1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714
#![warn(missing_docs)]
//! This crate provides a number of "stable" data structures - collections that use canister's stable
//! memory for storage, as well as other primitives that allow storing all data of your canister in stable memory.
//! This crate also provides the [`SCertifiedBTreeMap`](collections::SCertifiedBTreeMap) - a Merkle-tree based collection that can
//! be used to include custom data into canister's certified state tree.
//!
//! This documentation only covers API and some implementation details. For more useful info and
//! tutorials, please visit [project's Github page](https://github.com/seniorjoinu/ic-stable-memory).
//!
//! # Features
//! 1. Stable data structures release their memory automatically, following Rust's ownership rules.
//! 2. Stable data structures also obey and enforce Rust's borrowing and lifetime rules.
//! 3. Each data structure is aware of the limited nature of memory in IC and allows programmatic
//! reaction for situations when your canister is out of stable memory.
//! 3. Each data structure's performance is reasonably close to its std's analog.
//! 4. Supported stable data structures: box, vec, log, hash-map, hash-set, btree-map, btree-set, certified-map.
//! 5. In addition to these data structures, this crate provides you with a fully featured toolset
//! to build your own data structure, if you need something more domain-specific.
use crate::mem::allocator::StableMemoryAllocator;
use mem::s_slice::SSlice;
use std::cell::RefCell;
mod benches;
/// All collections provided by this crate
pub mod collections;
/// Traits and algorithms for internal data encoding
pub mod encoding;
/// Stable memory allocator and related structs
pub mod mem;
/// Stable memory smart-pointers
pub mod primitive;
/// Various utilities: certification, stable memory API wrapper etc.
pub mod utils;
pub use ic_stable_memory_derive as derive;
use crate::utils::isoprint;
pub use crate::utils::mem_context::{stable, OutOfMemory, PAGE_SIZE_BYTES};
pub use encoding::{AsDynSizeBytes, AsFixedSizeBytes, Buffer};
pub use primitive::s_box::SBox;
pub use primitive::StableType;
pub use utils::certification::{fork, fork_hash, leaf, leaf_hash, AsHashTree, AsHashableBytes};
thread_local! {
static STABLE_MEMORY_ALLOCATOR: RefCell<Option<StableMemoryAllocator>> = RefCell::new(None);
}
/// Initializes the [memory allocator](mem::allocator::StableMemoryAllocator).
///
/// This function should be called *ONLY ONCE* during the lifetime of a canister. For canisters,
/// that are being build using this crate from scratch, the most apropriate place to call it is the
/// `#[init]` canister method. For canisters which are migrating from standard data structures thic
/// function should be added as a first line of `#[post_upgrade]` canister method and later (right after
/// this canister upgrade happens) in the next code revision it should be replaced with [stable_memory_post_upgrade()].
///
/// Stable memory allocator is stored inside a `thread_local!` static variable at runtime.
///
/// Works the same way as [init_allocator(0)].
///
/// # Panics
/// Panics if the allocator is already initialized.
///
/// # Examples
/// For new canisters:
/// ```rust
/// # use ic_stable_memory::stable_memory_init;
/// #[ic_cdk_macros::init]
/// fn init() {
/// stable_memory_init();
///
/// // the rest of the initialization
/// }
/// ```
///
/// For migrating canisters:
/// ```rust
/// // canister version N
/// # use ic_stable_memory::stable_memory_init;
/// #[ic_cdk_macros::post_upgrade]
/// fn post_upgrade() {
/// stable_memory_init();
///
/// // move data from standard collections into "stable" ones
/// }
/// ```
/// ```rust
/// // canister version N+1
/// # use ic_stable_memory::stable_memory_post_upgrade;
/// #[ic_cdk_macros::post_upgrade]
/// fn post_upgrade() {
/// stable_memory_post_upgrade();
///
/// // the rest of canister's reinitialization
/// }
/// ```
#[inline]
pub fn stable_memory_init() {
init_allocator(0);
}
/// Persists the memory allocator into stable memory between canister upgrades.
///
/// See also [stable_memory_post_upgrade].
///
/// This function should be called as the last step of the `#[pre_ugrade]` canister method.
///
/// It works by first writing the allocator to an `SBox` and then writing a pointer to that `SBox` into
/// frist 8 bytes of stable memory (offsets [0..8)). `thread_local!` static variable that stores the
/// allocator also gets cleared, if this function is executed successfully.
///
/// If it was impossible to allocate a memory block of required size, this function returns an [OutOfMemory]
/// error. For tips on possible ways of resolving an [OutOfMemory] error visit [this page](https://github.com/seniorjoinu/ic-stable-memory/docs/out-of-memory-error-handling.md).
///
/// This function is an alias for [deinit_allocator()].
///
/// # Example
/// ```rust
/// # use ic_stable_memory::stable_memory_pre_upgrade;
/// #[ic_cdk_macros::pre_upgrade]
/// fn pre_upgrade() {
/// // other pre-upgrade routine
///
/// if stable_memory_pre_upgrade().is_err() {
/// panic!("Out of stable memory")
/// }
/// }
/// ```
///
/// # Panics
/// Panics if there is no initialized stable memory allocator.
#[inline]
pub fn stable_memory_pre_upgrade() -> Result<(), OutOfMemory> {
deinit_allocator()
}
/// Retrieves the memory allocator from stable memory.
///
/// See also [stable_memory_pre_upgrade].
///
/// This function should be called as the first step of the `#[post_upgrade]` canister method.
///
/// The process is exactly the same as in `stable_memory_pre_upgrade`, but in reverse order. It reads
/// first 8 bytes of stable memory to get a pointer. Then the `SBox` located at that pointer is read
/// and "unboxed" into the allocator. Then the allocator is assigned back to the `thread_local!` variable.
///
/// This function is an alias for [reinit_allocator()].
///
/// # Example
/// ```rust
/// use ic_stable_memory::stable_memory_post_upgrade;
/// #[ic_cdk_macros::post_upgrade]
/// fn post_upgrade() {
/// stable_memory_post_upgrade();
///
/// // other post-upgrade routine
/// }
/// ```
///
/// # Panics
/// This function will panic if:
/// 1. there is no valid pointer stored at first 8 bytes of stable memory,
/// 2. there is no valid `SBox` was found at that location,
/// 3. deserialization step during `SBox`'s "unboxing" failed due to invalid data stored inside this `SBox`,
/// 4. if there was an already initialized stable memory allocator.
#[inline]
pub fn stable_memory_post_upgrade() {
reinit_allocator();
}
/// An alias for [stable_memory_init], but allows limiting the maximum number of stable memory pages
/// that the allocator can grow. [init_allocator(0)] works exactly the same as [stable_memory_init()].
///
/// This function is useful for testing, when one wants to see how a canister behaves when there is
/// only a little of stable memory available.
///
/// If this function is invoked in a canister that already grown more stable memory pages than the
/// argument states (this can happen for canisters that migrate from standard collections to "stable" ones),
/// then the actual number of already grown pages is used as a maximum number of pages
/// instead of what is passed as an argument.
///
/// Passing a `0` as an argument has a special "infinite" meaning, which means "grow as many pages
/// as needed, while it is possible".
///
/// Internally calls [StableMemoryAllocator::init](mem::allocator::StableMemoryAllocator::init).
#[inline]
pub fn init_allocator(max_pages: u64) {
STABLE_MEMORY_ALLOCATOR.with(|it| {
if it.borrow().is_none() {
let allocator = StableMemoryAllocator::init(max_pages);
*it.borrow_mut() = Some(allocator);
} else {
unreachable!("StableMemoryAllocator can only be initialized once");
}
})
}
/// An alias for [stable_memory_pre_upgrade].
///
/// Internally calls [StableMemoryAllocator::store](mem::allocator::StableMemoryAllocator::store).
///
/// # Panics
/// Panics if there is no initialized stable memory allocator.
#[inline]
pub fn deinit_allocator() -> Result<(), OutOfMemory> {
STABLE_MEMORY_ALLOCATOR.with(|it: &RefCell<Option<StableMemoryAllocator>>| {
if let Some(mut alloc) = it.take() {
let res = alloc.store();
if res.is_err() {
*it.borrow_mut() = Some(alloc);
}
res
} else {
unreachable!("StableMemoryAllocator is not initialized");
}
})
}
/// An alias for [stable_memory_post_upgrade].
///
/// Internally calls [StableMemoryAllocator::retrieve](mem::allocator::StableMemoryAllocator::retrieve).
///
/// # Panics
/// Panics if there is no initialized stable memory allocator.
#[inline]
pub fn reinit_allocator() {
STABLE_MEMORY_ALLOCATOR.with(|it| {
if it.borrow().is_none() {
let allocator = StableMemoryAllocator::retrieve();
*it.borrow_mut() = Some(allocator);
} else {
unreachable!("StableMemoryAllocator can only be initialized once");
}
});
}
/// Persists a pointer to an [SBox] between canister upgrades mapped to some unique [usize] key.
///
/// See also [retrieve_custom_data].
///
/// Despite the fact that stable memory data structures from this crate store all data completely on
/// stable memory, they themselves are stored on stack. Exactly how standard data structures ([Vec],
/// for example) store their data on heap, but themselves are stored on stack. This means that in order
/// to persist this data structures between canister upgrades, we have to temporary store them on
/// stable memory aswell.
///
/// This function allows one to do that, by assigning a unique [usize] index to the stored data, which was
/// previously stored in [SBox].
///
/// This function should be used in the `#[pre_upgrade]` canister method. Right before
/// [stable_memory_pre_upgrade()] invocation. This function can be used multiple times, but one should
/// make sure they always keep track of keys they are assigning custom data to. An attempt to assign
/// two values to a single key will lead to losing the data that was assigned first. *Be careful!*
///
/// Internally calls [StableMemoryAllocator::store_custom_data](mem::allocator::StableMemoryAllocator::store_custom_data).
///
/// # Example
/// ```rust
/// # use ic_stable_memory::collections::SHashMap;
/// # use ic_stable_memory::{retrieve_custom_data, SBox, stable_memory_init, stable_memory_post_upgrade, stable_memory_pre_upgrade, store_custom_data};
/// # unsafe { ic_stable_memory::mem::clear(); }
/// # stable_memory_init();
/// static mut STATE: Option<SHashMap<u64, u64>> = None;
///
/// #[ic_cdk_macros::pre_upgrade]
/// fn pre_upgrade() {
/// let state = unsafe { STATE.take().unwrap() };
/// let boxed_state = SBox::new(state).expect("Out of memory");
///
/// store_custom_data(1, boxed_state);
///
/// // always as a last expression of "pre_upgrade"
/// stable_memory_pre_upgrade();
/// }
///
/// #[ic_cdk_macros::post_upgrade]
/// fn post_upgrade() {
/// // always as a first expression of "post_upgrade"
/// stable_memory_post_upgrade();
///
/// let boxed_state = retrieve_custom_data::<SHashMap<u64, u64>>(1)
/// .expect("Key not found");
///
/// unsafe { STATE = Some(boxed_state.into_inner()); }
/// }
/// ```
///
/// One can also persist other data this way
/// ```rust
/// # use ic_stable_memory::{retrieve_custom_data, SBox, stable_memory_post_upgrade, stable_memory_pre_upgrade, store_custom_data};
///
/// #[ic_cdk_macros::pre_upgrade]
/// fn pre_upgrade() {
/// let very_important_string = String::from("THE PASSWORD IS 42");
/// let boxed_string = SBox::new(very_important_string)
/// .expect("Out of memory");
///
/// store_custom_data(2, boxed_string);
///
/// // always as a last expression of "pre_upgrade"
/// stable_memory_pre_upgrade();
/// }
///
/// #[ic_cdk_macros::post_upgrade]
/// fn post_upgrade() {
/// // always as a first expression of "post_upgrade"
/// stable_memory_post_upgrade();
///
/// let boxed_string = retrieve_custom_data::<String>(2)
/// .expect("Key not found");
///
/// let very_important_string = boxed_string.into_inner();
/// }
/// ```
///
/// # Panics
/// Panics if there is no initialized stable memory allocator.
#[inline]
pub fn store_custom_data<T: StableType + AsDynSizeBytes>(idx: usize, data: SBox<T>) {
STABLE_MEMORY_ALLOCATOR.with(|it| {
if let Some(alloc) = &mut *it.borrow_mut() {
alloc.store_custom_data(idx, data)
} else {
unreachable!("StableMemoryAllocator is not initialized");
}
})
}
/// Retrieves a pointer to some [SBox] stored previously.
///
/// See also [store_custom_data].
///
/// This function is intended to be invoked inside the `#[post_upgrade]` canister method. Right after
/// [stable_memory_post_upgrade()] invocation. After retrieval, the key gets "forgotten", allowing
/// reusing it again for other data.
///
/// Any panic in the `#[post_upgrade]` canister method results in broken canister.
/// Please, *be careful*.
///
/// Internally calls [StableMemoryAllocator::retrieve_custom_data](mem::allocator::StableMemoryAllocator::retrieve_custom_data).
///
/// # Examples
/// See examples of [store_custom_data].
///
/// # Panics
/// Panics if there is no initialized stable memory allocator.
#[inline]
pub fn retrieve_custom_data<T: StableType + AsDynSizeBytes>(idx: usize) -> Option<SBox<T>> {
STABLE_MEMORY_ALLOCATOR.with(|it| {
if let Some(alloc) = &mut *it.borrow_mut() {
alloc.retrieve_custom_data(idx)
} else {
unreachable!("StableMemoryAllocator is not initialized");
}
})
}
/// Attempts to allocate a new [SSlice] of at least the required size or returns an [OutOfMemory] error
/// if there is no continuous stable memory memory block of that size can be allocated.
///
/// Memory block that is returned *can be bigger* than requested. This happens because:
/// 1. Sizes for allocation are always getting rounded up to the next multiple of 8 bytes. For example,
/// if requested 100 bytes to allocate requested, the resulting memory block can't be smaller than 104 bytes.
/// 2. Minimum memory block size is 16 bytes. To find out more see documentation for [the allocator](mem::allocator::StableMemoryAllocator).
/// 3. If the allocator has a free block of size less than `requested size + minimum block size`,
/// this block won't be split and will be returned as is.
///
/// If the allocator only has a memory block which is bigger than `requested size + minimum block size`,
/// that block gets split it two. The first half is returned as the result of this function, and the other
/// half goes back to the free list.
///
/// If the allocator has no apropriate free memory block to allocate, it will try to grow stable memory
/// by the number of pages enough to allocate a block of that size. If it can't grow due to lack of
/// stable memory in a subnet or due to reaching `max_pages` limit set earlier - it will return an
/// [OutOfMemory] error.
///
/// Internally calls [StableMemoryAllocator::allocate](mem::allocator::StableMemoryAllocator::allocate).
///
/// # Example
/// ```rust
/// // slice size is in [104..136) bytes range, despite requesting for only 100 bytes
/// # use ic_stable_memory::{allocate, stable_memory_init};
/// # unsafe { ic_stable_memory::mem::clear(); }
/// # stable_memory_init();
/// # unsafe {
/// let slice = allocate(100).expect("Not enough stable memory");
/// # }
/// ```
///
/// # Panics
/// Panics if there is no initialized stable memory allocator.
///
/// # Safety
/// Don't forget to [deallocate] the memory block, when you're done!
#[inline]
pub unsafe fn allocate(size: u64) -> Result<SSlice, OutOfMemory> {
STABLE_MEMORY_ALLOCATOR.with(|it| {
if let Some(alloc) = &mut *it.borrow_mut() {
alloc.allocate(size)
} else {
unreachable!("StableMemoryAllocator is not initialized");
}
})
}
/// Deallocates an already allocated [SSlice] freeing it's memory.
///
/// Supplied [SSlice] get's transformed into [FreeBlock](mem::free_block::FreeBlock) and then an
/// attempt to merge it with neighboring (physically) free blocks is performed.
///
/// Internally calls [StableMemoryAllocator::deallocate](mem::allocator::StableMemoryAllocator::deallocate).
///
/// # Example
/// ```rust
/// # use ic_stable_memory::{allocate, deallocate, stable_memory_init};
/// # unsafe { ic_stable_memory::mem::clear(); }
/// # stable_memory_init();
/// # unsafe {
/// let slice = allocate(100).expect("Out of memory");
/// deallocate(slice);
/// # }
/// ```
///
/// # Panics
/// Panics if there is no initialized stable memory allocator.
#[inline]
pub fn deallocate(slice: SSlice) {
STABLE_MEMORY_ALLOCATOR.with(|it| {
if let Some(alloc) = &mut *it.borrow_mut() {
alloc.deallocate(slice)
} else {
unreachable!("StableMemoryAllocator is not initialized");
}
})
}
/// Attempts to reallocate a memory block growing its size and possibly moving its content to a new
/// location.
///
/// At first it tries to perform an `inplace reallocation` - check if the next neighboring (physically)
/// memory block is also free. If that is so, this neighboring (or only a chunk of it, if it's too big)
/// free block gets merged with the one passed as an argument to this function and returned as a result.
/// This process does not move the data.
///
/// If there is no neighboring free block, than a sequence of operations is performed:
/// 1. Copy the data to a heap-allocated byte buffer.
/// 2. Deallocate the [SSlice] passed as an argument to this function.
/// 3. Allocate a new [SSlice] of the requested size, possibly returning an [OutOfMemory] error.
/// 4. Copy data from the byte buffer to this new [SSlice].
/// 5. Return it as a result.
/// This process moves the data.
///
/// If the requested new size is less than the actual size of the [SSlice] passed as an argument,
/// the function does nothing and returns this [SSlice] as a result back.
///
/// Internally calls [StableMemoryAllocator::reallocate](mem::allocator::StableMemoryAllocator::reallocate).
///
/// # Example
/// ```rust
/// # use ic_stable_memory::{allocate, stable_memory_init, reallocate};
/// # unsafe { ic_stable_memory::mem::clear(); }
/// # stable_memory_init();
/// # unsafe {
/// let slice = allocate(100).expect("Out of memory");
/// let bigger_slice = reallocate(slice, 200).expect("Out of memory");
/// # }
/// ```
///
/// # Panics
/// Panics if there is no initialized stable memory allocator.
/// Reallocating [SSlice]s bigger than [u32::MAX] bytes will also panic.
///
/// # Safety
/// Don't forget to [deallocate] the memory block, when you're done!
#[inline]
pub unsafe fn reallocate(slice: SSlice, new_size: u64) -> Result<SSlice, OutOfMemory> {
STABLE_MEMORY_ALLOCATOR.with(|it| {
if let Some(alloc) = &mut *it.borrow_mut() {
alloc.reallocate(slice, new_size)
} else {
unreachable!("StableMemoryAllocator is not initialized");
}
})
}
/// Checks if it would be possible to allocate a block of stable memory of the provided size right now.
///
/// The allocator will check its free list for a block of appropriate size. If there is no such free
/// block, it will try to grow stable memory by the number of pages enough to fit this size.
///
/// Returns `true` if a block was found. Returns `false` if an attempt to grow stable memory resulted in
/// an [OutOfMemory] error.
///
/// Internally calls [StableMemoryAllocator::make_sure_can_allocate](mem::allocator::StableMemoryAllocator::make_sure_can_allocate).
///
/// # Example
/// ```rust
/// # use ic_stable_memory::{make_sure_can_allocate, stable_memory_init};
/// # unsafe { ic_stable_memory::mem::clear(); }
/// # stable_memory_init();
/// if make_sure_can_allocate(1_000_000) {
/// println!("It is possible to allocate a million bytes of stable memory");
/// }
/// ```
///
/// # Panics
/// Panics if there is no initialized stable memory allocator.
#[inline]
pub fn make_sure_can_allocate(size: u64) -> bool {
STABLE_MEMORY_ALLOCATOR.with(|it| {
if let Some(alloc) = &mut *it.borrow_mut() {
alloc.make_sure_can_allocate(size)
} else {
unreachable!("StableMemoryAllocator is not initialized");
}
})
}
/// Returns the amount of stable memory in bytes which is under the allocator's management.
///
/// Always equals to [stable64_size()](ic_cdk::api::stable::stable64_size) - `8`.
///
/// Internally calls [StableMemoryAllocator::get_available_size](mem::allocator::StableMemoryAllocator::get_available_size).
///
/// # Panics
/// Panics if there is no initialized stable memory allocator.
#[inline]
pub fn get_available_size() -> u64 {
STABLE_MEMORY_ALLOCATOR.with(|it| {
if let Some(alloc) = &*it.borrow() {
alloc.get_available_size()
} else {
unreachable!("StableMemoryAllocator is not initialized");
}
})
}
/// Returns the amount of free stable memory in bytes.
///
/// Internally calls [StableMemoryAllocator::get_free_size](mem::allocator::StableMemoryAllocator::get_free_size).
///
/// # Panics
/// Panics if there is no initialized stable memory allocator.
#[inline]
pub fn get_free_size() -> u64 {
STABLE_MEMORY_ALLOCATOR.with(|it| {
if let Some(alloc) = &*it.borrow() {
alloc.get_free_size()
} else {
unreachable!("StableMemoryAllocator is not initialized");
}
})
}
/// Returns the amount of allocated stable memory in bytes.
///
/// Always equal to [get_available_size()] - [get_free_size()].
///
/// Internally calls [StableMemoryAllocator::get_allocated_size](mem::allocator::StableMemoryAllocator::get_allocated_size).
///
/// # Panics
/// Panics if there is no initialized stable memory allocator.
#[inline]
pub fn get_allocated_size() -> u64 {
STABLE_MEMORY_ALLOCATOR.with(|it| {
if let Some(alloc) = &*it.borrow() {
alloc.get_allocated_size()
} else {
unreachable!("StableMemoryAllocator is not initialized");
}
})
}
/// Returns `max_pages` parameter.
///
/// See [init_allocator] for more details.
///
/// # Panics
/// Panics if there is no initialized stable memory allocator.
#[inline]
pub fn get_max_pages() -> u64 {
STABLE_MEMORY_ALLOCATOR.with(|it| {
if let Some(alloc) = &*it.borrow() {
alloc.get_max_pages()
} else {
unreachable!("StableMemoryAllocator is not initialized");
}
})
}
#[inline]
pub fn _debug_validate_allocator() {
STABLE_MEMORY_ALLOCATOR.with(|it: &RefCell<Option<StableMemoryAllocator>>| {
if let Some(alloc) = &*it.borrow() {
alloc.debug_validate_free_blocks();
} else {
unreachable!("StableMemoryAllocator is not initialized");
}
})
}
#[inline]
pub fn _debug_print_allocator() {
STABLE_MEMORY_ALLOCATOR.with(|it| {
if let Some(alloc) = &*it.borrow_mut() {
isoprint(format!("{alloc:?}").as_str());
} else {
unreachable!("StableMemoryAllocator is not initialized");
}
})
}
#[cfg(test)]
mod tests {
use crate::{
_debug_print_allocator, allocate, deallocate, get_allocated_size, get_free_size,
init_allocator, reallocate, retrieve_custom_data, stable_memory_init,
stable_memory_post_upgrade, stable_memory_pre_upgrade, store_custom_data, SBox,
};
use crate::{deinit_allocator, reinit_allocator, SSlice};
#[test]
fn basic_flow_works_fine() {
stable_memory_init();
stable_memory_pre_upgrade();
stable_memory_post_upgrade();
let b = unsafe { allocate(100).unwrap() };
let b = unsafe { reallocate(b, 200).unwrap() };
deallocate(b);
assert_eq!(get_allocated_size(), 0);
assert!(get_free_size() > 0);
_debug_print_allocator();
assert_eq!(retrieve_custom_data::<u64>(1), None);
store_custom_data(1, SBox::new(100u64).unwrap());
assert_eq!(retrieve_custom_data::<u64>(1).unwrap().into_inner(), 100);
_debug_print_allocator();
}
#[test]
#[should_panic]
fn init_allocator_twice_should_panic() {
init_allocator(0);
init_allocator(0);
}
#[test]
#[should_panic]
fn deinit_allocator_should_panic() {
deinit_allocator();
}
#[test]
#[should_panic]
fn reinit_allocator_twice_should_panic() {
init_allocator(0);
reinit_allocator();
}
#[test]
#[should_panic]
fn allocate_without_allocator_should_panic() {
unsafe { allocate(10) };
}
#[test]
#[should_panic]
fn deallocate_without_allocator_should_panic() {
deallocate(SSlice::new(0, 10, false));
}
#[test]
#[should_panic]
fn reallocate_without_allocator_should_panic() {
unsafe { reallocate(SSlice::new(0, 10, false), 20) };
}
#[test]
#[should_panic]
fn get_allocated_size_without_allocator_should_panic() {
get_allocated_size();
}
#[test]
#[should_panic]
fn get_free_size_without_allocator_should_panic() {
get_free_size();
}
#[test]
#[should_panic]
fn get_custom_data_without_allocator_should_panic() {
retrieve_custom_data::<u64>(0);
}
#[test]
#[should_panic]
fn set_custom_data_without_allocator_should_panic() {
store_custom_data(0, SBox::new(0).unwrap());
}
#[test]
#[should_panic]
fn debug_print_without_allocator_should_panic() {
_debug_print_allocator();
}
}