1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
use super::{
    node::{Node, NodeType},
    BTreeMap,
};
use crate::{types::NULL, Address, Memory, Storable};
use std::borrow::Cow;
use std::ops::{Bound, RangeBounds};

/// An indicator of the current position in the map.
pub(crate) enum Cursor<K: Storable + Ord + Clone> {
    Address(Address),
    Node { node: Node<K>, next: Index },
}

/// An index into a node's child or entry.
pub(crate) enum Index {
    Child(usize),
    Entry(usize),
}

/// An iterator over the entries of a [`BTreeMap`].
#[must_use = "iterators are lazy and do nothing unless consumed"]
pub struct Iter<'a, K, V, M>
where
    K: Storable + Ord + Clone,
    V: Storable,
    M: Memory,
{
    // A reference to the map being iterated on.
    map: &'a BTreeMap<K, V, M>,

    // A stack of cursors indicating the current position in the tree.
    cursors: Vec<Cursor<K>>,

    // The range of keys we want to traverse.
    range: (Bound<K>, Bound<K>),
}

impl<'a, K, V, M> Iter<'a, K, V, M>
where
    K: Storable + Ord + Clone,
    V: Storable,
    M: Memory,
{
    pub(crate) fn new(map: &'a BTreeMap<K, V, M>) -> Self {
        Self {
            map,
            // Initialize the cursors with the address of the root of the map.
            cursors: vec![Cursor::Address(map.root_addr)],
            range: (Bound::Unbounded, Bound::Unbounded),
        }
    }

    /// Returns an empty iterator.
    pub(crate) fn null(map: &'a BTreeMap<K, V, M>) -> Self {
        Self {
            map,
            cursors: vec![],
            range: (Bound::Unbounded, Bound::Unbounded),
        }
    }

    pub(crate) fn new_in_range(
        map: &'a BTreeMap<K, V, M>,
        range: (Bound<K>, Bound<K>),
        cursors: Vec<Cursor<K>>,
    ) -> Self {
        Self {
            map,
            cursors,
            range,
        }
    }

    // Iterates to find the next element in the requested range.
    // If it exists, `map` is applied to that element and the result is returned.
    fn next_map<T, F: Fn(&Node<K>, usize) -> T>(&mut self, map: F) -> Option<T> {
        // If the cursors are empty. Iteration is complete.
        match self.cursors.pop()? {
            Cursor::Address(address) => {
                if address != NULL {
                    // Load the node at the given address, and add it to the cursors.
                    let node = self.map.load_node(address);
                    self.cursors.push(Cursor::Node {
                        next: match node.node_type() {
                            // Iterate on internal nodes starting from the first child.
                            NodeType::Internal => Index::Child(0),
                            // Iterate on leaf nodes starting from the first entry.
                            NodeType::Leaf => Index::Entry(0),
                        },
                        node,
                    });
                }
                self.next_map(map)
            }

            Cursor::Node {
                node,
                next: Index::Child(child_idx),
            } => {
                let child_address = node.child(child_idx);

                // After iterating on the child, iterate on the next _entry_ in this node.
                // The entry immediately after the child has the same index as the child's.
                self.cursors.push(Cursor::Node {
                    node,
                    next: Index::Entry(child_idx),
                });

                // Add the child to the top of the cursors to be iterated on first.
                self.cursors.push(Cursor::Address(child_address));

                self.next_map(map)
            }

            Cursor::Node {
                node,
                next: Index::Entry(entry_idx),
            } => {
                if entry_idx >= node.entries_len() {
                    // No more entries to iterate on in this node.
                    return self.next_map(map);
                }

                // If the key does not belong to the range, iteration stops.
                if !self.range.contains(node.key(entry_idx)) {
                    // Clear all cursors to avoid needless work in subsequent calls.
                    self.cursors = vec![];
                    return None;
                }

                let res = map(&node, entry_idx);

                // Add to the cursors the next element to be traversed.
                self.cursors.push(Cursor::Node {
                    next: match node.node_type() {
                        // If this is an internal node, add the next child to the cursors.
                        NodeType::Internal => Index::Child(entry_idx + 1),
                        // If this is a leaf node, add the next entry to the cursors.
                        NodeType::Leaf => Index::Entry(entry_idx + 1),
                    },
                    node,
                });

                Some(res)
            }
        }
    }
}

impl<K, V, M> Iterator for Iter<'_, K, V, M>
where
    K: Storable + Ord + Clone,
    V: Storable,
    M: Memory,
{
    type Item = (K, V);

    fn next(&mut self) -> Option<Self::Item> {
        self.next_map(|node, entry_idx| {
            let (key, encoded_value) = node.entry(entry_idx, self.map.memory());
            (key, V::from_bytes(Cow::Owned(encoded_value)))
        })
    }

    fn count(mut self) -> usize
    where
        Self: Sized,
    {
        let mut cnt = 0;
        while self.next_map(|_, _| ()).is_some() {
            cnt += 1;
        }
        cnt
    }
}

#[cfg(test)]
mod test {
    use super::*;
    use std::cell::RefCell;
    use std::rc::Rc;

    fn make_memory() -> Rc<RefCell<Vec<u8>>> {
        Rc::new(RefCell::new(Vec::new()))
    }

    #[test]
    fn iterate_leaf() {
        let mem = make_memory();
        let mut btree = BTreeMap::new(mem);

        for i in 0..10u8 {
            btree.insert(i, i + 1);
        }

        let mut i = 0;
        for (key, value) in btree.iter() {
            assert_eq!(key, i);
            assert_eq!(value, i + 1);
            i += 1;
        }

        assert_eq!(i, 10u8);
    }

    #[test]
    fn iterate_children() {
        let mem = make_memory();
        let mut btree = BTreeMap::new(mem);

        // Insert the elements in reverse order.
        for i in (0..100u64).rev() {
            btree.insert(i, i + 1);
        }

        // Iteration should be in ascending order.
        let mut i = 0;
        for (key, value) in btree.iter() {
            assert_eq!(key, i);
            assert_eq!(value, i + 1);
            i += 1;
        }

        assert_eq!(i, 100);
    }
}