1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862
//! This module deals with computing Request IDs based on the content of a
//! message.
//!
//! We compute the `RequestId` according to the public spec, which
//! specifies it as a "sha256" digest.
//!
//! A single method is exported, to_request_id, which returns a RequestId
//! (a 256 bits slice) or an error.
use error::RequestIdFromStringError;
use serde::{ser, Deserialize, Serialize};
use sha2::{Digest, Sha256};
use std::{collections::BTreeMap, iter::Extend, str::FromStr};
pub mod error;
#[doc(inline)]
pub use error::RequestIdError;
/// Type alias for a sha256 result (ie. a u256).
type Sha256Hash = [u8; 32];
/// A Request ID.
#[derive(Clone, Copy, Debug, PartialOrd, Ord, PartialEq, Eq, Deserialize, Serialize)]
pub struct RequestId(Sha256Hash);
impl RequestId {
/// Creates a new `RequestId` from a SHA-256 hash.
pub fn new(from: &[u8; 32]) -> RequestId {
RequestId(*from)
}
/// Returns the SHA-256 hash this ID is based on.
pub fn as_slice(&self) -> &[u8] {
&self.0
}
pub(crate) fn to_vec(self) -> Vec<u8> {
self.0.to_vec()
}
}
impl FromStr for RequestId {
type Err = RequestIdFromStringError;
fn from_str(from: &str) -> Result<Self, Self::Err> {
let mut blob: [u8; 32] = [0; 32];
let vec = hex::decode(from).map_err(RequestIdFromStringError::FromHexError)?;
if vec.len() != 32 {
return Err(RequestIdFromStringError::InvalidSize(vec.len()));
}
blob.copy_from_slice(vec.as_slice());
Ok(RequestId::new(&blob))
}
}
impl From<RequestId> for String {
fn from(id: RequestId) -> String {
hex::encode(id.0)
}
}
enum Hasher {
/// The hasher for the overall request id. This is the only part
/// that may directly contain a Struct.
RequestId(Sha256),
/// A structure to be included in the hash. May not contain other structures.
Struct {
// We use a BTreeMap here as there is no indication that keys might not be duplicated,
// and we want to make sure they're overwritten in that case.
fields: BTreeMap<Sha256Hash, Sha256Hash>,
parent: Box<Hasher>,
},
/// The hasher for a value. Array elements will append the hash of their
/// contents into the hasher of the array.
Value(Sha256),
}
impl Hasher {
fn request_id() -> Hasher {
Hasher::RequestId(Sha256::new())
}
fn fields(parent: Box<Hasher>) -> Hasher {
Hasher::Struct {
fields: BTreeMap::new(),
parent,
}
}
fn value() -> Hasher {
Hasher::Value(Sha256::new())
}
}
/// A Serde Serializer that collects fields and values in order to hash them later.
/// We serialize the type to this structure, then use the trait to hash its content.
/// It is a simple state machine that contains 3 states:
/// 1. The root value, which is a structure. If a value other than a structure is
/// serialized, this errors. This is determined by whether `fields` is Some(_).
/// 2. The structure is being processed, and the value of a field is being
/// serialized. The field_value_hash will be set to Some(_).
/// 3. The finish() function has been called and the hasher cannot be reused. The
/// hash should have been gotten at this point.
///
/// Inconsistent state are when a field is being serialized and `fields` is None, or
/// when a value (not struct) is being serialized and field_value_hash is None.
///
/// This will always fail on types that are unknown to the Request format (e.g. i8).
/// An UnsupportedTypeXXX error will be returned.
///
/// The only types that are supported right now are:
/// . Strings and string slices.
/// . Vector of u8 (byte strings).
/// . A structure as the base level. Its typename and fields are not validated.
///
/// Additionally, this will fail if there are unsupported data structure, for example
/// if a UnitVariant of another type than Blob is used, or a structure inside a
/// structure.
///
/// This does not validate whether a message is valid. This is very important as
/// the message format might change faster than the ID calculation.
struct RequestIdSerializer {
element_encoder: Option<Hasher>,
}
impl RequestIdSerializer {
pub fn new() -> RequestIdSerializer {
Default::default()
}
/// Finish the hashing and returns the RequestId for the structure that was
/// serialized.
///
/// This can only be called once (it borrows self). Since this whole class is not public,
/// it should not be a problem.
pub fn finish(self) -> Result<RequestId, RequestIdError> {
match self.element_encoder {
Some(Hasher::RequestId(hasher)) => Ok(RequestId(hasher.finalize().into())),
_ => Err(RequestIdError::EmptySerializer),
}
}
/// Hash a single value, returning its sha256_hash. If there is already a value
/// being hashed it will return an InvalidState. This cannot happen currently
/// as we don't allow embedded structures, but is left as a safeguard when
/// making changes.
fn hash_value<T>(&mut self, value: &T) -> Result<Sha256Hash, RequestIdError>
where
T: ?Sized + Serialize,
{
let prev_encoder = self.element_encoder.take();
self.element_encoder = Some(Hasher::value());
value.serialize(&mut *self)?;
let result = match self.element_encoder.take() {
Some(Hasher::Value(hasher)) => Ok(hasher.finalize().into()),
_ => Err(RequestIdError::InvalidState),
};
self.element_encoder = prev_encoder;
result
}
fn hash_fields(&mut self) -> Result<(), RequestIdError> {
match self.element_encoder.take() {
Some(Hasher::Struct { fields, parent }) => {
// Sort the fields.
let mut keyvalues: Vec<Vec<u8>> = fields
.keys()
.zip(fields.values())
.map(|(k, v)| {
let mut x = k.to_vec();
x.extend(v);
x
})
.collect();
keyvalues.sort();
let mut parent = *parent;
match &mut parent {
Hasher::RequestId(hasher) => {
for kv in keyvalues {
hasher.update(&kv);
}
Ok(())
}
_ => Err(RequestIdError::InvalidState),
}?;
self.element_encoder = Some(parent);
Ok(())
}
_ => Err(RequestIdError::InvalidState),
}
}
}
impl Default for RequestIdSerializer {
fn default() -> RequestIdSerializer {
RequestIdSerializer {
element_encoder: Some(Hasher::request_id()),
}
}
}
/// See https://serde.rs/data-format.html for more information on how to implement a
/// custom data format.
impl<'a> ser::Serializer for &'a mut RequestIdSerializer {
/// The output type produced by this `Serializer` during successful
/// serialization. Most serializers that produce text or binary output
/// should set `Ok = ()` and serialize into an [`io::Write`] or buffer
/// contained within the `Serializer` instance. Serializers that build
/// in-memory data structures may be simplified by using `Ok` to propagate
/// the data structure around.
///
/// [`io::Write`]: https://doc.rust-lang.org/std/io/trait.Write.html
type Ok = ();
/// The error type when some error occurs during serialization.
type Error = RequestIdError;
// Associated types for keeping track of additional state while serializing
// compound data structures like sequences and maps. In this case no
// additional state is required beyond what is already stored in the
// Serializer struct.
type SerializeSeq = Self;
type SerializeTuple = Self;
type SerializeTupleStruct = Self;
type SerializeTupleVariant = Self;
type SerializeMap = Self;
type SerializeStruct = Self;
type SerializeStructVariant = Self;
/// Serialize a `bool` value.
fn serialize_bool(self, _v: bool) -> Result<Self::Ok, Self::Error> {
Err(RequestIdError::UnsupportedTypeBool)
}
/// Serialize an `i8` value.
fn serialize_i8(self, _v: i8) -> Result<Self::Ok, Self::Error> {
Err(RequestIdError::UnsupportedTypeI8)
}
/// Serialize an `i16` value.
fn serialize_i16(self, _v: i16) -> Result<Self::Ok, Self::Error> {
Err(RequestIdError::UnsupportedTypeI16)
}
/// Serialize an `i32` value.
fn serialize_i32(self, _v: i32) -> Result<Self::Ok, Self::Error> {
Err(RequestIdError::UnsupportedTypeI32)
}
/// Serialize an `i64` value.
fn serialize_i64(self, _v: i64) -> Result<Self::Ok, Self::Error> {
Err(RequestIdError::UnsupportedTypeI64)
}
/// Serialize a `u8` value.
fn serialize_u8(self, v: u8) -> Result<Self::Ok, Self::Error> {
self.serialize_u64(v as u64)
}
/// Serialize a `u16` value.
fn serialize_u16(self, v: u16) -> Result<Self::Ok, Self::Error> {
self.serialize_u64(v as u64)
}
/// Serialize a `u32` value.
fn serialize_u32(self, v: u32) -> Result<Self::Ok, Self::Error> {
self.serialize_u64(v as u64)
}
/// Serialize a `u64` value.
fn serialize_u64(self, v: u64) -> Result<Self::Ok, Self::Error> {
// 10 bytes is enough for a 64-bit number in leb128.
let mut buffer = [0; 10];
let mut writable = &mut buffer[..];
let n_bytes =
leb128::write::unsigned(&mut writable, v).expect("Could not serialize number.");
self.serialize_bytes(&buffer[..n_bytes])
}
/// Serialize an `f32` value.
fn serialize_f32(self, _v: f32) -> Result<Self::Ok, Self::Error> {
Err(RequestIdError::UnsupportedTypeF32)
}
/// Serialize an `f64` value.
fn serialize_f64(self, _v: f64) -> Result<Self::Ok, Self::Error> {
Err(RequestIdError::UnsupportedTypeF64)
}
/// Serialize a character.
fn serialize_char(self, _v: char) -> Result<Self::Ok, Self::Error> {
Err(RequestIdError::UnsupportedTypeChar)
}
/// Serialize a `&str`.
fn serialize_str(self, v: &str) -> Result<Self::Ok, Self::Error> {
self.serialize_bytes(v.as_bytes())
}
/// Serialize a chunk of raw byte data.
fn serialize_bytes(self, v: &[u8]) -> Result<Self::Ok, Self::Error> {
match &mut self.element_encoder {
Some(Hasher::RequestId(hasher)) => {
hasher.update(v);
Ok(())
}
Some(Hasher::Value(hasher)) => {
hasher.update(v);
Ok(())
}
_ => Err(RequestIdError::InvalidState),
}
}
/// Serialize a [`None`] value.
fn serialize_none(self) -> Result<Self::Ok, Self::Error> {
// Compute the hash as if it was empty string or blob.
Ok(())
}
/// Serialize a [`Some(T)`] value.
fn serialize_some<T: ?Sized>(self, value: &T) -> Result<Self::Ok, Self::Error>
where
T: Serialize,
{
// Compute the hash as if it was the value itself.
value.serialize(self)
}
/// Serialize a `()` value.
fn serialize_unit(self) -> Result<Self::Ok, Self::Error> {
Err(RequestIdError::UnsupportedTypeUnit)
}
/// Serialize a unit struct like `struct Unit` or `PhantomData<T>`.
fn serialize_unit_struct(self, _name: &'static str) -> Result<Self::Ok, Self::Error> {
Err(RequestIdError::UnsupportedTypePhantomData)
}
/// Serialize a unit variant like `E::A` in `enum E { A, B }`.
fn serialize_unit_variant(
self,
_name: &'static str,
_variant_index: u32,
_variant: &'static str,
) -> Result<Self::Ok, Self::Error> {
Err(RequestIdError::UnsupportedTypeUnitVariant)
}
/// Serialize a newtype struct like `struct Millimeters(u8)`.
fn serialize_newtype_struct<T: ?Sized>(
self,
name: &'static str,
_value: &T,
) -> Result<Self::Ok, Self::Error>
where
T: Serialize,
{
Err(RequestIdError::UnsupportedTypeNewtypeStruct(
name.to_owned(),
))
}
/// Serialize a newtype variant like `E::N` in `enum E { N(u8) }`.
fn serialize_newtype_variant<T: ?Sized>(
self,
_name: &'static str,
_variant_index: u32,
_variant: &'static str,
_value: &T,
) -> Result<Self::Ok, Self::Error>
where
T: Serialize,
{
Err(RequestIdError::UnsupportedTypeNewTypeVariant)
}
/// Begin to serialize a variably sized sequence. This call must be
/// followed by zero or more calls to `serialize_element`, then a call to
/// `end`.
fn serialize_seq(self, _len: Option<usize>) -> Result<Self::SerializeSeq, Self::Error> {
Ok(self)
}
/// Begin to serialize a statically sized sequence whose length will be
/// known at deserialization time without looking at the serialized data.
/// This call must be followed by zero or more calls to `serialize_element`,
/// then a call to `end`.
fn serialize_tuple(self, _len: usize) -> Result<Self::SerializeTuple, Self::Error> {
Err(RequestIdError::UnsupportedTypeTuple)
}
/// Begin to serialize a tuple struct like `struct Rgb(u8, u8, u8)`. This
/// call must be followed by zero or more calls to `serialize_field`, then a
/// call to `end`.
fn serialize_tuple_struct(
self,
_name: &'static str,
_len: usize,
) -> Result<Self::SerializeTupleStruct, Self::Error> {
Err(RequestIdError::UnsupportedTypeTupleStruct)
}
/// Begin to serialize a tuple variant like `E::T` in `enum E { T(u8, u8)
/// }`. This call must be followed by zero or more calls to
/// `serialize_field`, then a call to `end`.
fn serialize_tuple_variant(
self,
_name: &'static str,
_variant_index: u32,
_variant: &'static str,
_len: usize,
) -> Result<Self::SerializeTupleVariant, Self::Error> {
Err(RequestIdError::UnsupportedTypeTupleVariant)
}
/// Begin to serialize a map. This call must be followed by zero or more
/// calls to `serialize_key` and `serialize_value`, then a call to `end`.
fn serialize_map(self, _len: Option<usize>) -> Result<Self::SerializeMap, Self::Error> {
Err(RequestIdError::UnsupportedTypeMap)
}
/// Begin to serialize a struct like `struct Rgb { r: u8, g: u8, b: u8 }`.
/// This call must be followed by zero or more calls to `serialize_field`,
/// then a call to `end`.
fn serialize_struct(
self,
_name: &'static str,
_len: usize,
) -> Result<Self::SerializeStruct, Self::Error> {
let parent_encoder = self.element_encoder.take();
match &parent_encoder {
Some(Hasher::RequestId(_)) => {
self.element_encoder = Some(Hasher::fields(Box::new(parent_encoder.unwrap())));
Ok(self)
}
_ => Err(RequestIdError::UnsupportedStructInsideStruct),
}
}
/// Begin to serialize a struct variant like `E::S` in `enum E { S { r: u8,
/// g: u8, b: u8 } }`. This call must be followed by zero or more calls to
/// `serialize_field`, then a call to `end`.
fn serialize_struct_variant(
self,
_name: &'static str,
_variant_index: u32,
_variant: &'static str,
_len: usize,
) -> Result<Self::SerializeStructVariant, Self::Error> {
Err(RequestIdError::UnsupportedTypeStructVariant)
}
fn is_human_readable(&self) -> bool {
false
}
}
// The following 7 impls deal with the serialization of compound types like
// sequences and maps. Serialization of such types is begun by a Serializer
// method and followed by zero or more calls to serialize individual elements of
// the compound type and one call to end the compound type.
//
// This impl is SerializeSeq so these methods are called after `serialize_seq`
// is called on the Serializer.
impl<'a> ser::SerializeSeq for &'a mut RequestIdSerializer {
// Must match the `Ok` type of the serializer.
type Ok = ();
// Must match the `Error` type of the serializer.
type Error = RequestIdError;
// Serialize a single element of the sequence.
fn serialize_element<T>(&mut self, value: &T) -> Result<Self::Ok, Self::Error>
where
T: ?Sized + Serialize,
{
let mut prev_encoder = self.element_encoder.take();
self.element_encoder = Some(Hasher::value());
value.serialize(&mut **self)?;
let value_encoder = self.element_encoder.take();
let hash = match value_encoder {
Some(Hasher::Value(hasher)) => Ok(hasher.finalize()),
_ => Err(RequestIdError::InvalidState),
}?;
self.element_encoder = prev_encoder.take();
match &mut self.element_encoder {
Some(Hasher::Value(hasher)) => {
hasher.update(hash);
Ok(())
}
_ => Err(RequestIdError::InvalidState),
}
}
// Close the sequence.
fn end(self) -> Result<Self::Ok, Self::Error> {
Ok(())
}
}
// Same thing but for tuples.
impl<'a> ser::SerializeTuple for &'a mut RequestIdSerializer {
type Ok = ();
type Error = RequestIdError;
fn serialize_element<T>(&mut self, _value: &T) -> Result<Self::Ok, Self::Error>
where
T: ?Sized + Serialize,
{
Err(RequestIdError::UnsupportedTypeTuple)
}
fn end(self) -> Result<Self::Ok, Self::Error> {
Ok(())
}
}
// Same thing but for tuple structs.
impl<'a> ser::SerializeTupleStruct for &'a mut RequestIdSerializer {
type Ok = ();
type Error = RequestIdError;
fn serialize_field<T>(&mut self, _value: &T) -> Result<Self::Ok, Self::Error>
where
T: ?Sized + Serialize,
{
Err(RequestIdError::UnsupportedTypeTupleStruct)
}
fn end(self) -> Result<Self::Ok, Self::Error> {
Ok(())
}
}
// Tuple variants are a little different. Refer back to the
// `serialize_tuple_variant` method above:
//
// self.output += "{";
// variant.serialize(&mut *self)?;
// self.output += ":[";
//
// So the `end` method in this impl is responsible for closing both the `]` and
// the `}`.
impl<'a> ser::SerializeTupleVariant for &'a mut RequestIdSerializer {
type Ok = ();
type Error = RequestIdError;
fn serialize_field<T>(&mut self, _value: &T) -> Result<Self::Ok, Self::Error>
where
T: ?Sized + Serialize,
{
Err(RequestIdError::UnsupportedTypeTupleVariant)
}
fn end(self) -> Result<Self::Ok, Self::Error> {
Ok(())
}
}
// Some `Serialize` types are not able to hold a key and value in memory at the
// same time so `SerializeMap` implementations are required to support
// `serialize_key` and `serialize_value` individually.
//
// There is a third optional method on the `SerializeMap` trait. The
// `serialize_entry` method allows serializers to optimize for the case where
// key and value are both available simultaneously. In JSON it doesn't make a
// difference so the default behavior for `serialize_entry` is fine.
impl<'a> ser::SerializeMap for &'a mut RequestIdSerializer {
type Ok = ();
type Error = RequestIdError;
// The Serde data model allows map keys to be any serializable type. JSON
// only allows string keys so the implementation below will produce invalid
// JSON if the key serializes as something other than a string.
//
// A real JSON serializer would need to validate that map keys are strings.
// This can be done by using a different Serializer to serialize the key
// (instead of `&mut **self`) and having that other serializer only
// implement `serialize_str` and return an error on any other data type.
fn serialize_key<T>(&mut self, _key: &T) -> Result<Self::Ok, Self::Error>
where
T: ?Sized + Serialize,
{
Err(RequestIdError::UnsupportedTypeMap)
}
// It doesn't make a difference whether the colon is printed at the end of
// `serialize_key` or at the beginning of `serialize_value`. In this case
// the code is a bit simpler having it here.
fn serialize_value<T>(&mut self, _value: &T) -> Result<Self::Ok, Self::Error>
where
T: ?Sized + Serialize,
{
Err(RequestIdError::UnsupportedTypeMap)
}
fn end(self) -> Result<Self::Ok, Self::Error> {
self.hash_fields()
}
}
// Structs are like maps in which the keys are constrained to be compile-time
// constant strings.
impl<'a> ser::SerializeStruct for &'a mut RequestIdSerializer {
type Ok = ();
type Error = RequestIdError;
fn serialize_field<T>(&mut self, key: &'static str, value: &T) -> Result<Self::Ok, Self::Error>
where
T: ?Sized + Serialize,
{
let key_hash = self.hash_value(key)?;
let value_hash = self.hash_value(value)?;
match &mut self.element_encoder {
Some(Hasher::Struct { fields, .. }) => {
fields.insert(key_hash, value_hash);
Ok(())
}
_ => Err(RequestIdError::InvalidState),
}
}
fn end(self) -> Result<Self::Ok, Self::Error> {
self.hash_fields()
}
}
// Similar to `SerializeTupleVariant`, here the `end` method is responsible for
// closing both of the curly braces opened by `serialize_struct_variant`.
impl<'a> ser::SerializeStructVariant for &'a mut RequestIdSerializer {
type Ok = ();
type Error = RequestIdError;
fn serialize_field<T>(
&mut self,
_key: &'static str,
_value: &T,
) -> Result<Self::Ok, Self::Error>
where
T: ?Sized + Serialize,
{
Err(RequestIdError::UnsupportedTypeStructVariant)
}
fn end(self) -> Result<Self::Ok, Self::Error> {
Ok(())
}
}
/// Derive the request ID from a serializable data structure.
///
/// See <https://hydra.dfinity.systems//build/268411/download/1/dfinity/spec/public/index.html#api-request-id>
///
/// # Warnings
///
/// The argument type simply needs to be serializable; the function
/// does NOT sift between fields to include them or not and assumes
/// the passed value only includes fields that are not part of the
/// envelope and should be included in the calculation of the request
/// id.
///
/// # Panics
///
/// This function panics if the value provided is not a struct or a map.
pub fn to_request_id<'a, V>(value: &V) -> Result<RequestId, RequestIdError>
where
V: 'a + Serialize,
{
let mut serializer = RequestIdSerializer::new();
value.serialize(&mut serializer)?;
serializer.finish()
}
#[cfg(test)]
mod tests {
use super::*;
use crate::export::Principal;
use std::convert::TryFrom;
/// The actual example used in the public spec in the Request ID section.
#[test]
fn public_spec_example() {
#[derive(Serialize)]
struct PublicSpecExampleStruct {
request_type: &'static str,
canister_id: Principal,
method_name: &'static str,
#[serde(with = "serde_bytes")]
arg: Vec<u8>,
}
let data = PublicSpecExampleStruct {
request_type: "call",
canister_id: Principal::try_from(&vec![0, 0, 0, 0, 0, 0, 0x04, 0xD2]).unwrap(), // 1234 in u64
method_name: "hello",
arg: b"DIDL\x00\xFD*".to_vec(),
};
// Hash taken from the example on the public spec.
let request_id = to_request_id(&data).unwrap();
assert_eq!(
hex::encode(request_id.0),
"8781291c347db32a9d8c10eb62b710fce5a93be676474c42babc74c51858f94b"
);
}
/// The same example as above, except we use the ApiClient enum newtypes.
#[test]
fn public_spec_example_api_client() {
#[derive(Serialize)]
#[serde(rename_all = "snake_case")]
#[serde(tag = "request_type")]
enum PublicSpec {
Call {
canister_id: Principal,
method_name: String,
#[serde(with = "serde_bytes")]
arg: Option<Vec<u8>>,
},
}
let data = PublicSpec::Call {
canister_id: Principal::try_from(&vec![0, 0, 0, 0, 0, 0, 0x04, 0xD2]).unwrap(), // 1234 in u64
method_name: "hello".to_owned(),
arg: Some(b"DIDL\x00\xFD*".to_vec()),
};
// Hash taken from the example on the public spec.
let request_id = to_request_id(&data).unwrap();
assert_eq!(
hex::encode(request_id.0),
"8781291c347db32a9d8c10eb62b710fce5a93be676474c42babc74c51858f94b"
);
}
/// A simple example with nested arrays and blobs
#[test]
#[allow(clippy::string_lit_as_bytes)]
fn array_example() {
#[derive(Serialize)]
struct NestedArraysExample {
sender: Principal,
paths: Vec<Vec<serde_bytes::ByteBuf>>,
}
let data = NestedArraysExample {
sender: Principal::try_from(&vec![0, 0, 0, 0, 0, 0, 0x04, 0xD2]).unwrap(), // 1234 in u64
paths: vec![
vec![],
vec![serde_bytes::ByteBuf::from("".as_bytes())],
vec![
serde_bytes::ByteBuf::from("hello".as_bytes()),
serde_bytes::ByteBuf::from("world".as_bytes()),
],
],
};
let request_id = to_request_id(&data).unwrap();
assert_eq!(
hex::encode(request_id.0),
"97d6f297aea699aec85d3377c7643ea66db810aba5c4372fbc2082c999f452dc"
);
/* The above was generated using ic-ref as follows:
~/dfinity/ic-ref/impl $ cabal repl ic-ref
Build profile: -w ghc-8.8.4 -O1
…
*Main> :set -XOverloadedStrings
*Main> :m + IC.HTTP.RequestId IC.HTTP.GenR
*Main IC.HTTP.RequestId IC.HTTP.GenR> import qualified Data.HashMap.Lazy as HM
*Main IC.HTTP.RequestId IC.HTTP.GenR HM> let input = GRec (HM.fromList [("sender", GBlob "\0\0\0\0\0\0\x04\xD2"), ("paths", GList [ GList [], GList [GBlob ""], GList [GBlob "hello", GBlob "world"]])])
*Main IC.HTTP.RequestId IC.HTTP.GenR HM> putStrLn $ IC.Types.prettyBlob (requestId input )
0x97d6f297aea699aec85d3377c7643ea66db810aba5c4372fbc2082c999f452dc
*/
}
/// A simple example with just an empty array
#[test]
fn array_example_empty_array() {
#[derive(Serialize)]
struct NestedArraysExample {
paths: Vec<Vec<serde_bytes::ByteBuf>>,
}
let data = NestedArraysExample { paths: vec![] };
let request_id = to_request_id(&data).unwrap();
assert_eq!(
hex::encode(request_id.0),
"99daa8c80a61e87ac1fdf9dd49e39963bfe4dafb2a45095ebf4cad72d916d5be"
);
/* The above was generated using ic-ref as follows:
~/dfinity/ic-ref/impl $ cabal repl ic-ref
Build profile: -w ghc-8.8.4 -O1
…
*Main> :set -XOverloadedStrings
*Main> :m + IC.HTTP.RequestId IC.HTTP.GenR
*Main IC.HTTP.RequestId IC.HTTP.GenR> import qualified Data.HashMap as HM
*Main IC.HTTP.RequestId IC.HTTP.GenR HM> let input = GRec (HM.fromList [("paths", GList [])])
*Main IC.HTTP.RequestId IC.HTTP.GenR HM> putStrLn $ IC.Types.prettyBlob (requestId input )
0x99daa8c80a61e87ac1fdf9dd49e39963bfe4dafb2a45095ebf4cad72d916d5be
*/
}
/// A simple example with an array that holds an empty array
#[test]
fn array_example_array_with_empty_array() {
#[derive(Serialize)]
struct NestedArraysExample {
paths: Vec<Vec<serde_bytes::ByteBuf>>,
}
let data = NestedArraysExample {
paths: vec![vec![]],
};
let request_id = to_request_id(&data).unwrap();
assert_eq!(
hex::encode(request_id.0),
"ea01a9c3d3830db108e0a87995ea0d4183dc9c6e51324e9818fced5c57aa64f5"
);
/* The above was generated using ic-ref as follows:
~/dfinity/ic-ref/impl $ cabal repl ic-ref
Build profile: -w ghc-8.8.4 -O1
…
*Main> :set -XOverloadedStrings
*Main> :m + IC.HTTP.RequestId IC.HTTP.GenR
*Main IC.HTTP.RequestId IC.HTTP.GenR> import qualified Data.HashMap.Lazy as HM
*Main IC.HTTP.RequestId IC.HTTP.GenR HM> let input = GRec (HM.fromList [("paths", GList [ GList [] ])])
*Main IC.HTTP.RequestId IC.HTTP.GenR HM> putStrLn $ IC.Types.prettyBlob (requestId input )
0xea01a9c3d3830db108e0a87995ea0d4183dc9c6e51324e9818fced5c57aa64f5
*/
}
/// We do not support creating a request id from a map.
/// It adds complexity, and isn't that useful anyway because a real request would
/// have to have different kinds of values (strings, principals, arrays) and
/// we don't support the wrappers that would be required to make that work
/// with rust maps.
#[test]
fn maps_are_not_supported() {
let mut data = BTreeMap::new();
data.insert("request_type", "call");
data.insert("canister_id", "a principal / the canister id");
data.insert("method_name", "hello");
data.insert("arg", "some argument value");
let error = to_request_id(&data).unwrap_err();
assert_eq!(error, RequestIdError::UnsupportedTypeMap);
}
}