i2c_character_display/
lib.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
//! This Rust `embedded-hal`-based library is a simple way to control a character display that has either a [HD44780](https://en.wikipedia.org/wiki/Hitachi_HD44780_LCD_controller)
//! or [AiP31068](https://support.newhavendisplay.com/hc/en-us/articles/4414486901783--AiP31068) contoller with an I2C interface
//! in an embedded, `no_std` environment. A number of I2C interfaces are supported:
//!
//! - **[Adafruit I2C/SPI LCD Backpack](https://www.adafruit.com/product/292)** - This is a simple I2C adapter for HD44780 character displays that can be used with either I2C
//!   or SPI. It is available from Adafruit and other retailers. This library only supports the I2C interface of this adapter.
//! - **PCF8574-based I2C adapter** - These adapters are ubiquitous on eBay and AliExpress and have no clear branding. Furthermore, some HD44780-based character
//!   display makers, such as [Surenoo](https://www.surenoo.com), integrate a PCF8574T directly on the display board enabling I2C connections without a seperate adapter.
//!   The most common pin wiring uses 4 data pins and 3 control pins. Most models have the display's 4-bit mode data pins connected to P4-P7 of the PCF8574.
//!   This library supports that configuration, though it would be straightforward to add support for other pin configurations.
//! - **AiP31068** - This is a character display controller with a built-in I2C support. The command set is similar to the HD44780, but the controller
//!   operates in 8-bit mode and is initialized differently.
//!
//! Key features include:
//! - Convenient high-level API for controlling many types of character display
//! - Support for custom characters
//! - Backlight control on hardwarware that supports it
//! - `core::fmt::Write` implementation for easy use with the `write!` macro
//! - Compatible with the `embedded-hal` traits v1.0 and later
//! - Support for character displays that uses multiple HD44780 drivers, such as the 40x4 display
//! - Optional support for the `defmt` and `ufmt` logging frameworks
//! - Optional support for reading from the display on controllers and adapters that support it
//!
//! ## Usage
//! Add this to your `Cargo.toml`:
//! ```toml
//! [dependencies]
//! i2c-character-display = { version = "0.4", features = ["defmt"] }
//! ```
//! The `features = ["defmt"]` line is optional and enables the `defmt` feature, which allows the library's errors to be used with the `defmt` logging
//! framework. Another optional feature is `features = ["ufmt"]`, which enables the `ufmt` feature, allowing the `uwriteln!` and `uwrite!` macros to be used.
//!
//! Then select the appropriate adapter for your display:
//! ```rust
//! use i2c_character_display::{AdafruitLCDBackpack, CharacterDisplayPCF8574T, LcdDisplayType};
//! use embedded_hal::delay::DelayMs;
//! use embedded_hal::i2c::I2c;
//!
//! // board setup
//! let i2c = ...; // I2C peripheral
//! let delay = ...; // DelayMs implementation
//!
//! // It is recommended that the `i2c` object be wrapped in an `embedded_hal_bus::i2c::CriticalSectionDevice` so that it can be shared between
//! // multiple peripherals.
//!
//! // Adafruit backpack for a single HD44780 controller
//! let mut lcd = AdafruitLCDBackpack::new(i2c, LcdDisplayType::Lcd16x2, delay);
//! // PCF8574T adapter for a single HD44780 controller
//! let mut lcd = CharacterDisplayPCF8574T::new(i2c, LcdDisplayType::Lcd16x2, delay);
//! // Character display with dual HD44780 controllers using a single PCF8574T I2C adapter
//! let mut lcd = CharacterDisplayDualHD44780::new(i2c, LcdDisplayType::Lcd40x4, delay);
//! // Character display with the AiP31068 controller
//! let mut lcd = CharacterDisplayAIP31068::new(i2c, LcdDisplayType::Lcd16x2, delay);
//! ```
//! When creating the display object, you can choose the display type from the `LcdDisplayType` enum. The display type should match the physical
//! display you are using. This display type configures the number of rows and columns, and the internal row offsets for the display.
//!
//! Initialize the display:
//! ```rust
//! if let Err(e) = lcd.init() {
//!    panic!("Error initializing LCD: {}", e);
//! }
//! ```
//! Use the display:
//! ```rust
//! // set up the display
//! lcd.backlight(true)?.clear()?.home()?;
//! // print a message
//! lcd.print("Hello, world!")?;
//! // can also use the `core::fmt::write!` macro
//! use core::fmt::Write;
//!
//! write!(lcd, "Hello, world!")?;
//! ```
//! The optional `ufmt` feature enables the `ufmt` crate, which allows the `uwriteln!` and `uwrite!` macros to be used with the display:
//! ```rust
//! use ufmt::uwriteln;
//!
//! uwriteln!(lcd, "Hello, world!")?;
//! ```
//!
//! The various methods for controlling the LCD are also available. Each returns a `Result` that wraps the display object in `Ok()`, allowing for easy chaining
//! of commands. For example:
//! ```rust
//! lcd.backlight(true)?.clear()?.home()?.print("Hello, world!")?;
//! ```
//! ### Reading from the display
//! Some I2C adapters support reading data from the HD44780 controller. For the I2C adapters that support it, the `read_device_data` method can be used to read
//! from either the CGRAM or DDRAM at the current cursor position. The `read_address_counter` method can be used to read the address counter from the HD44780 controller.
//! In both cases, the specific meaning of the data depends on the prior commands sent to the display. See the HD44780 datasheet for more information.
//!
//! ### Backlight control
//! All HD44780 controllers support backlight control. The `backlight` method can be used to turn the backlight on or off. The AiP31068 controller does not support
//! backlight control, and calling the `backlight` method with a AiP31068 controller will return an error.
//!
//! ### Multiple HD44780 controller character displays
//! Some character displays, such as the 40x4 display, use two HD44780 controllers to drive the display. This library supports these displays by
//! treating them as one logical display with multiple HD44780 controllers. The `CharacterDisplayDualHD44780` type is used to control these displays.
//! Use the various methods to control the display as you would with a single HD44780 controller display. The `set_cursor` method sets the active HD44780
//! conmtroller device based on the row number you select.
//!
#![no_std]
#![allow(dead_code, non_camel_case_types, non_upper_case_globals)]
use core::fmt::Display;

use embedded_hal::{delay::DelayNs, i2c};

/// HD44780 based character display using a generic PCF8574T I2C adapter.
pub type CharacterDisplayPCF8574T<I2C, DELAY> =
    BaseCharacterDisplay<I2C, DELAY, crate::driver::hd44780::GenericHD44780PCF8574T<I2C>>;

/// HD44780 based character display using an Adafruit I2C/SPI LCD backpack adapter.
pub type AdafruitLCDBackpack<I2C, DELAY> =
    BaseCharacterDisplay<I2C, DELAY, crate::driver::hd44780::AdafruitLCDBackpack<I2C>>;

/// Character display using dual HD44780 I2C drivers connected using a generic PCF8574T I2C adapter with a pinout that
/// has two enable pins, one for each HD44780 driver. Typically used for 40x4 character displays.
pub type CharacterDisplayDualHD44780<I2C, DELAY> =
    BaseCharacterDisplay<I2C, DELAY, crate::driver::hd44780::DualHD44780PCF8574T<I2C>>;

/// Character display using the AIP31068 controller with built-in I2C adapter.
pub type CharacterDisplayAIP31068<I2C, DELAY> =
    BaseCharacterDisplay<I2C, DELAY, crate::driver::aip31068::AIP31068<I2C>>;

// commands
const LCD_CMD_CLEARDISPLAY: u8 = 0x01; //  Clear display, set cursor position to zero
const LCD_CMD_RETURNHOME: u8 = 0x02; //  Set cursor position to zero
const LCD_CMD_ENTRYMODESET: u8 = 0x04; //  Sets the entry mode
const LCD_CMD_DISPLAYCONTROL: u8 = 0x08; //  Controls the display; does stuff like turning it off and on
const LCD_CMD_CURSORSHIFT: u8 = 0x10; //  Lets you move the cursor
const LCD_CMD_FUNCTIONSET: u8 = 0x20; //  Used to send the function to set to the display
const LCD_CMD_SETCGRAMADDR: u8 = 0x40; //  Used to set the CGRAM (character generator RAM) with characters
const LCD_CMD_SETDDRAMADDR: u8 = 0x80; //  Used to set the DDRAM (Display Data RAM)

// flags for display entry mode
const LCD_FLAG_ENTRYRIGHT: u8 = 0x00; //  Used to set text to flow from right to left
const LCD_FLAG_ENTRYLEFT: u8 = 0x02; //  Uset to set text to flow from left to right
const LCD_FLAG_ENTRYSHIFTINCREMENT: u8 = 0x01; //  Used to 'right justify' text from the cursor
const LCD_FLAG_ENTRYSHIFTDECREMENT: u8 = 0x00; //  Used to 'left justify' text from the cursor

// flags for display on/off control
const LCD_FLAG_DISPLAYON: u8 = 0x04; //  Turns the display on
const LCD_FLAG_DISPLAYOFF: u8 = 0x00; //  Turns the display off
const LCD_FLAG_CURSORON: u8 = 0x02; //  Turns the cursor on
const LCD_FLAG_CURSOROFF: u8 = 0x00; //  Turns the cursor off
const LCD_FLAG_BLINKON: u8 = 0x01; //  Turns on the blinking cursor
const LCD_FLAG_BLINKOFF: u8 = 0x00; //  Turns off the blinking cursor

// flags for display/cursor shift
const LCD_FLAG_DISPLAYMOVE: u8 = 0x08; //  Flag for moving the display
const LCD_FLAG_CURSORMOVE: u8 = 0x00; //  Flag for moving the cursor
const LCD_FLAG_MOVERIGHT: u8 = 0x04; //  Flag for moving right
const LCD_FLAG_MOVELEFT: u8 = 0x00; //  Flag for moving left

// flags for function set
const LCD_FLAG_8BITMODE: u8 = 0x10; //  LCD 8 bit mode
const LCD_FLAG_4BITMODE: u8 = 0x00; //  LCD 4 bit mode
const LCD_FLAG_2LINE: u8 = 0x08; //  LCD 2 line mode
const LCD_FLAG_1LINE: u8 = 0x00; //  LCD 1 line mode
const LCD_FLAG_5x10_DOTS: u8 = 0x04; //  10 pixel high font mode
const LCD_FLAG_5x8_DOTS: u8 = 0x00; //  8 pixel high font mode

mod driver;

const MAX_DEVICE_COUNT: usize = 2;

#[derive(Debug, PartialEq, Copy, Clone)]
/// Errors that can occur when using the LCD backpack
pub enum CharacterDisplayError<I2C>
where
    I2C: i2c::I2c,
{
    /// I2C error returned from the underlying I2C implementation
    I2cError(I2C::Error),
    /// Row is out of range
    RowOutOfRange,
    /// Column is out of range
    ColumnOutOfRange,
    /// Formatting error
    FormattingError(core::fmt::Error),
    /// The discplay type is not compatible with specific adapter.
    UnsupportedDisplayType,
    /// The requested operation is not supported by the adapter or controller
    UnsupportedOperation,
    /// Read operation is not supported by the adapter
    ReadNotSupported,
    /// Internal error - bad device ID
    BadDeviceId,
    /// Internal error - buffer too small
    BufferTooSmall,
}

impl<I2C> From<core::fmt::Error> for CharacterDisplayError<I2C>
where
    I2C: i2c::I2c,
{
    fn from(err: core::fmt::Error) -> Self {
        CharacterDisplayError::FormattingError(err)
    }
}

impl<I2C> From<&CharacterDisplayError<I2C>> for &'static str
where
    I2C: i2c::I2c,
{
    fn from(err: &CharacterDisplayError<I2C>) -> Self {
        match err {
            CharacterDisplayError::I2cError(_) => "I2C error",
            CharacterDisplayError::RowOutOfRange => "Row out of range",
            CharacterDisplayError::ColumnOutOfRange => "Column out of range",
            CharacterDisplayError::FormattingError(_) => "Formatting error",
            CharacterDisplayError::UnsupportedDisplayType => "Unsupported display type",
            CharacterDisplayError::UnsupportedOperation => "Unsupported operation",
            CharacterDisplayError::ReadNotSupported => "Read operation not supported",
            CharacterDisplayError::BadDeviceId => "Bad device ID",
            CharacterDisplayError::BufferTooSmall => "Buffer too small",
        }
    }
}

#[cfg(feature = "defmt")]
impl<I2C> defmt::Format for CharacterDisplayError<I2C>
where
    I2C: i2c::I2c,
{
    fn format(&self, fmt: defmt::Formatter) {
        let msg: &'static str = From::from(self);
        defmt::write!(fmt, "{}", msg);
    }
}

#[cfg(feature = "ufmt")]
impl<I2C> ufmt::uDisplay for CharacterDisplayError<I2C>
where
    I2C: i2c::I2c,
{
    fn fmt<W>(&self, w: &mut ufmt::Formatter<'_, W>) -> Result<(), W::Error>
    where
        W: ufmt::uWrite + ?Sized,
    {
        let msg: &'static str = From::from(self);
        ufmt::uwrite!(w, "{}", msg)
    }
}

impl<I2C> Display for CharacterDisplayError<I2C>
where
    I2C: i2c::I2c,
{
    fn fmt(&self, f: &mut core::fmt::Formatter<'_>) -> core::fmt::Result {
        let msg: &'static str = From::from(self);
        write!(f, "{}", msg)
    }
}

#[derive(Debug, PartialEq, Clone, Copy)]
/// The type of LCD display. This is used to determine the number of rows and columns, and the row offsets.
pub enum LcdDisplayType {
    /// 20x4 display
    Lcd20x4,
    /// 20x2 display
    Lcd20x2,
    /// 16x2 display
    Lcd16x2,
    /// 16x4 display
    Lcd16x4,
    /// 8x2 display
    Lcd8x2,
    /// 40x2 display
    Lcd40x2,
    /// 40x4 display. Should be used with a DualHD44780 adapter.
    Lcd40x4,
}

impl From<&LcdDisplayType> for &'static str {
    fn from(display_type: &LcdDisplayType) -> Self {
        match display_type {
            LcdDisplayType::Lcd20x4 => "20x4",
            LcdDisplayType::Lcd20x2 => "20x2",
            LcdDisplayType::Lcd16x2 => "16x2",
            LcdDisplayType::Lcd16x4 => "16x4",
            LcdDisplayType::Lcd8x2 => "8x2",
            LcdDisplayType::Lcd40x2 => "40x2",
            LcdDisplayType::Lcd40x4 => "40x4",
        }
    }
}

#[cfg(feature = "defmt")]
impl defmt::Format for LcdDisplayType {
    fn format(&self, fmt: defmt::Formatter) {
        let msg: &'static str = From::from(self);
        defmt::write!(fmt, "{}", msg);
    }
}

#[cfg(feature = "ufmt")]
impl ufmt::uDisplay for LcdDisplayType {
    fn fmt<W>(&self, w: &mut ufmt::Formatter<'_, W>) -> Result<(), W::Error>
    where
        W: ufmt::uWrite + ?Sized,
    {
        let msg: &'static str = From::from(self);
        ufmt::uwrite!(w, "{}", msg)
    }
}

impl Display for LcdDisplayType {
    fn fmt(&self, f: &mut core::fmt::Formatter<'_>) -> core::fmt::Result {
        let msg: &'static str = From::from(self);
        write!(f, "{}", msg)
    }
}

impl LcdDisplayType {
    /// Get the number of rows for the display type
    const fn rows(&self) -> u8 {
        match self {
            LcdDisplayType::Lcd20x4 => 4,
            LcdDisplayType::Lcd20x2 => 2,
            LcdDisplayType::Lcd16x2 => 2,
            LcdDisplayType::Lcd16x4 => 4,
            LcdDisplayType::Lcd8x2 => 2,
            LcdDisplayType::Lcd40x2 => 2,
            LcdDisplayType::Lcd40x4 => 4,
        }
    }

    /// Get the number of columns for the display type
    const fn cols(&self) -> u8 {
        match self {
            LcdDisplayType::Lcd20x4 => 20,
            LcdDisplayType::Lcd20x2 => 20,
            LcdDisplayType::Lcd16x2 => 16,
            LcdDisplayType::Lcd16x4 => 16,
            LcdDisplayType::Lcd8x2 => 8,
            LcdDisplayType::Lcd40x2 => 40,
            LcdDisplayType::Lcd40x4 => 40,
        }
    }

    /// Get the row offsets for the display type. This always returns an array of length 4.
    /// For displays with less than 4 rows, the unused rows will be set to offsets offscreen.
    const fn row_offsets(&self) -> [u8; 4] {
        match self {
            LcdDisplayType::Lcd20x4 => [0x00, 0x40, 0x14, 0x54],
            LcdDisplayType::Lcd20x2 => [0x00, 0x40, 0x00, 0x40],
            LcdDisplayType::Lcd16x2 => [0x00, 0x40, 0x10, 0x50],
            LcdDisplayType::Lcd16x4 => [0x00, 0x40, 0x10, 0x50],
            LcdDisplayType::Lcd8x2 => [0x00, 0x40, 0x00, 0x40],
            LcdDisplayType::Lcd40x2 => [0x00, 0x40, 0x00, 0x40],
            LcdDisplayType::Lcd40x4 => [0x00, 0x40, 0x00, 0x40],
        }
    }
}

pub struct DeviceSetupConfig<I2C, DELAY>
where
    I2C: i2c::I2c,
    DELAY: DelayNs,
{
    lcd_type: LcdDisplayType,
    i2c: I2C,
    address: u8,
    delay: DELAY,
}

pub struct BaseCharacterDisplay<I2C, DELAY, DEVICE>
where
    I2C: i2c::I2c,
    DELAY: DelayNs,
    DEVICE: driver::DriverTrait<I2C, DELAY>,
{
    config: DeviceSetupConfig<I2C, DELAY>,
    device: DEVICE,
}

impl<I2C, DELAY, DEVICE> BaseCharacterDisplay<I2C, DELAY, DEVICE>
where
    I2C: i2c::I2c,
    DELAY: DelayNs,
    DEVICE: driver::DriverTrait<I2C, DELAY>,
{
    /// Create a new character display object with the default I2C address for the adapter.
    pub fn new(i2c: I2C, lcd_type: LcdDisplayType, delay: DELAY) -> Self {
        Self::new_with_address(i2c, DEVICE::default_i2c_address(), lcd_type, delay)
    }

    /// Create a new character display object with a specific I2C address for the adapter.
    pub fn new_with_address(i2c: I2C, address: u8, lcd_type: LcdDisplayType, delay: DELAY) -> Self {
        Self {
            config: DeviceSetupConfig {
                lcd_type,
                i2c,
                address,
                delay,
            },
            device: DEVICE::default(),
        }
    }

    /// Initialize the display. This must be called before using the display.
    pub fn init(&mut self) -> Result<(), CharacterDisplayError<I2C>> {
        self.device.init(&mut self.config)
    }

    /// returns a reference to the I2C peripheral. mostly needed for testing
    fn i2c(&mut self) -> &mut I2C {
        &mut self.config.i2c
    }

    /// returns the `LcdDisplayType` used to create the display
    pub fn display_type(&self) -> LcdDisplayType {
        self.config.lcd_type
    }

    /// Supports the ability to read from the display.
    pub fn supports_reads() -> bool {
        DEVICE::supports_reads()
    }

    // /// Writes a data byte to the display. Normally users do not need to call this directly.
    // /// For multiple devices, this writes the data to the currently active contoller device.
    // fn write_data(&mut self, data: u8) -> Result<&mut Self, CharacterDisplayError<I2C>> {
    //     self.device.write_data(&mut self.config, data)?;
    //     Ok(self)
    // }

    /// Reads into the buffer data from the display device either the CGRAM or DDRAM at the current cursor position.
    /// For multiple devices, this reads from the currently active device as set by the cursor position.
    /// The amount of data read is determined by the length of the buffer.
    /// Not all adapters support reads from the device. This will return an error if the adapter
    /// does not support reads.
    pub fn read_device_data(
        &mut self,
        buffer: &mut [u8],
    ) -> Result<&mut Self, CharacterDisplayError<I2C>> {
        self.device.read_device_data(&mut self.config, buffer)?;

        Ok(self)
    }

    /// Reads the address counter from the display device. The ready bit is masked off.
    /// Not all adapters support reads from the device. This will return an error if the adapter
    /// does not support reads.
    pub fn read_address_counter(&mut self) -> Result<u8, CharacterDisplayError<I2C>> {
        self.device.read_address_counter(&mut self.config)
    }

    //--------------------------------------------------------------------------------------------------
    // high level commands, for the user!
    //--------------------------------------------------------------------------------------------------

    /// Clear the display
    pub fn clear(&mut self) -> Result<&mut Self, CharacterDisplayError<I2C>> {
        self.device.clear(&mut self.config)?;
        Ok(self)
    }

    /// Set the cursor to the home position.
    pub fn home(&mut self) -> Result<&mut Self, CharacterDisplayError<I2C>> {
        self.device.home(&mut self.config)?;
        Ok(self)
    }

    /// Set the cursor position at specified column and row. Columns and rows are zero-indexed.
    pub fn set_cursor(
        &mut self,
        col: u8,
        row: u8,
    ) -> Result<&mut Self, CharacterDisplayError<I2C>> {
        self.device.set_cursor(&mut self.config, col, row)?;
        Ok(self)
    }

    /// Set the cursor visibility.
    pub fn show_cursor(
        &mut self,
        show_cursor: bool,
    ) -> Result<&mut Self, CharacterDisplayError<I2C>> {
        self.device.show_cursor(&mut self.config, show_cursor)?;
        Ok(self)
    }

    /// Set the cursor blinking.
    pub fn blink_cursor(
        &mut self,
        blink_cursor: bool,
    ) -> Result<&mut Self, CharacterDisplayError<I2C>> {
        self.device.blink_cursor(&mut self.config, blink_cursor)?;
        Ok(self)
    }

    /// Set the display visibility.
    pub fn show_display(
        &mut self,
        show_display: bool,
    ) -> Result<&mut Self, CharacterDisplayError<I2C>> {
        self.device.show_display(&mut self.config, show_display)?;
        Ok(self)
    }

    /// Scroll the display to the left.
    pub fn scroll_display_left(&mut self) -> Result<&mut Self, CharacterDisplayError<I2C>> {
        self.device.scroll_left(&mut self.config)?;
        Ok(self)
    }

    /// Scroll the display to the right.
    pub fn scroll_display_right(&mut self) -> Result<&mut Self, CharacterDisplayError<I2C>> {
        self.device.scroll_right(&mut self.config)?;
        Ok(self)
    }

    /// Set the text flow direction to left to right.
    pub fn left_to_right(&mut self) -> Result<&mut Self, CharacterDisplayError<I2C>> {
        self.device.left_to_right(&mut self.config)?;
        Ok(self)
    }

    /// Set the text flow direction to right to left.
    pub fn right_to_left(&mut self) -> Result<&mut Self, CharacterDisplayError<I2C>> {
        self.device.right_to_left(&mut self.config)?;
        Ok(self)
    }

    /// Set the auto scroll mode.
    pub fn autoscroll(
        &mut self,
        autoscroll: bool,
    ) -> Result<&mut Self, CharacterDisplayError<I2C>> {
        self.device.autoscroll(&mut self.config, autoscroll)?;
        Ok(self)
    }

    /// Create a new custom character.
    pub fn create_char(
        &mut self,
        location: u8,
        charmap: [u8; 8],
    ) -> Result<&mut Self, CharacterDisplayError<I2C>> {
        self.device
            .create_char(&mut self.config, location, charmap)?;
        Ok(self)
    }

    /// Prints a string to the LCD at the current cursor position of the active device.
    pub fn print(&mut self, text: &str) -> Result<&mut Self, CharacterDisplayError<I2C>> {
        self.device.print(&mut self.config, text)?;
        Ok(self)
    }

    /// Turn the backlight on or off.
    /// Note that the AIP31068 controller does not support backlight control.
    pub fn backlight(&mut self, on: bool) -> Result<&mut Self, CharacterDisplayError<I2C>> {
        self.device.backlight(&mut self.config, on)?;
        Ok(self)
    }
}

/// Implement the `core::fmt::Write` trait, allowing it to be used with the `write!` macro.
/// This is a convenience method for printing to the display. For multi-device, this will print to the active device as set by
/// `set_cursor`.
impl<I2C, DELAY, DEVICE> core::fmt::Write for BaseCharacterDisplay<I2C, DELAY, DEVICE>
where
    I2C: i2c::I2c,
    DELAY: DelayNs,
    DEVICE: driver::DriverTrait<I2C, DELAY>,
{
    fn write_str(&mut self, s: &str) -> Result<(), core::fmt::Error> {
        if let Err(_e) = self.print(s) {
            return Err(core::fmt::Error);
        }
        Ok(())
    }
}

#[cfg(feature = "ufmt")]
/// Implement the `ufmt::uWrite` trait, allowing it to be used with the `uwriteln!` and `uwrite!` macros.
/// This is a convenience method for printing to the display. For multi-device, this will print to the active device as set by
/// `set_cursor`.
impl<I2C, DELAY, DEVICE> ufmt::uWrite for BaseCharacterDisplay<I2C, DELAY, DEVICE>
where
    I2C: i2c::I2c,
    DELAY: DelayNs,
    DEVICE: driver::DriverTrait<I2C, DELAY>,
{
    fn write_str(&mut self, s: &str) -> Result<(), CharacterDisplayError<I2C>> {
        if let Err(e) = self.print(s) {
            return Err(e);
        }
        Ok(())
    }

    type Error = CharacterDisplayError<I2C>;
}

#[cfg(test)]
mod lib_tests {
    extern crate std;
    use super::*;
    use embedded_hal_mock::eh1::{
        delay::NoopDelay,
        i2c::{Mock as I2cMock, Transaction as I2cTransaction},
    };

    #[test]
    fn test_character_display_pcf8574t_init() {
        let i2c_address = 0x27_u8;
        let expected_i2c_transactions = std::vec![
            // the PCF8574T has no adapter init sequence, so nothing to prepend
            // the LCD init sequence
            // write low nibble of 0x03 3 times
            I2cTransaction::write(i2c_address, std::vec![0b0011_0100]), // low nibble, rw=0, enable=1
            I2cTransaction::write(i2c_address, std::vec![0b0011_0000]), // low nibble, rw=0, enable=0
            I2cTransaction::write(i2c_address, std::vec![0b0011_0100]), // low nibble, rw=0, enable=1
            I2cTransaction::write(i2c_address, std::vec![0b0011_0000]), // low nibble, rw=0, enable=0
            I2cTransaction::write(i2c_address, std::vec![0b0011_0100]), // low nibble, rw=0, enable=1
            I2cTransaction::write(i2c_address, std::vec![0b0011_0000]), // low nibble, rw=0, enable=0
            // write high nibble of 0x02 one time
            I2cTransaction::write(i2c_address, std::vec![0b0010_0100]), // high nibble, rw=0, enable=1
            I2cTransaction::write(i2c_address, std::vec![0b0010_0000]), // high nibble, rw=0, enable=0
            // I2cTransaction::write(i2c_address, std::vec![0b0000_1000]),    // backlight on
            // LCD_CMD_FUNCTIONSET | LCD_FLAG_4BITMODE | LCD_FLAG_5x8_DOTS | LCD_FLAG_2LINE
            // = 0x20 | 0x00 | 0x00 | 0x08 = 0x28
            I2cTransaction::write(i2c_address, std::vec![0b0010_0100]), // high nibble, rw=0, enable=1
            I2cTransaction::write(i2c_address, std::vec![0b0010_0000]), // high nibble, rw=0, enable=0
            I2cTransaction::write(i2c_address, std::vec![0b1000_0100]), // low nibble, rw=0, enable=1
            I2cTransaction::write(i2c_address, std::vec![0b1000_0000]), // low nibble, rw=0, enable=0
            // LCD_CMD_DISPLAYCONTROL | LCD_FLAG_DISPLAYON | LCD_FLAG_CURSOROFF | LCD_FLAG_BLINKOFF
            // = 0x08 | 0x04 | 0x00 | 0x00 = 0x0C
            I2cTransaction::write(i2c_address, std::vec![0b0000_0100]), // high nibble, rw=0, enable=1
            I2cTransaction::write(i2c_address, std::vec![0b0000_0000]), // high nibble, rw=0, enable=0
            I2cTransaction::write(i2c_address, std::vec![0b1100_0100]), // low nibble, rw=0, enable=1
            I2cTransaction::write(i2c_address, std::vec![0b1100_0000]), // low nibble, rw=0, enable=0
            // LCD_CMD_ENTRYMODESET | LCD_FLAG_ENTRYLEFT | LCD_FLAG_ENTRYSHIFTDECREMENT
            // = 0x04 | 0x02 | 0x00 = 0x06
            I2cTransaction::write(i2c_address, std::vec![0b0000_0100]), // high nibble, rw=0, enable=1
            I2cTransaction::write(i2c_address, std::vec![0b0000_0000]), // high nibble, rw=0, enable=0
            I2cTransaction::write(i2c_address, std::vec![0b0110_0100]), // low nibble, rw=0, enable=1
            I2cTransaction::write(i2c_address, std::vec![0b0110_0000]), // low nibble, rw=0, enable=0
            // LCD_CMD_CLEARDISPLAY
            // = 0x01
            I2cTransaction::write(i2c_address, std::vec![0b0000_0100]), // high nibble, rw=0, enable=1
            I2cTransaction::write(i2c_address, std::vec![0b0000_0000]), // high nibble, rw=0, enable=0
            I2cTransaction::write(i2c_address, std::vec![0b0001_0100]), // low nibble, rw=0, enable=1
            I2cTransaction::write(i2c_address, std::vec![0b0001_0000]), // low nibble, rw=0, enable=0
            // LCD_CMD_RETURNHOME
            // = 0x02
            I2cTransaction::write(i2c_address, std::vec![0b0000_0100]), // high nibble, rw=0, enable=1
            I2cTransaction::write(i2c_address, std::vec![0b0000_0000]), // high nibble, rw=0, enable=0
            I2cTransaction::write(i2c_address, std::vec![0b0010_0100]), // low nibble, rw=0, enable=1
            I2cTransaction::write(i2c_address, std::vec![0b0010_0000]), // low nibble, rw=0, enable=0
            // Set Backlight
            I2cTransaction::write(i2c_address, std::vec![0b0010_1000]), // backlight on
        ];

        let i2c = I2cMock::new(&expected_i2c_transactions);
        let mut lcd = CharacterDisplayPCF8574T::new(i2c, LcdDisplayType::Lcd16x2, NoopDelay::new());
        let result = lcd.init();
        assert!(result.is_ok());

        // finish the i2c mock
        lcd.i2c().done();
    }

    #[test]
    fn test_adafruit_lcd_backpack_init() {
        let i2c_address = 0x20_u8;
        let expected_i2c_transactions = std::vec![
            // the Adafruit Backpack need to init the adapter IC first
            // write 0x00 to the MCP23008 IODIR register to set all pins as outputs
            I2cTransaction::write(i2c_address, std::vec![0x00, 0x00]),
            // the LCD init sequence
            // write low nibble of 0x03 3 times
            I2cTransaction::write(i2c_address, std::vec![0x09, 0b0_0011_100]), // low nibble, rw=0, enable=1
            I2cTransaction::write(i2c_address, std::vec![0x09, 0b0_0011_000]), // low nibble, rw=0, enable=0
            I2cTransaction::write(i2c_address, std::vec![0x09, 0b0_0011_100]), // low nibble, rw=0, enable=1
            I2cTransaction::write(i2c_address, std::vec![0x09, 0b0_0011_000]), // low nibble, rw=0, enable=0
            I2cTransaction::write(i2c_address, std::vec![0x09, 0b0_0011_100]), // low nibble, rw=0, enable=1
            I2cTransaction::write(i2c_address, std::vec![0x09, 0b0_0011_000]), // low nibble, rw=0, enable=0
            // write high nibble of 0x02 one time
            I2cTransaction::write(i2c_address, std::vec![0x09, 0b0_0010_100]), // high nibble, rw=0, enable=1
            I2cTransaction::write(i2c_address, std::vec![0x09, 0b0_0010_000]), // high nibble, rw=0, enable=0
            // turn on the backlight
            // I2cTransaction::write(i2c_address, std::vec![0b0000_1000]),    // backlight on
            // LCD_CMD_FUNCTIONSET | LCD_FLAG_4BITMODE | LCD_FLAG_5x8_DOTS | LCD_FLAG_2LINE
            // = 0x20 | 0x00 | 0x00 | 0x08 = 0x28
            I2cTransaction::write(i2c_address, std::vec![0x09, 0b0_0010_100]), // high nibble, rw=0, enable=1
            I2cTransaction::write(i2c_address, std::vec![0x09, 0b0_0010_000]), // high nibble, rw=0, enable=0
            I2cTransaction::write(i2c_address, std::vec![0x09, 0b0_1000_100]), // low nibble, rw=0, enable=1
            I2cTransaction::write(i2c_address, std::vec![0x09, 0b0_1000_000]), // low nibble, rw=0, enable=0
            // LCD_CMD_DISPLAYCONTROL | LCD_FLAG_DISPLAYON | LCD_FLAG_CURSOROFF | LCD_FLAG_BLINKOFF
            // = 0x08 | 0x04 | 0x00 | 0x00 = 0x0C
            I2cTransaction::write(i2c_address, std::vec![0x09, 0b0_0000_100]), // high nibble, rw=0, enable=1
            I2cTransaction::write(i2c_address, std::vec![0x09, 0b0_0000_000]), // high nibble, rw=0, enable=0
            I2cTransaction::write(i2c_address, std::vec![0x09, 0b0_1100_100]), // low nibble, rw=0, enable=1
            I2cTransaction::write(i2c_address, std::vec![0x09, 0b0_1100_000]), // low nibble, rw=0, enable=0
            // LCD_CMD_ENTRYMODESET | LCD_FLAG_ENTRYLEFT | LCD_FLAG_ENTRYSHIFTDECREMENT
            // = 0x04 | 0x02 | 0x00 = 0x06
            I2cTransaction::write(i2c_address, std::vec![0x09, 0b0_0000_100]), // high nibble, rw=0, enable=1
            I2cTransaction::write(i2c_address, std::vec![0x09, 0b0_0000_000]), // high nibble, rw=0, enable=0
            I2cTransaction::write(i2c_address, std::vec![0x09, 0b0_0110_100]), // low nibble, rw=0, enable=1
            I2cTransaction::write(i2c_address, std::vec![0x09, 0b0_0110_000]), // low nibble, rw=0, enable=0
            // LCD_CMD_CLEARDISPLAY
            // = 0x01
            I2cTransaction::write(i2c_address, std::vec![0x09, 0b0_0000_100]), // high nibble, rw=0, enable=1
            I2cTransaction::write(i2c_address, std::vec![0x09, 0b0_0000_000]), // high nibble, rw=0, enable=0
            I2cTransaction::write(i2c_address, std::vec![0x09, 0b0_0001_100]), // low nibble, rw=0, enable=1
            I2cTransaction::write(i2c_address, std::vec![0x09, 0b0_0001_000]), // low nibble, rw=0, enable=0
            // LCD_CMD_RETURNHOME
            // = 0x02
            I2cTransaction::write(i2c_address, std::vec![0x09, 0b0_0000_100]), // high nibble, rw=0, enable=1
            I2cTransaction::write(i2c_address, std::vec![0x09, 0b0_0000_000]), // high nibble, rw=0, enable=0
            I2cTransaction::write(i2c_address, std::vec![0x09, 0b0_0010_100]), // low nibble, rw=0, enable=1
            I2cTransaction::write(i2c_address, std::vec![0x09, 0b0_0010_000]), // low nibble, rw=0, enable=0
            // Set Backlight
            I2cTransaction::write(i2c_address, std::vec![0x09, 0b1_0010_000]), // backlight on
        ];

        let i2c = I2cMock::new(&expected_i2c_transactions);
        let mut lcd = AdafruitLCDBackpack::new(i2c, LcdDisplayType::Lcd16x2, NoopDelay::new());

        let result = lcd.init();
        assert!(result.is_ok());
        assert!(lcd.display_type() == LcdDisplayType::Lcd16x2);

        // finish the i2c mock
        lcd.i2c().done();
    }

    #[test]
    fn test_character_display_dual_hd44780_init() {
        let i2c_address = 0x27_u8;
        let expected_i2c_transactions = std::vec![
            // the PCF8574T has no adapter init sequence, so nothing to prepend
            // *** Device 0 ***
            // the LCD init sequence for device 0
            // write low nibble of 0x03 3 times
            I2cTransaction::write(i2c_address, std::vec![0b0011_0100]), // low nibble, rw=0, enable=1
            I2cTransaction::write(i2c_address, std::vec![0b0011_0000]), // low nibble, rw=0, enable=0
            I2cTransaction::write(i2c_address, std::vec![0b0011_0100]), // low nibble, rw=0, enable=1
            I2cTransaction::write(i2c_address, std::vec![0b0011_0000]), // low nibble, rw=0, enable=0
            I2cTransaction::write(i2c_address, std::vec![0b0011_0100]), // low nibble, rw=0, enable=1
            I2cTransaction::write(i2c_address, std::vec![0b0011_0000]), // low nibble, rw=0, enable=0
            // write high nibble of 0x02 one time
            I2cTransaction::write(i2c_address, std::vec![0b0010_0100]), // high nibble, rw=0, enable=1
            I2cTransaction::write(i2c_address, std::vec![0b0010_0000]), // high nibble, rw=0, enable=0
            // turn on the backlight
            // I2cTransaction::write(i2c_address, std::vec![0b0000_1000]),    // backlight on
            // LCD_CMD_FUNCTIONSET | LCD_FLAG_4BITMODE | LCD_FLAG_5x8_DOTS | LCD_FLAG_2LINE
            // = 0x20 | 0x00 | 0x00 | 0x08 = 0x28
            I2cTransaction::write(i2c_address, std::vec![0b0010_0100]), // high nibble, rw=0, enable=1
            I2cTransaction::write(i2c_address, std::vec![0b0010_0000]), // high nibble, rw=0, enable=0
            I2cTransaction::write(i2c_address, std::vec![0b1000_0100]), // low nibble, rw=0, enable=1
            I2cTransaction::write(i2c_address, std::vec![0b1000_0000]), // low nibble, rw=0, enable=0
            // LCD_CMD_DISPLAYCONTROL | LCD_FLAG_DISPLAYON | LCD_FLAG_CURSOROFF | LCD_FLAG_BLINKOFF
            // = 0x08 | 0x04 | 0x00 | 0x00 = 0x0C
            I2cTransaction::write(i2c_address, std::vec![0b0000_0100]), // high nibble, rw=0, enable=1
            I2cTransaction::write(i2c_address, std::vec![0b0000_0000]), // high nibble, rw=0, enable=0
            I2cTransaction::write(i2c_address, std::vec![0b1100_0100]), // low nibble, rw=0, enable=1
            I2cTransaction::write(i2c_address, std::vec![0b1100_0000]), // low nibble, rw=0, enable=0
            // LCD_CMD_ENTRYMODESET | LCD_FLAG_ENTRYLEFT | LCD_FLAG_ENTRYSHIFTDECREMENT
            // = 0x04 | 0x02 | 0x00 = 0x06
            I2cTransaction::write(i2c_address, std::vec![0b0000_0100]), // high nibble, rw=0, enable=1
            I2cTransaction::write(i2c_address, std::vec![0b0000_0000]), // high nibble, rw=0, enable=0
            I2cTransaction::write(i2c_address, std::vec![0b0110_0100]), // low nibble, rw=0, enable=1
            I2cTransaction::write(i2c_address, std::vec![0b0110_0000]), // low nibble, rw=0, enable=0
            // LCD_CMD_CLEARDISPLAY
            // = 0x01
            I2cTransaction::write(i2c_address, std::vec![0b0000_0100]), // high nibble, rw=0, enable=1
            I2cTransaction::write(i2c_address, std::vec![0b0000_0000]), // high nibble, rw=0, enable=0
            I2cTransaction::write(i2c_address, std::vec![0b0001_0100]), // low nibble, rw=0, enable=1
            I2cTransaction::write(i2c_address, std::vec![0b0001_0000]), // low nibble, rw=0, enable=0
            // LCD_CMD_RETURNHOME
            // = 0x02
            I2cTransaction::write(i2c_address, std::vec![0b0000_0100]), // high nibble, rw=0, enable=1
            I2cTransaction::write(i2c_address, std::vec![0b0000_0000]), // high nibble, rw=0, enable=0
            I2cTransaction::write(i2c_address, std::vec![0b0010_0100]), // low nibble, rw=0, enable=1
            I2cTransaction::write(i2c_address, std::vec![0b0010_0000]), // low nibble, rw=0, enable=0
            // *** Device 1 ***
            // the LCD init sequence for device 0
            // write low nibble of 0x03 3 times
            I2cTransaction::write(i2c_address, std::vec![0b0011_0010]), // low nibble, rw=0, enable=1
            I2cTransaction::write(i2c_address, std::vec![0b0011_0000]), // low nibble, rw=0, enable=0
            I2cTransaction::write(i2c_address, std::vec![0b0011_0010]), // low nibble, rw=0, enable=1
            I2cTransaction::write(i2c_address, std::vec![0b0011_0000]), // low nibble, rw=0, enable=0
            I2cTransaction::write(i2c_address, std::vec![0b0011_0010]), // low nibble, rw=0, enable=1
            I2cTransaction::write(i2c_address, std::vec![0b0011_0000]), // low nibble, rw=0, enable=0
            // write high nibble of 0x02 one time
            I2cTransaction::write(i2c_address, std::vec![0b0010_0010]), // high nibble, rw=0, enable=1
            I2cTransaction::write(i2c_address, std::vec![0b0010_0000]), // high nibble, rw=0, enable=0
            // turn on the backlight
            // I2cTransaction::write(i2c_address, std::vec![0b0000_1000]),    // backlight on
            // LCD_CMD_FUNCTIONSET | LCD_FLAG_4BITMODE | LCD_FLAG_5x8_DOTS | LCD_FLAG_2LINE
            // = 0x20 | 0x00 | 0x00 | 0x08 = 0x28
            I2cTransaction::write(i2c_address, std::vec![0b0010_0010]), // high nibble, rw=0, enable=1
            I2cTransaction::write(i2c_address, std::vec![0b0010_0000]), // high nibble, rw=0, enable=0
            I2cTransaction::write(i2c_address, std::vec![0b1000_0010]), // low nibble, rw=0, enable=1
            I2cTransaction::write(i2c_address, std::vec![0b1000_0000]), // low nibble, rw=0, enable=0
            // LCD_CMD_DISPLAYCONTROL | LCD_FLAG_DISPLAYON | LCD_FLAG_CURSOROFF | LCD_FLAG_BLINKOFF
            // = 0x08 | 0x04 | 0x00 | 0x00 = 0x0C
            I2cTransaction::write(i2c_address, std::vec![0b0000_0010]), // high nibble, rw=0, enable=1
            I2cTransaction::write(i2c_address, std::vec![0b0000_0000]), // high nibble, rw=0, enable=0
            I2cTransaction::write(i2c_address, std::vec![0b1100_0010]), // low nibble, rw=0, enable=1
            I2cTransaction::write(i2c_address, std::vec![0b1100_0000]), // low nibble, rw=0, enable=0
            // LCD_CMD_ENTRYMODESET | LCD_FLAG_ENTRYLEFT | LCD_FLAG_ENTRYSHIFTDECREMENT
            // = 0x04 | 0x02 | 0x00 = 0x06
            I2cTransaction::write(i2c_address, std::vec![0b0000_0010]), // high nibble, rw=0, enable=1
            I2cTransaction::write(i2c_address, std::vec![0b0000_0000]), // high nibble, rw=0, enable=0
            I2cTransaction::write(i2c_address, std::vec![0b0110_0010]), // low nibble, rw=0, enable=1
            I2cTransaction::write(i2c_address, std::vec![0b0110_0000]), // low nibble, rw=0, enable=0
            // LCD_CMD_CLEARDISPLAY
            // = 0x01
            I2cTransaction::write(i2c_address, std::vec![0b0000_0010]), // high nibble, rw=0, enable=1
            I2cTransaction::write(i2c_address, std::vec![0b0000_0000]), // high nibble, rw=0, enable=0
            I2cTransaction::write(i2c_address, std::vec![0b0001_0010]), // low nibble, rw=0, enable=1
            I2cTransaction::write(i2c_address, std::vec![0b0001_0000]), // low nibble, rw=0, enable=0
            // LCD_CMD_RETURNHOME
            // = 0x02
            I2cTransaction::write(i2c_address, std::vec![0b0000_0010]), // high nibble, rw=0, enable=1
            I2cTransaction::write(i2c_address, std::vec![0b0000_0000]), // high nibble, rw=0, enable=0
            I2cTransaction::write(i2c_address, std::vec![0b0010_0010]), // low nibble, rw=0, enable=1
            I2cTransaction::write(i2c_address, std::vec![0b0010_0000]), // low nibble, rw=0, enable=0
            // Set Backlight
            I2cTransaction::write(i2c_address, std::vec![0b0010_1000]), // backlight on
        ];

        let i2c = I2cMock::new(&expected_i2c_transactions);
        let mut lcd =
            CharacterDisplayDualHD44780::new(i2c, LcdDisplayType::Lcd40x4, NoopDelay::new());
        let result = lcd.init();
        assert!(result.is_ok());
        assert!(lcd.display_type() == LcdDisplayType::Lcd40x4);

        // finish the i2c mock
        lcd.i2c().done();
    }
}