicated OCRAM regions (for supported devices).
Family::Imxrt1010
| Family::Imxrt1015
| Family::Imxrt1020
| Family::Imxrt1050
| Family::Imxrt1060
| Family::Imxrt1064 => 0x2020_0000,
}
}
/// What's the size, in bytes, of the dedicated OCRAM section?
///
/// This isn't supported by all chips.
const fn dedicated_ocram_size(self) -> u32 {
match self {
Family::Imxrt1010 | Family::Imxrt1015 | Family::Imxrt1020 | Family::Imxrt1050 => 0,
Family::Imxrt1060 | Family::Imxrt1064 => 512 * 1024,
// - Two dedicated OCRAMs
// - Two dedicated OCRAM ECC regions that aren't used for ECC
// - One FlexRAM OCRAM ECC region that's strictly OCRAM, without ECC
Family::Imxrt1170 => (2 * 512 + 2 * 64 + 128) * 1024,
}
}
/// Returns the default FlexRAM bank allocations for this chip.
///
/// The default values represent the all-zero fuse values.
pub fn default_flexram_banks(self) -> FlexRamBanks {
match self {
Family::Imxrt1010 | Family::Imxrt1015 => FlexRamBanks {
ocram: 2,
itcm: 1,
dtcm: 1,
},
Family::Imxrt1020 => FlexRamBanks {
ocram: 4,
itcm: 2,
dtcm: 2,
},
Family::Imxrt1050 | Family::Imxrt1060 | Family::Imxrt1064 => FlexRamBanks {
ocram: 8,
itcm: 4,
dtcm: 4,
},
Family::Imxrt1170 => FlexRamBanks {
ocram: 0,
itcm: 8,
dtcm: 8,
},
}
}
}
/// FlexRAM bank allocations.
///
/// Depending on your device, you may need a non-zero number of
/// OCRAM banks to support the boot ROM. Consult your processor's
/// reference manual for more information.
///
/// You should keep the sum of all banks below or equal to the
/// total number of banks supported by your device. Unallocated memory
/// banks are disabled.
///
/// Banks are typically 32KiB large.
#[derive(Debug, Clone, Copy, PartialEq, Eq)]
pub struct FlexRamBanks {
/// How many banks are allocated for OCRAM?
///
/// This may need to be non-zero to support the boot ROM.
/// Consult your reference manual.
///
/// Note: these are FlexRAM OCRAM banks. Do not include any banks
/// that would represent dedicated OCRAM; the runtime implementation
/// allocates those automatically. In fact, if your chip includes
/// dedicated OCRAM, you may set this to zero in order to maximize
/// DTCM and ITCM utilization.
pub ocram: u32,
/// How many banks are allocated for ITCM?
pub itcm: u32,
/// How many banks are allocated for DTCM?
pub dtcm: u32,
}
impl FlexRamBanks {
/// Total FlexRAM banks.
const fn bank_count(&self) -> u32 {
self.ocram + self.itcm + self.dtcm
}
/// Produces the FlexRAM configuration.
fn config(&self) -> u32 {
assert!(
self.bank_count() <= 16,
"Something is wrong; this should have been checked earlier."
);
// If a FlexRAM memory type could be allocated
// to _all_ memory banks, these would represent
// the configuration masks...
const OCRAM: u32 = 0x5555_5555; // 0b01...
const DTCM: u32 = 0xAAAA_AAAA; // 0b10...
const ITCM: u32 = 0xFFFF_FFFF; // 0b11...
fn mask(bank_count: u32) -> u32 {
1u32.checked_shl(bank_count * 2)
.map(|bit| bit - 1)
.unwrap_or(u32::MAX)
}
let ocram_mask = mask(self.ocram);
let dtcm_mask = mask(self.dtcm).checked_shl(self.ocram * 2).unwrap_or(0);
let itcm_mask = mask(self.itcm)
.checked_shl((self.ocram + self.dtcm) * 2)
.unwrap_or(0);
(OCRAM & ocram_mask) | (DTCM & dtcm_mask) | (ITCM & itcm_mask)
}
}
#[cfg(test)]
mod tests {
use crate::Memory;
use super::{Family, FlexRamBanks, RuntimeBuilder};
use std::{error, io};
const ALL_FAMILIES: &[Family] = &[
Family::Imxrt1010,
Family::Imxrt1015,
Family::Imxrt1020,
Family::Imxrt1050,
Family::Imxrt1060,
Family::Imxrt1064,
Family::Imxrt1170,
];
type Error = Box<dyn error::Error>;
#[test]
fn flexram_config() {
/// Testing table of banks and expected configuration mask.
#[allow(clippy::unusual_byte_groupings)] // Spacing delimits ITCM / DTCM / OCRAM banks.
const TABLE: &[(FlexRamBanks, u32)] = &[
(
FlexRamBanks {
ocram: 16,
dtcm: 0,
itcm: 0,
},
0x55555555,
),
(
FlexRamBanks {
ocram: 0,
dtcm: 16,
itcm: 0,
},
0xAAAAAAAA,
),
(
FlexRamBanks {
ocram: 0,
dtcm: 0,
itcm: 16,
},
0xFFFFFFFF,
),
(
FlexRamBanks {
ocram: 0,
dtcm: 0,
itcm: 0,
},
0,
),
(
FlexRamBanks {
ocram: 1,
dtcm: 1,
itcm: 1,
},
0b11_10_01,
),
(
FlexRamBanks {
ocram: 3,
dtcm: 3,
itcm: 3,
},
0b111111_101010_010101,
),
(
FlexRamBanks {
ocram: 5,
dtcm: 5,
itcm: 5,
},
0b1111111111_1010101010_0101010101,
),
(
FlexRamBanks {
ocram: 1,
dtcm: 1,
itcm: 14,
},
0b1111111111111111111111111111_10_01,
),
(
FlexRamBanks {
ocram: 1,
dtcm: 14,
itcm: 1,
},
0b11_1010101010101010101010101010_01,
),
(
FlexRamBanks {
ocram: 14,
dtcm: 1,
itcm: 1,
},
0b11_10_0101010101010101010101010101,
),
];
for (banks, expected) in TABLE {
let actual = banks.config();
assert!(
actual == *expected,
"\nActual: {actual:#034b}\nExpected: {expected:#034b}\nBanks: {banks:?}"
);
}
}
#[test]
fn runtime_builder_default_from_flexspi() -> Result<(), Error> {
for family in ALL_FAMILIES {
RuntimeBuilder::from_flexspi(*family, 16 * 1024 * 1024)
.write_linker_script(&mut io::sink())?;
}
Ok(())
}
/// Strange but currently allowed.
#[test]
fn runtime_builder_from_flexspi_no_flash() -> Result<(), Error> {
RuntimeBuilder::from_flexspi(Family::Imxrt1060, 0).write_linker_script(&mut io::sink())
}
#[test]
fn runtime_builder_too_many_flexram_banks() {
let banks = FlexRamBanks {
itcm: 32,
dtcm: 32,
ocram: 32,
};
for family in ALL_FAMILIES {
let res = RuntimeBuilder::from_flexspi(*family, 16 * 1024)
.flexram_banks(banks)
.write_linker_script(&mut io::sink());
assert!(res.is_err(), "{family:?}");
}
}
#[test]
fn runtime_builder_invalid_flash_section() {
type Placer = fn(&mut RuntimeBuilder) -> &mut RuntimeBuilder;
macro_rules! placement {
($section:ident) => {
(|bldr| bldr.$section(Memory::Flash), stringify!($section))
};
}
let placements: &[(Placer, &'static str)] = &[
placement!(data),
placement!(vectors),
placement!(bss),
placement!(uninit),
placement!(stack),
placement!(heap),
];
for family in ALL_FAMILIES {
for placement in placements {
let mut bldr = RuntimeBuilder::from_flexspi(*family, 16 * 1024);
placement.0(&mut bldr);
let res = bldr.write_linker_script(&mut io::sink());
assert!(res.is_err(), "{:?}, section: {}", family, placement.1);
}
}
}
}