1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
use crate::{
    pane_grid::{Axis, Configuration, Direction, Node, Pane, Split},
    Hasher, Point, Rectangle, Size,
};

use std::collections::{BTreeMap, HashMap};

/// The state of a [`PaneGrid`].
///
/// It keeps track of the state of each [`Pane`] and the position of each
/// [`Split`].
///
/// The [`State`] needs to own any mutable contents a [`Pane`] may need. This is
/// why this struct is generic over the type `T`. Values of this type are
/// provided to the view function of [`PaneGrid::new`] for displaying each
/// [`Pane`].
///
/// [`PaneGrid`]: crate::widget::PaneGrid
/// [`PaneGrid::new`]: crate::widget::PaneGrid::new
#[derive(Debug, Clone)]
pub struct State<T> {
    pub(super) panes: HashMap<Pane, T>,
    pub(super) internal: Internal,
}

impl<T> State<T> {
    /// Creates a new [`State`], initializing the first pane with the provided
    /// state.
    ///
    /// Alongside the [`State`], it returns the first [`Pane`] identifier.
    pub fn new(first_pane_state: T) -> (Self, Pane) {
        (
            Self::with_configuration(Configuration::Pane(first_pane_state)),
            Pane(0),
        )
    }

    /// Creates a new [`State`] with the given [`Configuration`].
    pub fn with_configuration(config: impl Into<Configuration<T>>) -> Self {
        let mut panes = HashMap::new();

        let (layout, last_id) =
            Self::distribute_content(&mut panes, config.into(), 0);

        State {
            panes,
            internal: Internal {
                layout,
                last_id,
                action: Action::Idle,
            },
        }
    }

    /// Returns the total amount of panes in the [`State`].
    pub fn len(&self) -> usize {
        self.panes.len()
    }

    /// Returns the internal state of the given [`Pane`], if it exists.
    pub fn get(&self, pane: &Pane) -> Option<&T> {
        self.panes.get(pane)
    }

    /// Returns the internal state of the given [`Pane`] with mutability, if it
    /// exists.
    pub fn get_mut(&mut self, pane: &Pane) -> Option<&mut T> {
        self.panes.get_mut(pane)
    }

    /// Returns an iterator over all the panes of the [`State`], alongside its
    /// internal state.
    pub fn iter(&self) -> impl Iterator<Item = (&Pane, &T)> {
        self.panes.iter()
    }

    /// Returns a mutable iterator over all the panes of the [`State`],
    /// alongside its internal state.
    pub fn iter_mut(&mut self) -> impl Iterator<Item = (&Pane, &mut T)> {
        self.panes.iter_mut()
    }

    /// Returns the layout of the [`State`].
    pub fn layout(&self) -> &Node {
        &self.internal.layout
    }

    /// Returns the adjacent [`Pane`] of another [`Pane`] in the given
    /// direction, if there is one.
    pub fn adjacent(&self, pane: &Pane, direction: Direction) -> Option<Pane> {
        let regions = self
            .internal
            .layout
            .pane_regions(0.0, Size::new(4096.0, 4096.0));

        let current_region = regions.get(pane)?;

        let target = match direction {
            Direction::Left => {
                Point::new(current_region.x - 1.0, current_region.y + 1.0)
            }
            Direction::Right => Point::new(
                current_region.x + current_region.width + 1.0,
                current_region.y + 1.0,
            ),
            Direction::Up => {
                Point::new(current_region.x + 1.0, current_region.y - 1.0)
            }
            Direction::Down => Point::new(
                current_region.x + 1.0,
                current_region.y + current_region.height + 1.0,
            ),
        };

        let mut colliding_regions =
            regions.iter().filter(|(_, region)| region.contains(target));

        let (pane, _) = colliding_regions.next()?;

        Some(*pane)
    }

    /// Splits the given [`Pane`] into two in the given [`Axis`] and
    /// initializing the new [`Pane`] with the provided internal state.
    pub fn split(
        &mut self,
        axis: Axis,
        pane: &Pane,
        state: T,
    ) -> Option<(Pane, Split)> {
        let node = self.internal.layout.find(pane)?;

        let new_pane = {
            self.internal.last_id = self.internal.last_id.checked_add(1)?;

            Pane(self.internal.last_id)
        };

        let new_split = {
            self.internal.last_id = self.internal.last_id.checked_add(1)?;

            Split(self.internal.last_id)
        };

        node.split(new_split, axis, new_pane);

        let _ = self.panes.insert(new_pane, state);

        Some((new_pane, new_split))
    }

    /// Swaps the position of the provided panes in the [`State`].
    ///
    /// If you want to swap panes on drag and drop in your [`PaneGrid`], you
    /// will need to call this method when handling a [`DragEvent`].
    ///
    /// [`PaneGrid`]: crate::widget::PaneGrid
    /// [`DragEvent`]: crate::widget::pane_grid::DragEvent
    pub fn swap(&mut self, a: &Pane, b: &Pane) {
        self.internal.layout.update(&|node| match node {
            Node::Split { .. } => {}
            Node::Pane(pane) => {
                if pane == a {
                    *node = Node::Pane(*b);
                } else if pane == b {
                    *node = Node::Pane(*a);
                }
            }
        });
    }

    /// Resizes two panes by setting the position of the provided [`Split`].
    ///
    /// The ratio is a value in [0, 1], representing the exact position of a
    /// [`Split`] between two panes.
    ///
    /// If you want to enable resize interactions in your [`PaneGrid`], you will
    /// need to call this method when handling a [`ResizeEvent`].
    ///
    /// [`PaneGrid`]: crate::widget::PaneGrid
    /// [`ResizeEvent`]: crate::widget::pane_grid::ResizeEvent
    pub fn resize(&mut self, split: &Split, ratio: f32) {
        let _ = self.internal.layout.resize(split, ratio);
    }

    /// Closes the given [`Pane`] and returns its internal state and its closest
    /// sibling, if it exists.
    pub fn close(&mut self, pane: &Pane) -> Option<(T, Pane)> {
        if let Some(sibling) = self.internal.layout.remove(pane) {
            self.panes.remove(pane).map(|state| (state, sibling))
        } else {
            None
        }
    }

    fn distribute_content(
        panes: &mut HashMap<Pane, T>,
        content: Configuration<T>,
        next_id: usize,
    ) -> (Node, usize) {
        match content {
            Configuration::Split { axis, ratio, a, b } => {
                let (a, next_id) = Self::distribute_content(panes, *a, next_id);
                let (b, next_id) = Self::distribute_content(panes, *b, next_id);

                (
                    Node::Split {
                        id: Split(next_id),
                        axis,
                        ratio,
                        a: Box::new(a),
                        b: Box::new(b),
                    },
                    next_id + 1,
                )
            }
            Configuration::Pane(state) => {
                let id = Pane(next_id);
                let _ = panes.insert(id, state);

                (Node::Pane(id), next_id + 1)
            }
        }
    }
}

#[derive(Debug, Clone)]
pub struct Internal {
    layout: Node,
    last_id: usize,
    action: Action,
}

#[derive(Debug, Clone, Copy, PartialEq)]
pub enum Action {
    Idle,
    Dragging { pane: Pane, origin: Point },
    Resizing { split: Split, axis: Axis },
}

impl Internal {
    pub fn picked_pane(&self) -> Option<(Pane, Point)> {
        match self.action {
            Action::Dragging { pane, origin, .. } => Some((pane, origin)),
            _ => None,
        }
    }

    pub fn picked_split(&self) -> Option<(Split, Axis)> {
        match self.action {
            Action::Resizing { split, axis, .. } => Some((split, axis)),
            _ => None,
        }
    }

    pub fn pane_regions(
        &self,
        spacing: f32,
        size: Size,
    ) -> BTreeMap<Pane, Rectangle> {
        self.layout.pane_regions(spacing, size)
    }

    pub fn split_regions(
        &self,
        spacing: f32,
        size: Size,
    ) -> BTreeMap<Split, (Axis, Rectangle, f32)> {
        self.layout.split_regions(spacing, size)
    }

    pub fn pick_pane(&mut self, pane: &Pane, origin: Point) {
        self.action = Action::Dragging {
            pane: *pane,
            origin,
        };
    }

    pub fn pick_split(&mut self, split: &Split, axis: Axis) {
        // TODO: Obtain `axis` from layout itself. Maybe we should implement
        // `Node::find_split`
        if self.picked_pane().is_some() {
            return;
        }

        self.action = Action::Resizing {
            split: *split,
            axis,
        };
    }

    pub fn idle(&mut self) {
        self.action = Action::Idle;
    }

    pub fn hash_layout(&self, hasher: &mut Hasher) {
        use std::hash::Hash;

        self.layout.hash(hasher);
    }
}