idsp/dsm.rs
1use dsp_process::Process;
2
3/// Delta-sigma modulator
4///
5/// * MASH-(1)^K architecture
6/// * `0 <= K <= 8` (`K=0` is valid but the output will be the constant quantized 0)
7/// * The output range is `1 - (1 << K - 1)..=(1 << K - 1)`.
8/// * Given constant input `x0`, the average output is `x0/(1 << 32)`.
9/// * The noise goes up as `K * 20 dB/decade`.
10///
11/// ```
12/// # use idsp::Dsm;
13/// # use dsp_process::Process;
14/// let mut d = Dsm::<3>::default();
15/// let x = 0x87654321;
16/// let n = 1 << 20;
17/// let y = (0..n).map(|_| d.process(x) as f32).sum::<f32>() / n as f32;
18/// let m = x as f32 / (1u64 << 32) as f32;
19/// assert!((y / m - 1.0).abs() < (1.0 / n as f32).sqrt(), "{y} != {m}");
20/// ```
21#[derive(Copy, Clone, Debug, PartialEq, Eq, PartialOrd)]
22pub struct Dsm<const K: usize> {
23 a: [u32; K],
24 c: [i8; K],
25}
26
27impl<const K: usize> Default for Dsm<K> {
28 fn default() -> Self {
29 Self {
30 a: [0; K],
31 c: [0; K],
32 }
33 }
34}
35
36impl<const K: usize> Process<u32, i8> for Dsm<K> {
37 /// Ingest input sample, emit new output.
38 ///
39 /// # Arguments
40 /// * `x`: New input sample
41 ///
42 /// # Returns
43 /// New output
44 fn process(&mut self, x: u32) -> i8 {
45 let mut d = 0i8;
46 let mut c = false;
47 self.a.iter_mut().fold(x, |x, a| {
48 (*a, c) = a.overflowing_add(x);
49 d = (d << 1) | c as i8;
50 *a
51 });
52 self.c.iter_mut().take(K - 1).fold(d & 1, |mut y, c| {
53 d >>= 1;
54 (y, *c) = ((d & 1) + y - *c, y);
55 y
56 })
57 }
58}