1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
use std::hash::Hash;
use std::ops::Index;

use ahash::RandomState;
use hashbrown::raw::RawTable;

/// A token represented as an interned integer.
///
/// A token represents the smallest possible unit of change during a diff.
/// For text this is usually a line, a word or a single character.
/// All [algorithms](crate::Algorithm) operate on interned tokens instead
/// of using the token data directly.
/// This allows for much better performance by amortizing the cost hashing/equality.
///
/// While you can intern tokens yourself it is strongly recommended to use [`InternedInput`](crate::intern::InternedInput) module.
#[derive(PartialEq, Eq, Hash, Clone, Copy, Debug)]
#[repr(transparent)]
pub struct Token(pub u32);

impl From<u32> for Token {
    fn from(token: u32) -> Self {
        Token(token)
    }
}

impl From<Token> for u32 {
    fn from(token: Token) -> Self {
        token.0
    }
}

pub trait TokenSource {
    type Token: Hash + Eq;
    type Tokenizer: Iterator<Item = Self::Token>;
    fn tokenize(&self) -> Self::Tokenizer;
    fn estimate_tokens(&self) -> u32;
}

/// Two lists of interned [tokens](crate::intern::Token) that can be compared with the [`diff`](crate::diff) function.
///
/// A token represents the smallest possible unit of change during a diff.
/// For text this is usually a line, a word or a single character.
/// All [algorithms](crate::Algorithm) operate on interned tokens instead
/// of using the token data directly.
/// This allows for much better performance by amortizing the cost hashing/equality.
///
/// While you can intern tokens yourself it is strongly recommended to use [`InternedInput`](crate::intern::InternedInput) module.
#[derive(Default)]
pub struct InternedInput<T: Eq + Hash> {
    pub before: Vec<Token>,
    pub after: Vec<Token>,
    pub interner: Interner<T>,
}

impl<T: Eq + Hash> InternedInput<T> {
    pub fn new<I: TokenSource<Token = T>>(before: I, after: I) -> Self {
        let token_estimate_before = before.estimate_tokens() as usize;
        let token_estimate_after = after.estimate_tokens() as usize;
        let mut res = Self {
            before: Vec::with_capacity(token_estimate_before),
            after: Vec::with_capacity(token_estimate_after),
            interner: Interner::new(token_estimate_before + token_estimate_after),
        };
        res.update_before(before.tokenize());
        res.update_after(after.tokenize());
        res
    }

    /// replaces `self.before` wtih the iterned Tokens yielded by `input`
    /// Note that this does not erase any tokens from the interner and might therefore be considered
    /// a memory leak. If this function is called often over a long_running process
    /// consider clearing the interner with [`clear`](crate::intern::Interner::clear).
    pub fn update_before(&mut self, input: impl Iterator<Item = T>) {
        self.before.clear();
        self.before.extend(input.map(|token| self.interner.intern(token)));
    }

    /// replaces `self.before` wtih the iterned Tokens yielded by `input`
    /// Note that this does not erase any tokens from the interner and might therefore be considered
    /// a memory leak. If this function is called often over a long_running process
    /// consider clearing the interner with [`clear`](crate::intern::Interner::clear) or
    /// [`erase_tokens_after`](crate::intern::Interner::erase_tokens_after).
    pub fn update_after(&mut self, input: impl Iterator<Item = T>) {
        self.after.clear();
        self.after.extend(input.map(|token| self.interner.intern(token)));
    }

    pub fn clear(&mut self) {
        self.before.clear();
        self.after.clear();
        self.interner.clear();
    }
}

/// A hastable based interner that allows
#[derive(Default)]
pub struct Interner<T: Hash + Eq> {
    tokens: Vec<T>,
    table: RawTable<Token>,
    hasher: RandomState,
}

impl<T: Hash + Eq> Interner<T> {
    /// Create an Interner with an intial capacity calculated by calling
    /// [`estimate_tokens`](crate::intern::TokenSource::estimate_tokens) methods of `before` and `after`
    pub fn new_for_token_source<S: TokenSource<Token = T>>(before: &S, after: &S) -> Self {
        Self::new(before.estimate_tokens() as usize + after.estimate_tokens() as usize)
    }

    /// Create an Interner with inital capacity `capacity`.
    pub fn new(capacity: usize) -> Interner<T> {
        Interner {
            tokens: Vec::with_capacity(capacity),
            table: RawTable::with_capacity(capacity),
            hasher: RandomState::new(),
        }
    }

    /// Remove all interned tokens
    pub fn clear(&mut self) {
        self.table.clear_no_drop();
        self.tokens.clear();
    }

    /// Intern `token` and return a the interned integer
    pub fn intern(&mut self, token: T) -> Token {
        let hash = self.hasher.hash_one(&token);
        if let Some(&token) = self.table.get(hash, |&it| self.tokens[it.0 as usize] == token) {
            token
        } else {
            let interned = Token(self.tokens.len() as u32);
            self.table.insert(hash, interned, |&token| {
                self.hasher.hash_one(&self.tokens[token.0 as usize])
            });
            self.tokens.push(token);
            interned
        }
    }

    /// Returns to total number of **distinct** tokens currently interned.
    pub fn num_tokens(&self) -> u32 {
        self.tokens.len() as u32
    }

    /// Erases `first_erased_token` and any tokens interned afterwards from the interner.
    pub fn erase_tokens_after(&mut self, first_erased_token: Token) {
        assert!(first_erased_token.0 <= self.tokens.len() as u32);
        let retained = first_erased_token.0 as usize;
        let erased = self.tokens.len() - retained;
        if retained <= erased {
            self.table.clear_no_drop();
            // safety, we assert that retained is smaller then the table size so the table will never have to grow
            unsafe {
                for (i, token) in self.tokens[0..retained].iter().enumerate() {
                    self.table.insert_no_grow(self.hasher.hash_one(token), Token(i as u32));
                }
            }
        } else {
            for (i, token) in self.tokens[retained..].iter().enumerate() {
                self.table.erase_entry(self.hasher.hash_one(token), |token| token.0  == (retained + i) as u32);
            }
        }
        self.tokens.truncate(first_erased_token.0 as usize);
    }
}

impl<T: Hash + Eq> Index<Token> for Interner<T> {
    type Output = T;
    fn index(&self, index: Token) -> &Self::Output {
        &self.tokens[index.0 as usize]
    }
}