ic_cdk/call.rs
1//! Inter-canister Call API
2//!
3//! This module provides the necessary APIs to make and manage inter-canister calls within a canister.
4//! It offers a builder pattern to configure and execute calls, allowing for flexible and customizable interactions
5//! between canisters.
6//!
7//! # Overview
8//!
9//! The primary type in this module is [`Call`], which represents an inter-canister call. For detailed usage and examples,
10//! refer to the [`Call`] type documentation.
11//!
12//! ```rust, no_run
13//! # use ic_cdk::call::Call;
14//! # async fn bar() {
15//! # let canister_id = ic_cdk::api::canister_self();
16//! # let method = "foo";
17//! let result: u32 = Call::bounded_wait(canister_id, method).await.unwrap().candid().unwrap();
18//! # }
19//! ```
20//!
21//! # Error Handling
22//!
23//! The module defines various error types to handle different failure scenarios during inter-canister calls:
24//!
25//! - The base error cases:
26//! - [`InsufficientLiquidCycleBalance`]: Errors when the liquid cycle balance is insufficient to perform the call.
27//! - [`CallPerformFailed`]: Errors when the `ic0.call_perform` operation fails.
28//! - [`CallRejected`]: Errors when an inter-canister call is rejected.
29//! - [`CandidDecodeFailed`]: Errors when the response cannot be decoded as Candid.
30//! - The composite error types:
31//! - [`enum@Error`]: The top-level error type encapsulating all possible errors.
32//! - [`CallFailed`]: Errors related to the execution of the call itself, i.e. all the errors except for the Candid decoding failure.
33//! - [`OnewayError`]: The error type for when sending a [`oneway`](Call::oneway) call.
34//!
35//! # Internal Details
36//!
37//! The module also includes internal types and functions to manage the state and execution of inter-canister calls,
38//! such as [`CallFuture`] and its associated state management.
39
40use crate::api::{cost_call, msg_arg_data, msg_reject_code, msg_reject_msg};
41use crate::{futures::is_recovering_from_trap, trap};
42use candid::utils::{ArgumentDecoder, ArgumentEncoder, encode_args_ref};
43use candid::{CandidType, Deserialize, Principal, decode_args, decode_one, encode_one};
44use std::borrow::Cow;
45use std::future::IntoFuture;
46use std::mem;
47use std::pin::Pin;
48use std::sync::{Arc, RwLock};
49use std::task::{Context, Poll, Waker};
50use thiserror::Error;
51
52pub use ic_error_types::RejectCode;
53
54/// Inter-canister Call.
55///
56/// This type enables the configuration and execution of inter-canister calls using a builder pattern.
57///
58/// # Constructors
59///
60/// [`Call`] has two constructors that differentiate whether the call's response is waited for an unbounded amount of time or not.
61/// - [`bounded_wait`][Self::bounded_wait]: wait boundedly (defaults with 300-second timeout).
62/// - [`unbounded_wait`][Self::unbounded_wait]: wait unboundedly.
63///
64/// # Configuration
65///
66/// Before execution, a [`Call`] can be configured in following aspects:
67///
68/// - Arguments:
69/// - [`with_arg`][Self::with_arg]: single `CandidType` value that will be encoded.
70/// - [`with_args`][Self::with_args]: a tuple of multiple `CandidType` values that will be encoded.
71/// - [`with_raw_args`][Self::with_raw_args]: raw bytes that won't be encoded.
72/// - *Note*: If no methods in this category are invoked, the [`Call`] defaults to sending a **Candid empty tuple `()`**.
73/// - Cycles:
74/// - [`with_cycles`][Self::with_cycles]: set the cycles attached in this call.
75/// - Response waiting timeout:
76/// - [`change_timeout`][Self::change_timeout]: change the timeout for **`bounded_wait`** call.
77///
78/// Please note that all the configuration methods are chainable and can be called multiple times.
79/// For each **aspect** of the call, the **last** configuration takes effect.
80///
81/// ## Example
82///
83/// ```rust, no_run
84/// # use ic_cdk::call::Call;
85/// # async fn bar() {
86/// # let canister_id = ic_cdk::api::canister_self();
87/// # let method = "foo";
88/// let call = Call::bounded_wait(canister_id, method)
89/// .with_raw_args(&[1,0])
90/// .with_cycles(1000)
91/// .change_timeout(5)
92/// .with_arg(42)
93/// .with_cycles(2000);
94/// # }
95/// ```
96///
97/// The `call` above will have the following configuration in effect:
98/// - Arguments: `42` encoded as Candid bytes.
99/// - Attach 2000 cycles.
100/// - Boundedly waiting for response with a 5-second timeout.
101///
102/// # Execution
103///
104/// A [`Call`] can be executed in two ways:
105/// - `.await`: convert into a future, execute asynchronously and wait for response.
106/// - [`oneway`][Self::oneway]: send a oneway call and not wait for the response.
107///
108/// ## Example
109///
110/// ```rust, no_run
111/// # use ic_cdk::call::Call;
112/// # async fn bar() {
113/// # let canister_id = ic_cdk::api::canister_self();
114/// # let method = "foo";
115/// let call = Call::bounded_wait(canister_id, method);
116/// let response = call.clone().await.unwrap();
117/// call.oneway().unwrap();
118/// # }
119/// ```
120///
121/// # Decoding the response
122///
123/// If an asynchronous [`Call`] succeeds, the response can be decoded in two ways:
124/// - [`candid`][Response::candid]: decode the response as a single Candid type.
125/// - [`candid_tuple`][Response::candid_tuple]: decode the response as a tuple of Candid types.
126///
127/// ## Example
128///
129/// ```rust, no_run
130/// # use ic_cdk::call::{Call, Response};
131/// # async fn bar() {
132/// # let canister_id = ic_cdk::api::canister_self();
133/// # let method = "foo";
134/// let res: Response = Call::bounded_wait(canister_id, method).await.unwrap();
135/// let result: u32 = res.candid().unwrap();
136/// let result_tuple: (u32,) = res.candid_tuple().unwrap();
137/// # }
138/// ```
139///
140/// <div class="warning">
141///
142/// Using an inter-canister call creates the possibility that your async function will be canceled partway through.
143/// Read the [`futures`](crate::futures) module docs for why and how this happens.
144///
145/// </div>
146#[derive(Debug, Clone)]
147pub struct Call<'m, 'a> {
148 canister_id: Principal,
149 method: &'m str,
150 cycles: u128,
151 timeout_seconds: Option<u32>,
152 encoded_args: Cow<'a, [u8]>,
153}
154
155// Constructors
156impl<'m> Call<'m, '_> {
157 /// Constructs a [`Call`] which will **boundedly** wait for response.
158 ///
159 /// # Note
160 ///
161 /// The bounded waiting is set with a default 300-second timeout.
162 /// It aligns with the `MAX_CALL_TIMEOUT` constant in the current IC implementation.
163 /// The timeout can be changed using the [`change_timeout`][Self::change_timeout] method.
164 ///
165 /// To unboundedly wait for response, use the [`Call::unbounded_wait`] constructor instead.
166 #[must_use]
167 pub fn bounded_wait(canister_id: Principal, method: &'m str) -> Self {
168 Self {
169 canister_id,
170 method,
171 cycles: 0,
172 // Default to 300-second timeout.
173 timeout_seconds: Some(300),
174 // Bytes for empty arguments.
175 // `candid::Encode!(&()).unwrap()`
176 encoded_args: Cow::Owned(vec![0x44, 0x49, 0x44, 0x4c, 0x00, 0x00]),
177 }
178 }
179
180 /// Constructs a [`Call`] which will **unboundedly** wait for response.
181 ///
182 /// To boundedly wait for response, use the [`Call::bounded_wait`] constructor instead.
183 #[must_use]
184 pub fn unbounded_wait(canister_id: Principal, method: &'m str) -> Self {
185 Self {
186 canister_id,
187 method,
188 cycles: 0,
189 timeout_seconds: None,
190 // Bytes for empty arguments.
191 // `candid::Encode!(&()).unwrap()`
192 encoded_args: Cow::Owned(vec![0x44, 0x49, 0x44, 0x4c, 0x00, 0x00]),
193 }
194 }
195}
196
197// Configuration
198impl<'a> Call<'_, 'a> {
199 /// Sets the argument for the call.
200 ///
201 /// The argument must implement [`CandidType`].
202 #[must_use]
203 pub fn with_arg<A: CandidType>(self, arg: A) -> Self {
204 Self {
205 encoded_args: Cow::Owned(encode_one(&arg).unwrap_or_else(panic_when_encode_fails)),
206 ..self
207 }
208 }
209
210 /// Sets the arguments for the call.
211 ///
212 /// The arguments are a tuple of types, each implementing [`CandidType`].
213 #[must_use]
214 pub fn with_args<A: ArgumentEncoder>(self, args: &A) -> Self {
215 Self {
216 encoded_args: Cow::Owned(encode_args_ref(args).unwrap_or_else(panic_when_encode_fails)),
217 ..self
218 }
219 }
220
221 /// Sets the arguments for the call as raw bytes.
222 ///
223 /// # Note
224 ///
225 /// This method just borrows the bytes, so it is useful when making multiple calls with the same argument data.
226 ///
227 /// The `Call` object will be tied to the lifetime of the argument bytes,
228 /// which may prevent storing the call in collections or returning it from functions
229 /// if the arguments don't live long enough.
230 ///
231 /// For cases where you need to transfer ownership of the arguments bytes consider using [`Self::take_raw_args`] instead.
232 #[must_use]
233 pub fn with_raw_args(self, raw_args: &'a [u8]) -> Self {
234 Self {
235 encoded_args: Cow::Borrowed(raw_args),
236 ..self
237 }
238 }
239
240 /// Sets the arguments for the call as raw bytes and consumes the bytes.
241 ///
242 /// # Note
243 ///
244 /// This method takes ownership of the arguments bytes, so it is useful
245 /// when you want to store the call in collections or return a `Call` from functions.
246 ///
247 /// For cases where you want to make multiple calls with the same argument data,
248 /// consider using [`Self::with_raw_args`] instead to avoid unnecessary cloning.
249 #[must_use]
250 pub fn take_raw_args(self, raw_args: Vec<u8>) -> Self {
251 Self {
252 encoded_args: Cow::Owned(raw_args),
253 ..self
254 }
255 }
256
257 /// Sets the cycles payment for the call.
258 ///
259 /// # Note
260 ///
261 /// The behavior of this method when invoked multiple times is as follows:
262 /// - Overrides any previously set cycle value
263 /// - Last invocation determines the final cycles amount
264 /// - Does not accumulate cycles across multiple invocations
265 #[must_use]
266 pub fn with_cycles(mut self, cycles: u128) -> Self {
267 self.cycles = cycles;
268 self
269 }
270
271 /// Changes the timeout for bounded response waiting.
272 ///
273 /// If invoked multiple times, the last value takes effect.
274 ///
275 /// The timeout value is silently capped by the `MAX_CALL_TIMEOUT` constant which is currently set to 300 seconds.
276 /// Therefore, setting a timeout greater than 300 seconds will actually result in a 300-second timeout.
277 ///
278 /// # Panics
279 ///
280 /// This method will panic if invoked on an unbounded response waiting call constructed by [`Call::unbounded_wait`] .
281 ///
282 /// # Note
283 ///
284 /// A timeout of 0 second **DOES NOT** mean unbounded response waiting.
285 /// The call would most likely time out (result in a [`SysUnknown`](RejectCode::SysUnknown) reject).
286 /// Unless it's a call to the canister on the same subnet,
287 /// and the execution manages to schedule both the request and the response in the same round.
288 ///
289 /// To unboundedly wait for response, use the [`Call::unbounded_wait`] constructor instead.
290 #[must_use]
291 pub fn change_timeout(mut self, timeout_seconds: u32) -> Self {
292 match self.timeout_seconds {
293 Some(_) => self.timeout_seconds = Some(timeout_seconds),
294 None => {
295 panic!("Cannot set a timeout for an instance created with Call::unbounded_wait")
296 }
297 }
298 self
299 }
300
301 /// Returns the amount of cycles a canister needs to be above the freezing threshold in order to
302 /// successfully perform this call. Takes into account the attached cycles ([`with_cycles`](Self::with_cycles))
303 /// as well as
304 /// - the method name byte length
305 /// - the payload length
306 /// - the cost of transmitting the request
307 /// - the cost for the reservation of response transmission (may be partially refunded)
308 /// - the cost for the reservation of callback execution (may be partially refunded).
309 #[must_use]
310 pub fn get_cost(&self) -> u128 {
311 self.cycles.saturating_add(cost_call(
312 self.method.len() as u64,
313 self.encoded_args.len() as u64,
314 ))
315 }
316}
317
318/// Response of a successful call.
319#[derive(Debug)]
320pub struct Response(Vec<u8>);
321
322impl Response {
323 /// Gets the raw bytes of the response.
324 pub fn into_bytes(self) -> Vec<u8> {
325 self.0
326 }
327
328 /// Decodes the response as a single Candid type.
329 pub fn candid<R>(&self) -> Result<R, CandidDecodeFailed>
330 where
331 R: CandidType + for<'de> Deserialize<'de>,
332 {
333 decode_one(&self.0).map_err(|e| CandidDecodeFailed {
334 type_name: std::any::type_name::<R>().to_string(),
335 candid_error: e.to_string(),
336 })
337 }
338
339 /// Decodes the response as a tuple of Candid types.
340 pub fn candid_tuple<R>(&self) -> Result<R, CandidDecodeFailed>
341 where
342 R: for<'de> ArgumentDecoder<'de>,
343 {
344 decode_args(&self.0).map_err(|e| CandidDecodeFailed {
345 type_name: std::any::type_name::<R>().to_string(),
346 candid_error: e.to_string(),
347 })
348 }
349}
350
351impl PartialEq<&[u8]> for Response {
352 fn eq(&self, other: &&[u8]) -> bool {
353 self.0 == *other
354 }
355}
356
357impl PartialEq<Vec<u8>> for Response {
358 fn eq(&self, other: &Vec<u8>) -> bool {
359 self.0 == *other
360 }
361}
362
363impl PartialEq for Response {
364 fn eq(&self, other: &Self) -> bool {
365 self.0 == other.0
366 }
367}
368
369impl std::ops::Deref for Response {
370 type Target = [u8];
371
372 fn deref(&self) -> &Self::Target {
373 &self.0
374 }
375}
376
377impl AsRef<[u8]> for Response {
378 fn as_ref(&self) -> &[u8] {
379 &self.0
380 }
381}
382
383impl std::borrow::Borrow<[u8]> for Response {
384 fn borrow(&self) -> &[u8] {
385 &self.0
386 }
387}
388
389// Errors ---------------------------------------------------------------------
390
391/// Represents errors that can occur during inter-canister calls.
392///
393/// This is the top-level error type for the inter-canister call API.
394///
395/// This encapsulates all possible errors that can arise, including:
396/// - Insufficient liquid cycle balance.
397/// - `ic0.call_perform` failed.
398/// - Asynchronously rejected.
399/// - Candid decoding of the response failed.
400#[derive(Error, Debug, Clone)]
401pub enum Error {
402 /// The liquid cycle balance is insufficient to perform the call.
403 #[error(transparent)]
404 InsufficientLiquidCycleBalance(#[from] InsufficientLiquidCycleBalance),
405
406 /// The `ic0.call_perform` operation failed.
407 #[error(transparent)]
408 CallPerformFailed(#[from] CallPerformFailed),
409
410 /// The inter-canister call is rejected.
411 #[error(transparent)]
412 CallRejected(#[from] CallRejected),
413
414 /// The response from the inter-canister call could not be decoded as Candid.
415 ///
416 /// This variant wraps errors that occur when attempting to decode the response
417 /// into the expected Candid type.
418 #[error(transparent)]
419 CandidDecodeFailed(#[from] CandidDecodeFailed),
420}
421
422/// The error type when awaiting a [`CallFuture`].
423///
424/// This encapsulates all possible [`enum@Error`] except for the [`CandidDecodeFailed`] variant.
425#[derive(Error, Debug, Clone)]
426pub enum CallFailed {
427 /// The liquid cycle balance is insufficient to perform the call.
428 #[error(transparent)]
429 InsufficientLiquidCycleBalance(#[from] InsufficientLiquidCycleBalance),
430
431 /// The `ic0.call_perform` operation failed.
432 #[error(transparent)]
433 CallPerformFailed(#[from] CallPerformFailed),
434
435 /// The inter-canister call is rejected.
436 #[error(transparent)]
437 CallRejected(#[from] CallRejected),
438}
439
440/// The error type of [`Call::oneway`].
441///
442/// This encapsulates all possible errors that can occur when sending a oneway call.
443/// Therefore, it includes the [`InsufficientLiquidCycleBalance`] and [`CallPerformFailed`] variants.
444#[derive(Error, Debug, Clone)]
445pub enum OnewayError {
446 /// The liquid cycle balance is insufficient to perform the call.
447 #[error(transparent)]
448 InsufficientLiquidCycleBalance(#[from] InsufficientLiquidCycleBalance),
449 /// The `ic0.call_perform` operation failed.
450 #[error(transparent)]
451 CallPerformFailed(#[from] CallPerformFailed),
452}
453
454impl From<OnewayError> for Error {
455 fn from(e: OnewayError) -> Self {
456 match e {
457 OnewayError::InsufficientLiquidCycleBalance(e) => {
458 Error::InsufficientLiquidCycleBalance(e)
459 }
460 OnewayError::CallPerformFailed(e) => Error::CallPerformFailed(e),
461 }
462 }
463}
464
465impl From<CallFailed> for Error {
466 fn from(e: CallFailed) -> Self {
467 match e {
468 CallFailed::InsufficientLiquidCycleBalance(e) => {
469 Error::InsufficientLiquidCycleBalance(e)
470 }
471 CallFailed::CallPerformFailed(e) => Error::CallPerformFailed(e),
472 CallFailed::CallRejected(e) => Error::CallRejected(e),
473 }
474 }
475}
476
477/// Represents an error that occurs when the liquid cycle balance is insufficient to perform the call.
478///
479/// The liquid cycle balance is determined by [`canister_liquid_cycle_balance`](crate::api::canister_liquid_cycle_balance).
480/// The cost of the call is determined by [`Call::get_cost`].
481///
482/// The call won't be performed if the former is less than the latter.
483#[derive(Error, Debug, Clone)]
484#[error("insufficient liquid cycles balance, available: {available}, required: {required}")]
485pub struct InsufficientLiquidCycleBalance {
486 /// The liquid cycle balance available in the canister.
487 pub available: u128,
488 /// The required cycles to perform the call.
489 pub required: u128,
490}
491
492/// Represents an error that occurs when the `ic0.call_perform` operation fails.
493///
494/// This error type indicates that the underlying `ic0.call_perform` operation
495/// returned a non-zero code, signaling a failure.
496#[derive(Error, Debug, Clone)]
497#[error("call perform failed")]
498pub struct CallPerformFailed;
499
500/// Represents an error that occurs when an inter-canister call is rejected.
501///
502/// The [`reject_code`][`Self::reject_code`] and [`reject_message`][`Self::reject_message`]
503/// are exposed to provide details of the rejection.
504///
505/// This is wrapped by the [`CallFailed::CallRejected`] variant.
506#[derive(Error, Debug, Clone)]
507#[error("call rejected: {raw_reject_code} - {reject_message}")]
508pub struct CallRejected {
509 /// All fields are private so we will be able to change the implementation without breaking the API.
510 /// Once we have `ic0.msg_error_code` system API, we will only store the `error_code` in this struct.
511 /// It will still be possible to get the [`RejectCode`] using the public getter,
512 /// because every `error_code` can map to a [`RejectCode`].
513 raw_reject_code: u32,
514 reject_message: String,
515}
516
517/// The error type for when an unrecognized reject code is encountered.
518#[derive(Error, Debug, Clone, PartialEq, Eq)]
519#[error("unrecognized reject code: {0}")]
520pub struct UnrecognizedRejectCode(u32);
521
522impl CallRejected {
523 /// Constructs a [`CallRejected`] instance with the reject code and message.
524 ///
525 /// # Note
526 ///
527 /// This constructor is primarily intended for testing scenarios where you need to simulate
528 /// rejected inter-canister calls. In production code, instances of this error are typically
529 /// created by the system when actual rejections occur during inter-canister communication.
530 /// Use this constructor with caution outside of test environments.
531 pub fn with_rejection(raw_reject_code: u32, reject_message: String) -> Self {
532 Self {
533 raw_reject_code,
534 reject_message,
535 }
536 }
537
538 /// Gets the [`RejectCode`].
539 ///
540 /// The value is converted from [`api::msg_reject_code`](`msg_reject_code`).
541 ///
542 /// # Errors
543 ///
544 /// If the raw reject code is not recognized, this method will return an [`UnrecognizedRejectCode`] error.
545 /// This can happen if the IC produces a new reject code that hasn't been included in [`ic_error_types::RejectCode`].
546 /// Please check if your `ic-error-types` dependency is up-to-date.
547 /// If the latest version of `ic-error-types` doesn't include the new reject code, please report it to the `ic-cdk` maintainers.
548 pub fn reject_code(&self) -> Result<RejectCode, UnrecognizedRejectCode> {
549 RejectCode::try_from(u64::from(self.raw_reject_code))
550 .map_err(|_| UnrecognizedRejectCode(self.raw_reject_code))
551 }
552
553 /// Gets the raw numeric [`RejectCode`] value.
554 ///
555 /// This is a "never-fail" version of [`reject_code`](Self::reject_code) that returns the raw numeric value.
556 pub fn raw_reject_code(&self) -> u32 {
557 self.raw_reject_code
558 }
559
560 /// Retrieves the reject message associated with the call.
561 ///
562 /// This message is obtained from [`api::msg_reject_msg`](`msg_reject_msg`).
563 pub fn reject_message(&self) -> &str {
564 &self.reject_message
565 }
566}
567
568/// Represents an error that occurs when the response from an inter-canister call
569/// cannot be decoded as Candid.
570///
571/// This error type provides details about the Candid decoding failure, including
572/// the type that was being decoded and the specific Candid error that occurred.
573///
574/// This is the only possible error that can occur in [`Response::candid`] and [`Response::candid_tuple`].
575///
576/// It is wrapped by the top-level [`Error::CandidDecodeFailed`] variant.
577#[derive(Error, Debug, Clone)]
578#[error("candid decode failed for type: {type_name}, candid error: {candid_error}")]
579pub struct CandidDecodeFailed {
580 type_name: String,
581 candid_error: String,
582}
583
584/// Extension trait for error types to provide additional methods.
585pub trait CallErrorExt {
586 /// Checks if the error is a clean reject.
587 /// A clean reject means that there must be no state changes on the callee side.
588 fn is_clean_reject(&self) -> bool;
589 /// Determines if the failed call can be retried immediately within the update method
590 /// that's handling the error, as opposed to relying on a background timer or heartbeat.
591 ///
592 /// A return value of `true` indicates that an immediate retry *might* succeed, i.e., not result in another error.
593 /// However, the caller is responsible for ensuring that retries are safe in their specific context.
594 /// For idempotent methods, immediate retries are generally safe. For non-idempotent ones,
595 /// checking [`is_clean_reject`](CallErrorExt::is_clean_reject) before retrying is recommended.
596 fn is_immediately_retryable(&self) -> bool;
597}
598
599impl CallErrorExt for InsufficientLiquidCycleBalance {
600 fn is_clean_reject(&self) -> bool {
601 // The call was not performed.
602 true
603 }
604
605 fn is_immediately_retryable(&self) -> bool {
606 // Caller should top up cycles before retrying.
607 false
608 }
609}
610
611impl CallErrorExt for CallPerformFailed {
612 fn is_clean_reject(&self) -> bool {
613 true
614 }
615
616 fn is_immediately_retryable(&self) -> bool {
617 false
618 }
619}
620
621impl CallErrorExt for CallRejected {
622 fn is_clean_reject(&self) -> bool {
623 // Here we apply a conservative whitelist of reject codes that are considered clean.
624 // Once finer `error_code` is available, we can allow more cases to be clean.
625 let clean_reject_codes: Vec<u32> = vec![
626 RejectCode::SysFatal as u32,
627 RejectCode::SysTransient as u32,
628 RejectCode::DestinationInvalid as u32,
629 ];
630 clean_reject_codes.contains(&self.raw_reject_code)
631 }
632
633 fn is_immediately_retryable(&self) -> bool {
634 // Here we apply a conservative whitelist of reject codes that are considered immediately retryable.
635 // Once finer `error_code` is available, we can allow more cases to be immediately retryable.
636 let immediately_retryable_codes: Vec<u32> = vec![
637 RejectCode::SysTransient as u32,
638 RejectCode::SysUnknown as u32,
639 ];
640 immediately_retryable_codes.contains(&self.raw_reject_code)
641 }
642}
643
644impl CallErrorExt for CandidDecodeFailed {
645 fn is_clean_reject(&self) -> bool {
646 // Decoding failure suggests that the inter-canister call was successfully processed by the callee.
647 // Therefore, the callee state is likely changed (unless the method doesn't change its own state).
648 false
649 }
650
651 fn is_immediately_retryable(&self) -> bool {
652 // Decoding failure suggests a mismatch between the expected and actual response types.
653 // Either the callee or the caller has a bug, and retrying the call immediately is unlikely to succeed.
654 false
655 }
656}
657
658impl CallErrorExt for Error {
659 fn is_clean_reject(&self) -> bool {
660 match self {
661 Error::InsufficientLiquidCycleBalance(e) => e.is_clean_reject(),
662 Error::CallPerformFailed(e) => e.is_clean_reject(),
663 Error::CallRejected(e) => e.is_clean_reject(),
664 Error::CandidDecodeFailed(e) => e.is_clean_reject(),
665 }
666 }
667
668 fn is_immediately_retryable(&self) -> bool {
669 match self {
670 Error::InsufficientLiquidCycleBalance(e) => e.is_immediately_retryable(),
671 Error::CallPerformFailed(e) => e.is_immediately_retryable(),
672 Error::CallRejected(e) => e.is_immediately_retryable(),
673 Error::CandidDecodeFailed(e) => e.is_immediately_retryable(),
674 }
675 }
676}
677
678impl CallErrorExt for CallFailed {
679 fn is_clean_reject(&self) -> bool {
680 match self {
681 CallFailed::InsufficientLiquidCycleBalance(e) => e.is_clean_reject(),
682 CallFailed::CallPerformFailed(e) => e.is_clean_reject(),
683 CallFailed::CallRejected(e) => e.is_clean_reject(),
684 }
685 }
686
687 fn is_immediately_retryable(&self) -> bool {
688 match self {
689 CallFailed::InsufficientLiquidCycleBalance(e) => e.is_immediately_retryable(),
690 CallFailed::CallPerformFailed(e) => e.is_immediately_retryable(),
691 CallFailed::CallRejected(e) => e.is_immediately_retryable(),
692 }
693 }
694}
695
696impl CallErrorExt for OnewayError {
697 fn is_clean_reject(&self) -> bool {
698 match self {
699 OnewayError::InsufficientLiquidCycleBalance(e) => e.is_clean_reject(),
700 OnewayError::CallPerformFailed(e) => e.is_clean_reject(),
701 }
702 }
703
704 fn is_immediately_retryable(&self) -> bool {
705 match self {
706 OnewayError::InsufficientLiquidCycleBalance(e) => e.is_immediately_retryable(),
707 OnewayError::CallPerformFailed(e) => e.is_immediately_retryable(),
708 }
709 }
710}
711
712// Errors END -----------------------------------------------------------------
713
714/// Result of a inter-canister call.
715pub type CallResult<R> = Result<R, Error>;
716
717impl<'m, 'a> IntoFuture for Call<'m, 'a> {
718 type Output = Result<Response, CallFailed>;
719 type IntoFuture = CallFuture<'m, 'a>;
720
721 fn into_future(self) -> Self::IntoFuture {
722 CallFuture {
723 state: Arc::new(RwLock::new(CallFutureState::Prepared { call: self })),
724 }
725 }
726}
727
728// Execution
729impl Call<'_, '_> {
730 /// Sends the call and ignores the reply.
731 pub fn oneway(&self) -> Result<(), OnewayError> {
732 self.check_liquid_cycle_balance_sufficient()?;
733 match self.perform(None) {
734 0 => Ok(()),
735 _ => Err(CallPerformFailed.into()),
736 }
737 }
738
739 /// Checks if the liquid cycle balance is sufficient to perform the call.
740 fn check_liquid_cycle_balance_sufficient(&self) -> Result<(), InsufficientLiquidCycleBalance> {
741 let required = self.get_cost();
742 let available = crate::api::canister_liquid_cycle_balance();
743 if available >= required {
744 Ok(())
745 } else {
746 Err(InsufficientLiquidCycleBalance {
747 available,
748 required,
749 })
750 }
751 }
752
753 /// Performs the call.
754 ///
755 /// This is an internal helper function only for [`Self::call_oneway`] and [`CallFuture::poll`].
756 ///
757 /// # Arguments
758 ///
759 /// - `state_ptr`: An optional pointer to the internal state of the [`CallFuture`].
760 /// - If `Some`, the call will be prepared for asynchronous execution:
761 /// - `ic0.call_new` will be invoked with [`callback`] and state pointer.
762 /// - `ic0.call_on_cleanup` will be invoked with [`cleanup`].
763 /// - If `None`, the call will be prepared for oneway execution:
764 /// - `ic0.call_new` will be invoked with invalid callback functions.
765 /// - `ic0.call_on_cleanup` won't be invoked.
766 ///
767 /// # Returns
768 ///
769 /// The return value of `ic0.call_perform`.
770 fn perform(&self, state_opt: Option<Arc<RwLock<CallFutureState<'_, '_>>>>) -> u32 {
771 let callee = self.canister_id.as_slice();
772 let method = self.method;
773 let arg = match &self.encoded_args {
774 Cow::Owned(vec) => vec,
775 Cow::Borrowed(r) => *r,
776 };
777 let state_ptr_opt = state_opt.map(Arc::<RwLock<CallFutureState<'_, '_>>>::into_raw);
778 match state_ptr_opt {
779 Some(state_ptr) => {
780 // asynchronous execution
781 //
782 // # SAFETY:
783 // - `callback` is intended as an entrypoint and therefore can be called as both reply and reject fn
784 // for ic0.call_new.
785 // - `cleanup` is intended as an entrypoint and therefore can be called as cleanup fn for ic0.call_on_cleanup.
786 // - `state_ptr` is a pointer created via Arc::<RwLock<CallFutureState>>::into_raw, and can therefore be passed as the userdata for
787 // `callback` and `cleanup`.
788 // - if-and-only-if ic0.call_perform returns 0, exactly one(‡) of `callback` or `cleanup`
789 // receive ownership of `state_ptr`
790 // - both functions deallocate `state_ptr`, and this enclosing function deallocates `state_ptr` if ic0.call_perform
791 // returns 0, and therefore `state_ptr`'s ownership can be passed to FFI without leaking memory.
792 //
793 // ‡ The flow from outside the WASM runtime is that the callback runs, it traps, state is rolled back,
794 // and the cleanup callback runs afterwards. Inside the runtime, there is no difference between
795 // 'state is rolled back to before the callback was called' and 'the callback was never called'.
796 // So from the code's perspective, exactly one function is called.
797 unsafe {
798 ic0::call_new(
799 callee,
800 method,
801 callback,
802 state_ptr as usize,
803 callback,
804 state_ptr as usize,
805 );
806 ic0::call_on_cleanup(cleanup, state_ptr as usize);
807 }
808 }
809
810 None => {
811 ic0::call_new_oneway(callee, method);
812 // There is no `call_on_cleanup` invocation because:
813 // - the callback does not exist, and so cannot trap to require cleanup
814 // - under the current behavior of the IC, this produces an error,
815 // which would unconditionally call the cleanup callback
816 }
817 }
818 if !arg.is_empty() {
819 ic0::call_data_append(arg);
820 }
821 if self.cycles > 0 {
822 ic0::call_cycles_add128(self.cycles);
823 }
824 if let Some(timeout_seconds) = self.timeout_seconds {
825 ic0::call_with_best_effort_response(timeout_seconds);
826 }
827 let res = ic0::call_perform();
828 if res != 0 {
829 if let Some(state_ptr) = state_ptr_opt {
830 // SAFETY:
831 // - `state_ptr_opt` is `Some` if-and-only-if ic0.call_new was called with ownership of `state`
832 // - by returning !=0, ic0.call_new relinquishes ownership of `state_ptr`; it will never be passed
833 // to any functions
834 // therefore, there is an outstanding handle to `state`, which it is safe to deallocate
835 unsafe {
836 Arc::from_raw(state_ptr);
837 }
838 }
839 }
840 res
841 }
842}
843
844// # Internal =================================================================
845
846/// Internal state for the Future when sending a call.
847#[derive(Debug, Default)]
848enum CallFutureState<'m, 'a> {
849 /// The future has been constructed, and the call has not yet been performed.
850 /// Needed because futures are supposed to do nothing unless polled.
851 /// Polling will attempt to fire off the request. Success returns `Pending` and transitions to `Executing`,
852 /// failure returns `Ready` and transitions to `PostComplete.`
853 Prepared { call: Call<'m, 'a> },
854 /// The call has been performed and the message is in flight. Neither callback has been called. Polling will return `Pending`.
855 /// This state will transition to `Trapped` if the future is canceled because of a trap in another future.
856 Executing { waker: Waker },
857 /// `callback` has been called, so the call has been completed. This completion state has not yet been read by the user.
858 /// Polling will return `Ready` and transition to `PostComplete`.
859 Complete {
860 result: Result<Response, CallFailed>,
861 },
862 /// The completion state of `Complete` has been returned from `poll` as `Poll::Ready`. Polling again will trap.
863 #[default]
864 PostComplete,
865 /// The future (*not* the state) was canceled because of a trap in another future during `Executing`. Polling will trap.
866 Trapped,
867}
868
869/// Represents a future that resolves to the result of an inter-canister call.
870///
871/// This type is returned by [`IntoFuture::into_future`] when called on a [`Call`].
872/// The [`Call`] type implements the [`IntoFuture`] trait, allowing it to be converted
873/// into a [`CallFuture`]. The future can be awaited to retrieve the result of the call.
874#[derive(Debug)]
875pub struct CallFuture<'m, 'a> {
876 state: Arc<RwLock<CallFutureState<'m, 'a>>>,
877}
878
879impl std::future::Future for CallFuture<'_, '_> {
880 type Output = Result<Response, CallFailed>;
881
882 fn poll(self: Pin<&mut Self>, context: &mut Context<'_>) -> Poll<Self::Output> {
883 let self_ref = Pin::into_inner(self);
884 let mut state = self_ref.state.write().unwrap();
885 match mem::take(&mut *state) {
886 CallFutureState::Prepared { call } => {
887 if let Err(e) = call.check_liquid_cycle_balance_sufficient() {
888 *state = CallFutureState::PostComplete;
889 Poll::Ready(Err(e.into()))
890 } else {
891 match call.perform(Some(self_ref.state.clone())) {
892 0 => {
893 // call_perform returns 0 means the call was successfully enqueued.
894 *state = CallFutureState::Executing {
895 waker: context.waker().clone(),
896 };
897 Poll::Pending
898 }
899 _ => {
900 *state = CallFutureState::PostComplete;
901 Poll::Ready(Err(CallPerformFailed.into()))
902 }
903 }
904 }
905 }
906 CallFutureState::Executing { .. } => {
907 *state = CallFutureState::Executing {
908 waker: context.waker().clone(),
909 };
910 Poll::Pending
911 }
912 CallFutureState::Complete { result } => {
913 *state = CallFutureState::PostComplete;
914 Poll::Ready(result)
915 }
916 CallFutureState::Trapped => trap("Call already trapped"),
917 CallFutureState::PostComplete => trap("CallFuture polled after completing"),
918 }
919 }
920}
921
922impl Drop for CallFuture<'_, '_> {
923 fn drop(&mut self) {
924 // If this future is dropped while is_recovering_from_trap is true,
925 // then it has been canceled due to a trap in another future.
926 if is_recovering_from_trap() {
927 *self.state.write().unwrap() = CallFutureState::Trapped;
928 }
929 }
930}
931
932/// The reply/reject callback for `ic0.call_new`.
933///
934/// It dereferences the future from a raw pointer, assigns the result and calls the waker.
935/// We cannot use a closure here because we pass raw pointers to the System and back.
936///
937/// # Safety
938///
939/// This function must only be passed to the IC with a pointer from `Arc::<RwLock<CallFutureState>>::into_raw` as userdata.
940unsafe extern "C" fn callback(env: usize) {
941 let state_ptr = env as *const RwLock<CallFutureState<'_, '_>>;
942 ic_cdk_executor::in_callback_executor_context(|| {
943 // SAFETY: This function is only ever called by the IC, and we only ever pass an Arc as userdata.
944 let state = unsafe { Arc::from_raw(state_ptr) };
945 let completed_state = CallFutureState::Complete {
946 result: match msg_reject_code() {
947 0 => Ok(Response(msg_arg_data())),
948 code => {
949 // The conversion is safe because the code is not 0.
950 Err(CallFailed::CallRejected(CallRejected {
951 raw_reject_code: code,
952 reject_message: msg_reject_msg(),
953 }))
954 }
955 },
956 };
957 let waker = match mem::replace(&mut *state.write().unwrap(), completed_state) {
958 CallFutureState::Executing { waker } => waker,
959 // This future has already been cancelled and waking it will do nothing.
960 // All that's left is to explicitly trap in case this is the last call being multiplexed,
961 // to replace an automatic trap from not replying.
962 CallFutureState::Trapped => trap("Call already trapped"),
963 _ => unreachable!(
964 "CallFutureState for in-flight calls should only be Executing or Trapped (callback)"
965 ),
966 };
967 waker.wake();
968 });
969}
970
971/// The cleanup callback for `ic0.call_on_cleanup`.
972///
973/// This function is called when [`callback`] was just called with the same parameter, and trapped.
974/// We can't guarantee internal consistency at this point, but we can at least e.g. drop mutex guards.
975/// Waker is a very opaque API, so the best we can do is set a global flag and proceed normally.
976///
977/// # Safety
978///
979/// This function must only be passed to the IC with a pointer from `Arc::<RwLock<CallFutureState>>::into_raw` as userdata.
980unsafe extern "C" fn cleanup(env: usize) {
981 let state_ptr = env as *const RwLock<CallFutureState<'_, '_>>;
982 // Flag that we do not want to actually wake the task - we
983 // want to drop it *without* executing it.
984 ic_cdk_executor::in_callback_cancellation_context(|| {
985 // SAFETY: This function is only ever called by the IC, and we only ever pass a Arc as userdata.
986 let state = unsafe { Arc::from_raw(state_ptr) };
987 // We set the call result, even though it won't be read on the
988 // default executor, because we can't guarantee it was called on
989 // our executor. However, we are not allowed to inspect
990 // reject_code() inside of a cleanup callback, so always set the
991 // result to a reject.
992 //
993 // Borrowing does not trap - the rollback from the
994 // previous trap ensures that the RwLock can be borrowed again.
995 let err_state = CallFutureState::Complete {
996 result: Err(CallFailed::CallRejected(CallRejected {
997 raw_reject_code: RejectCode::CanisterReject as u32,
998 reject_message: "cleanup".into(),
999 })),
1000 };
1001 let waker = match mem::replace(&mut *state.write().unwrap(), err_state) {
1002 CallFutureState::Executing { waker } => waker,
1003 CallFutureState::Trapped => {
1004 // The future has already been canceled and dropped. There is nothing
1005 // more to clean up except for the CallFutureState.
1006 return;
1007 }
1008 _ => {
1009 unreachable!(
1010 "CallFutureState for in-flight calls should only be Executing or Trapped (cleanup)"
1011 )
1012 }
1013 };
1014 waker.wake();
1015 });
1016}
1017
1018// # Internal END =============================================================
1019
1020/// Panics with an informative message when argument encoding fails.
1021///
1022/// Currently, Candid encoding only fails when heap memory is exhausted,
1023/// in which case execution would trap before reaching the unwrap.
1024///
1025/// However, since future implementations might introduce other failure cases,
1026/// we provide an informative panic message for better debuggability.
1027fn panic_when_encode_fails(err: candid::error::Error) -> Vec<u8> {
1028 panic!("failed to encode args: {err}")
1029}