1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
//! The library implements multiple and periodic timers on the Internet Computer.
//!
//! # Example
//!
//! ```rust,no_run
//! # use std::time::Duration;
//! # fn main() {
//! ic_cdk_timers::set_timer(Duration::from_secs(1), || ic_cdk::println!("Hello from the future!"));
//! # }
//! ```

#![warn(
    elided_lifetimes_in_paths,
    missing_debug_implementations,
    missing_docs,
    unsafe_op_in_unsafe_fn,
    clippy::undocumented_unsafe_blocks,
    clippy::missing_safety_doc
)]

use std::{
    cell::{Cell, RefCell},
    cmp::Ordering,
    collections::BinaryHeap,
    mem,
    time::Duration,
};

use futures::{stream::FuturesUnordered, StreamExt};
use slotmap::{new_key_type, KeyData, SlotMap};

use ic_cdk::api::call::RejectionCode;

// To ensure that tasks are removable seamlessly, there are two separate concepts here: tasks, for the actual function being called,
// and timers, the scheduled execution of tasks. As this is an implementation detail, this does not affect the exported name TimerId,
// which is more accurately a task ID. (The obvious solution to this, `pub use`, invokes a very silly compiler error.)

thread_local! {
    static TASKS: RefCell<SlotMap<TimerId, Task>> = RefCell::default();
    static TIMERS: RefCell<BinaryHeap<Timer>> = RefCell::default();
    static MOST_RECENT: Cell<Option<u64>> = Cell::new(None);
}

enum Task {
    Repeated {
        func: Box<dyn FnMut()>,
        interval: Duration,
    },
    Once(Box<dyn FnOnce()>),
}

impl Default for Task {
    fn default() -> Self {
        Self::Once(Box::new(|| ()))
    }
}

new_key_type! {
    /// Type returned by the [`set_timer`] and [`set_timer_interval`] functions. Pass to [`clear_timer`] to remove the timer.
    pub struct TimerId;
}

struct Timer {
    task: TimerId,
    time: u64,
}

// Timers are sorted such that x > y if x should be executed _before_ y.

impl Ord for Timer {
    fn cmp(&self, other: &Self) -> Ordering {
        self.time.cmp(&other.time).reverse()
    }
}

impl PartialOrd for Timer {
    fn partial_cmp(&self, other: &Self) -> Option<Ordering> {
        Some(self.cmp(other))
    }
}

impl PartialEq for Timer {
    fn eq(&self, other: &Self) -> bool {
        self.time == other.time
    }
}

impl Eq for Timer {}

// This function is called by the IC at or after the timestamp provided to `ic0.global_timer_set`.
#[export_name = "canister_global_timer"]
extern "C" fn global_timer() {
    ic_cdk::setup();
    ic_cdk::spawn(async {
        // All the calls are made first, according only to the timestamp we *started* with, and then all the results are awaited.
        // This allows us to use the minimum number of execution rounds, as well as avoid any race conditions.
        // The only thing that can happen interleavedly is canceling a task, which is seamless by design.
        let mut call_futures = FuturesUnordered::new();
        let now = ic_cdk::api::time();
        TIMERS.with(|timers| {
            // pop every timer that should have been completed by `now`, and get ready to run its task if it exists
            loop {
                let mut timers = timers.borrow_mut();
                if let Some(timer) = timers.peek() {
                    if timer.time <= now {
                        let timer = timers.pop().unwrap();
                        if TASKS.with(|tasks| tasks.borrow().contains_key(timer.task)) {
                            // This is the biggest hack in this code. If a callback was called explicitly, and trapped, the rescheduling step wouldn't happen.
                            // The closest thing to a catch_unwind that's available here is performing an inter-canister call to ourselves;
                            // traps will be caught at the call boundary. This invokes a meaningful cycles cost, and should an alternative for catching traps
                            // become available, this code should be rewritten.
                            let task_id = timer.task;
                            call_futures.push(async move {
                                (
                                    timer,
                                    ic_cdk::call(
                                        ic_cdk::api::id(),
                                        "<ic-cdk internal> timer_executor",
                                        (task_id.0.as_ffi(),),
                                    )
                                    .await,
                                )
                            });
                        }
                        continue;
                    }
                }
                break;
            }
        });
        // run all the collected tasks, and clean up after them if necessary
        while let Some((timer, res)) = call_futures.next().await {
            let task_id = timer.task;
            match res {
                Ok(()) => {}
                Err((code, msg)) => {
                    ic_cdk::println!("in canister_global_timer: {code:?}: {msg}");
                    match code {
                        RejectionCode::SysTransient => {
                            // Try to execute the timer again later.
                            TIMERS.with(|timers| {
                                timers.borrow_mut().push(timer);
                            });
                            continue;
                        }
                        RejectionCode::NoError
                        | RejectionCode::SysFatal
                        | RejectionCode::DestinationInvalid
                        | RejectionCode::CanisterReject
                        | RejectionCode::CanisterError
                        | RejectionCode::Unknown => {}
                    }
                }
            }
            TASKS.with(|tasks| {
                let mut tasks = tasks.borrow_mut();
                if let Some(task) = tasks.get(task_id) {
                    match task {
                        // duplicated on purpose - it must be removed in the function call, to access self by value;
                        // and it must be removed here, because it may have trapped and not actually been removed.
                        // Luckily slotmap ops are equivalent to simple vector indexing.
                        Task::Once(_) => {
                            tasks.remove(task_id);
                        }
                        // reschedule any repeating tasks
                        Task::Repeated { interval, .. } => {
                            match now.checked_add(interval.as_nanos() as u64) {
                                Some(time) => TIMERS.with(|timers| {
                                    timers.borrow_mut().push(Timer {
                                        task: task_id,
                                        time,
                                    })
                                }),
                                None => ic_cdk::println!(
                                    "Failed to reschedule task (needed {interval}, currently {now}, and this would exceed u64::MAX)",
                                    interval = interval.as_nanos(),
                                ),
                            }
                        }
                    }
                }
            });
        }
        MOST_RECENT.with(|recent| recent.set(None));
        update_ic0_timer();
    });
}

/// Sets `func` to be executed later, after `delay`. Panics if `delay` + [`time()`][ic_cdk::api::time] is more than [`u64::MAX`] nanoseconds.
///
/// To cancel the timer before it executes, pass the returned `TimerId` to [`clear_timer`].
///
/// Note that timers are not persisted across canister upgrades.
pub fn set_timer(delay: Duration, func: impl FnOnce() + 'static) -> TimerId {
    let delay_ns = u64::try_from(delay.as_nanos()).expect(
        "delay out of bounds (must be within `u64::MAX - ic_cdk::api::time()` nanoseconds)",
    );
    let scheduled_time = ic_cdk::api::time().checked_add(delay_ns).expect(
        "delay out of bounds (must be within `u64::MAX - ic_cdk::api::time()` nanoseconds)",
    );
    let key = TASKS.with(|tasks| tasks.borrow_mut().insert(Task::Once(Box::new(func))));
    TIMERS.with(|timers| {
        timers.borrow_mut().push(Timer {
            task: key,
            time: scheduled_time,
        });
    });
    update_ic0_timer();
    key
}

/// Sets `func` to be executed every `interval`. Panics if `interval` + [`time()`][ic_cdk::api::time] is more than [`u64::MAX`] nanoseconds.
///
/// To cancel the interval timer, pass the returned `TimerId` to [`clear_timer`].
///
/// Note that timers are not persisted across canister upgrades.
pub fn set_timer_interval(interval: Duration, func: impl FnMut() + 'static) -> TimerId {
    let interval_ns = u64::try_from(interval.as_nanos()).expect(
        "delay out of bounds (must be within `u64::MAX - ic_cdk::api::time()` nanoseconds)",
    );
    let scheduled_time = ic_cdk::api::time().checked_add(interval_ns).expect(
        "delay out of bounds (must be within `u64::MAX - ic_cdk::api::time()` nanoseconds)",
    );
    let key = TASKS.with(|tasks| {
        tasks.borrow_mut().insert(Task::Repeated {
            func: Box::new(func),
            interval,
        })
    });
    TIMERS.with(|timers| {
        timers.borrow_mut().push(Timer {
            task: key,
            time: scheduled_time,
        })
    });
    update_ic0_timer();
    key
}

/// Cancels an existing timer. Does nothing if the timer has already been canceled.
pub fn clear_timer(id: TimerId) {
    TASKS.with(|tasks| tasks.borrow_mut().remove(id));
}

/// Calls `ic0.global_timer_set` with the soonest timer in [`TIMERS`]. This is needed after inserting a timer, and after executing one.
fn update_ic0_timer() {
    TIMERS.with(|timers| {
        let timers = timers.borrow();
        let soonest_timer = timers.peek().map(|timer| timer.time);
        let should_change = match (soonest_timer, MOST_RECENT.with(|recent| recent.get())) {
            (Some(timer), Some(recent)) => timer < recent,
            (Some(_), None) => true,
            _ => false,
        };
        if should_change {
            // SAFETY: ic0::global_timer_set is always a safe call
            unsafe { ic0::global_timer_set(soonest_timer.unwrap() as i64) };
            MOST_RECENT.with(|recent| recent.set(soonest_timer));
        }
    });
}

#[export_name = "canister_update <ic-cdk internal> timer_executor"]
extern "C" fn timer_executor() {
    if ic_cdk::api::caller() != ic_cdk::api::id() {
        ic_cdk::trap("This function is internal to ic-cdk and should not be called externally.");
    }
    let (task_id,) = ic_cdk::api::call::arg_data();
    let task_id = TimerId(KeyData::from_ffi(task_id));
    // We can't be holding `TASKS` when we call the function, because it may want to schedule more tasks.
    // Instead, we swap the task out in order to call it, and then either swap it back in, or remove it.
    let task = TASKS.with(|tasks| {
        let mut tasks = tasks.borrow_mut();
        tasks.get_mut(task_id).map(mem::take)
    });
    if let Some(mut task) = task {
        match task {
            Task::Once(func) => {
                func();
                TASKS.with(|tasks| tasks.borrow_mut().remove(task_id));
            }
            Task::Repeated { ref mut func, .. } => {
                func();
                TASKS.with(|tasks| tasks.borrow_mut().get_mut(task_id).map(|slot| *slot = task));
            }
        }
    }
    ic_cdk::api::call::reply(());
}