1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761
// Copyright © SixtyFPS GmbH <info@slint-ui.com>
// SPDX-License-Identifier: GPL-3.0-only OR LicenseRef-Slint-commercial
/*!
This module contains image decoding and caching related types for the run-time library.
*/
use crate::lengths::PhysicalPx;
use crate::slice::Slice;
use crate::{SharedString, SharedVector};
use super::{IntRect, IntSize};
use crate::items::ImageFit;
#[cfg(feature = "image-decoders")]
pub mod cache;
#[cfg(target_arch = "wasm32")]
mod htmlimage;
#[cfg(feature = "svg")]
mod svg;
#[allow(missing_docs)]
#[vtable::vtable]
#[repr(C)]
pub struct OpaqueImageVTable {
drop_in_place: fn(VRefMut<OpaqueImageVTable>) -> Layout,
dealloc: fn(&OpaqueImageVTable, ptr: *mut u8, layout: Layout),
/// Returns the image size
size: fn(VRef<OpaqueImageVTable>) -> IntSize,
/// Returns a cache key
cache_key: fn(VRef<OpaqueImageVTable>) -> ImageCacheKey,
}
#[cfg(feature = "svg")]
OpaqueImageVTable_static! {
/// VTable for RC wrapped SVG helper struct.
pub static PARSED_SVG_VT for svg::ParsedSVG
}
#[cfg(target_arch = "wasm32")]
OpaqueImageVTable_static! {
/// VTable for RC wrapped HtmlImage helper struct.
pub static HTML_IMAGE_VT for htmlimage::HTMLImage
}
/// SharedPixelBuffer is a container for storing image data as pixels. It is
/// internally reference counted and cheap to clone.
///
/// You can construct a new empty shared pixel buffer with [`SharedPixelBuffer::new`],
/// or you can clone it from an existing contiguous buffer that you might already have, using
/// [`SharedPixelBuffer::clone_from_slice`].
///
/// See the documentation for [`Image`] for examples how to use this type to integrate
/// Slint with external rendering functions.
#[derive(Debug, Clone)]
#[repr(C)]
pub struct SharedPixelBuffer<Pixel> {
width: u32,
height: u32,
data: SharedVector<Pixel>,
}
impl<Pixel> SharedPixelBuffer<Pixel> {
/// Returns the width of the image in pixels.
pub fn width(&self) -> u32 {
self.width
}
/// Returns the height of the image in pixels.
pub fn height(&self) -> u32 {
self.height
}
/// Returns the size of the image in pixels.
pub fn size(&self) -> IntSize {
[self.width, self.height].into()
}
}
impl<Pixel: Clone> SharedPixelBuffer<Pixel> {
/// Return a mutable slice to the pixel data. If the SharedPixelBuffer was shared, this will make a copy of the buffer.
pub fn make_mut_slice(&mut self) -> &mut [Pixel] {
self.data.make_mut_slice()
}
}
impl<Pixel: Clone + rgb::Pod> SharedPixelBuffer<Pixel>
where
[Pixel]: rgb::ComponentBytes<u8>,
{
/// Returns the pixels interpreted as raw bytes.
pub fn as_bytes(&self) -> &[u8] {
use rgb::ComponentBytes;
self.data.as_slice().as_bytes()
}
/// Returns the pixels interpreted as raw bytes.
pub fn make_mut_bytes(&mut self) -> &mut [u8] {
use rgb::ComponentBytes;
self.data.make_mut_slice().as_bytes_mut()
}
}
impl<Pixel> SharedPixelBuffer<Pixel> {
/// Return a slice to the pixel data.
pub fn as_slice(&self) -> &[Pixel] {
self.data.as_slice()
}
}
impl<Pixel: Clone + Default> SharedPixelBuffer<Pixel> {
/// Creates a new SharedPixelBuffer with the given width and height. Each pixel will be initialized with the value
/// that [`Default::default()`] returns for the Pixel type.
pub fn new(width: u32, height: u32) -> Self {
Self {
width,
height,
data: core::iter::repeat(Pixel::default())
.take(width as usize * height as usize)
.collect(),
}
}
}
impl<Pixel: Clone> SharedPixelBuffer<Pixel> {
/// Creates a new SharedPixelBuffer by cloning and converting pixels from an existing
/// slice. This function is useful when another crate was used to allocate an image
/// and you would like to convert it for use in Slint.
pub fn clone_from_slice<SourcePixelType>(
pixel_slice: &[SourcePixelType],
width: u32,
height: u32,
) -> Self
where
[SourcePixelType]: rgb::AsPixels<Pixel>,
{
use rgb::AsPixels;
Self { width, height, data: pixel_slice.as_pixels().iter().cloned().collect() }
}
}
/// Convenience alias for a pixel with three color channels (red, green and blue), each
/// encoded as u8.
pub type Rgb8Pixel = rgb::RGB8;
/// Convenience alias for a pixel with four color channels (red, green, blue and alpha), each
/// encoded as u8.
pub type Rgba8Pixel = rgb::RGBA8;
/// SharedImageBuffer is a container for images that are stored in CPU accessible memory.
///
/// The SharedImageBuffer's variants represent the different common formats for encoding
/// images in pixels.
#[derive(Clone, Debug)]
#[repr(C)]
pub enum SharedImageBuffer {
/// This variant holds the data for an image where each pixel has three color channels (red, green,
/// and blue) and each channel is encoded as unsigned byte.
RGB8(SharedPixelBuffer<Rgb8Pixel>),
/// This variant holds the data for an image where each pixel has four color channels (red, green,
/// blue and alpha) and each channel is encoded as unsigned byte.
RGBA8(SharedPixelBuffer<Rgba8Pixel>),
/// This variant holds the data for an image where each pixel has four color channels (red, green,
/// blue and alpha) and each channel is encoded as unsigned byte. In contrast to [`Self::RGBA8`],
/// this variant assumes that the alpha channel is also already multiplied to each red, green and blue
/// component of each pixel.
/// Only construct this format if you know that your pixels are encoded this way. It is more efficient
/// for rendering.
RGBA8Premultiplied(SharedPixelBuffer<Rgba8Pixel>),
}
impl SharedImageBuffer {
/// Returns the width of the image in pixels.
#[inline]
pub fn width(&self) -> u32 {
match self {
Self::RGB8(buffer) => buffer.width(),
Self::RGBA8(buffer) => buffer.width(),
Self::RGBA8Premultiplied(buffer) => buffer.width(),
}
}
/// Returns the height of the image in pixels.
#[inline]
pub fn height(&self) -> u32 {
match self {
Self::RGB8(buffer) => buffer.height(),
Self::RGBA8(buffer) => buffer.height(),
Self::RGBA8Premultiplied(buffer) => buffer.height(),
}
}
/// Returns the size of the image in pixels.
#[inline]
pub fn size(&self) -> IntSize {
match self {
Self::RGB8(buffer) => buffer.size(),
Self::RGBA8(buffer) => buffer.size(),
Self::RGBA8Premultiplied(buffer) => buffer.size(),
}
}
}
impl PartialEq for SharedImageBuffer {
fn eq(&self, other: &Self) -> bool {
match self {
Self::RGB8(lhs_buffer) => {
matches!(other, Self::RGB8(rhs_buffer) if lhs_buffer.data.as_ptr().eq(&rhs_buffer.data.as_ptr()))
}
Self::RGBA8(lhs_buffer) => {
matches!(other, Self::RGBA8(rhs_buffer) if lhs_buffer.data.as_ptr().eq(&rhs_buffer.data.as_ptr()))
}
Self::RGBA8Premultiplied(lhs_buffer) => {
matches!(other, Self::RGBA8Premultiplied(rhs_buffer) if lhs_buffer.data.as_ptr().eq(&rhs_buffer.data.as_ptr()))
}
}
}
}
#[repr(u8)]
#[derive(Clone, PartialEq, Debug, Copy)]
/// The pixel format of a StaticTexture
pub enum PixelFormat {
/// red, green, blue. 24bits.
Rgb,
/// Red, green, blue, alpha. 32bits.
Rgba,
/// Red, green, blue, alpha. 32bits. The color are premultiplied by alpha
RgbaPremultiplied,
/// Alpha map. 8bits. Each pixel is an alpha value. The color is specified separately.
AlphaMap,
}
impl PixelFormat {
/// The number of bytes in a pixel
pub fn bpp(self) -> usize {
match self {
PixelFormat::Rgb => 3,
PixelFormat::Rgba => 4,
PixelFormat::RgbaPremultiplied => 4,
PixelFormat::AlphaMap => 1,
}
}
}
#[repr(C)]
#[derive(Clone, PartialEq, Debug)]
/// Some raw pixel data which is typically stored in the binary
pub struct StaticTexture {
/// The position and size of the texture within the image
pub rect: IntRect,
/// The pixel format of this texture
pub format: PixelFormat,
/// The color, for the alpha map ones
pub color: crate::Color,
/// index in the data array
pub index: usize,
}
#[repr(C)]
#[derive(Clone, PartialEq, Debug)]
/// A texture is stored in read-only memory and may be composed of sub-textures.
pub struct StaticTextures {
/// The total size of the image (this might not be the size of the full image
/// as some transparent part are not part of any texture)
pub size: IntSize,
/// The size of the image before the compiler applied any scaling
pub original_size: IntSize,
/// The pixel data referenced by the textures
pub data: Slice<'static, u8>,
/// The list of textures
pub textures: Slice<'static, StaticTexture>,
}
/// ImageCacheKey encapsulates the different ways of indexing images in the
/// cache of decoded images.
#[derive(PartialEq, Eq, Debug, Hash, Clone)]
#[repr(u8)]
pub enum ImageCacheKey {
/// This variant indicates that no image cache key can be created for the image.
/// For example this is the case for programmatically created images.
Invalid = 0,
/// The image is identified by its path on the file system.
Path(SharedString) = 1,
/// The image is identified by a URL.
#[cfg(target_arch = "wasm32")]
URL(SharedString) = 2,
/// The image is identified by the static address of its encoded data.
EmbeddedData(usize) = 3,
}
impl ImageCacheKey {
/// Returns a new cache key if decoded image data can be stored in image cache for
/// the given ImageInner.
pub fn new(resource: &ImageInner) -> Option<Self> {
let key = match resource {
ImageInner::None => return None,
ImageInner::EmbeddedImage { cache_key, .. } => cache_key.clone(),
ImageInner::StaticTextures(textures) => {
Self::from_embedded_image_data(textures.data.as_slice())
}
#[cfg(feature = "svg")]
ImageInner::Svg(parsed_svg) => parsed_svg.cache_key(),
#[cfg(target_arch = "wasm32")]
ImageInner::HTMLImage(htmlimage) => Self::URL(htmlimage.source().into()),
ImageInner::BackendStorage(x) => vtable::VRc::borrow(x).cache_key(),
};
if matches!(key, ImageCacheKey::Invalid) {
None
} else {
Some(key)
}
}
/// Returns a cache key for static embedded image data.
pub fn from_embedded_image_data(data: &'static [u8]) -> Self {
Self::EmbeddedData(data.as_ptr() as usize)
}
}
/// A resource is a reference to binary data, for example images. They can be accessible on the file
/// system or embedded in the resulting binary. Or they might be URLs to a web server and a downloaded
/// is necessary before they can be used.
/// cbindgen:prefix-with-name
#[derive(Clone, Debug, Default)]
#[repr(u8)]
#[allow(missing_docs)]
pub enum ImageInner {
/// A resource that does not represent any data.
#[default]
None,
EmbeddedImage {
cache_key: ImageCacheKey,
buffer: SharedImageBuffer,
},
#[cfg(feature = "svg")]
Svg(vtable::VRc<OpaqueImageVTable, svg::ParsedSVG>),
StaticTextures(&'static StaticTextures),
#[cfg(target_arch = "wasm32")]
HTMLImage(vtable::VRc<OpaqueImageVTable, htmlimage::HTMLImage>),
BackendStorage(vtable::VRc<OpaqueImageVTable>),
}
impl ImageInner {
/// Return or render the image into a buffer
///
/// `target_size_for_scalable_source` is the size to use if the image is scalable.
///
/// Returns None if the image can't be rendered in a buffer
pub fn render_to_buffer(
&self,
_target_size_for_scalable_source: Option<euclid::Size2D<u32, PhysicalPx>>,
) -> Option<SharedImageBuffer> {
match self {
ImageInner::EmbeddedImage { buffer, .. } => Some(buffer.clone()),
#[cfg(feature = "svg")]
ImageInner::Svg(svg) => {
match svg.render(_target_size_for_scalable_source.unwrap_or_default()) {
Ok(b) => Some(b),
Err(err) => {
eprintln!("Error rendering SVG: {}", err);
return None;
}
}
}
ImageInner::StaticTextures(ts) => {
let mut buffer =
SharedPixelBuffer::<Rgba8Pixel>::new(ts.size.width, ts.size.height);
let stride = buffer.width() as usize;
let slice = buffer.make_mut_slice();
for t in ts.textures.iter() {
let rect = t.rect.to_usize();
for y in 0..rect.height() {
let slice = &mut slice[(rect.min_y() + y) * stride..][rect.x_range()];
let source = &ts.data[t.index + y * rect.width() * t.format.bpp()..];
match t.format {
PixelFormat::Rgb => {
let mut iter = source.chunks_exact(3).map(|p| Rgba8Pixel {
r: p[0],
g: p[1],
b: p[2],
a: 255,
});
slice.fill_with(|| iter.next().unwrap());
}
PixelFormat::RgbaPremultiplied => {
let mut iter = source.chunks_exact(4).map(|p| Rgba8Pixel {
r: p[0],
g: p[1],
b: p[2],
a: p[3],
});
slice.fill_with(|| iter.next().unwrap());
}
PixelFormat::Rgba => {
let mut iter = source.chunks_exact(4).map(|p| {
let a = p[3];
Rgba8Pixel {
r: (p[0] as u16 * a as u16 / 255) as u8,
g: (p[1] as u16 * a as u16 / 255) as u8,
b: (p[2] as u16 * a as u16 / 255) as u8,
a,
}
});
slice.fill_with(|| iter.next().unwrap());
}
PixelFormat::AlphaMap => {
let col = t.color.to_argb_u8();
let mut iter = source.iter().map(|p| {
let a = *p as u32 * col.alpha as u32;
Rgba8Pixel {
r: (col.red as u32 * a / (255 * 255)) as u8,
g: (col.green as u32 * a / (255 * 255)) as u8,
b: (col.blue as u32 * a / (255 * 255)) as u8,
a: (a / 255) as u8,
}
});
slice.fill_with(|| iter.next().unwrap());
}
};
}
}
Some(SharedImageBuffer::RGBA8Premultiplied(buffer))
}
_ => None,
}
}
/// Returns true if the image is an SVG (either backed by resvg or HTML image wrapper).
pub fn is_svg(&self) -> bool {
match self {
#[cfg(feature = "svg")]
Self::Svg(_) => true,
#[cfg(target_arch = "wasm32")]
Self::HTMLImage(html_image) => html_image.is_svg(),
_ => false,
}
}
}
impl PartialEq for ImageInner {
fn eq(&self, other: &Self) -> bool {
match (self, other) {
(
Self::EmbeddedImage { cache_key: l_cache_key, buffer: l_buffer },
Self::EmbeddedImage { cache_key: r_cache_key, buffer: r_buffer },
) => l_cache_key == r_cache_key && l_buffer == r_buffer,
#[cfg(feature = "svg")]
(Self::Svg(l0), Self::Svg(r0)) => vtable::VRc::ptr_eq(l0, r0),
(Self::StaticTextures(l0), Self::StaticTextures(r0)) => l0 == r0,
#[cfg(target_arch = "wasm32")]
(Self::HTMLImage(l0), Self::HTMLImage(r0)) => vtable::VRc::ptr_eq(l0, r0),
_ => core::mem::discriminant(self) == core::mem::discriminant(other),
}
}
}
impl<'a> From<&'a Image> for &'a ImageInner {
fn from(other: &'a Image) -> Self {
&other.0
}
}
/// Error generated if an image cannot be loaded for any reasons.
#[derive(Default, Debug, PartialEq)]
pub struct LoadImageError(());
/// An image type that can be displayed by the Image element. You can construct
/// Image objects from a path to an image file on disk, using [`Self::load_from_path`].
///
/// Another typical use-case is to render the image content with Rust code.
/// For this it's most efficient to create a new SharedPixelBuffer with the known dimensions
/// and pass the mutable slice to your rendering function. Afterwards you can create an
/// Image.
///
/// The following example creates a 320x200 RGB pixel buffer and calls an external
/// low_level_render() function to draw a shape into it. Finally the result is
/// stored in an Image with [`Self::from_rgb8()`]:
/// ```
/// # use i_slint_core::graphics::{SharedPixelBuffer, Image, Rgb8Pixel};
///
/// fn low_level_render(width: u32, height: u32, buffer: &mut [u8]) {
/// // render beautiful circle or other shapes here
/// }
///
/// let mut pixel_buffer = SharedPixelBuffer::<Rgb8Pixel>::new(320, 200);
///
/// low_level_render(pixel_buffer.width(), pixel_buffer.height(),
/// pixel_buffer.make_mut_bytes());
///
/// let image = Image::from_rgb8(pixel_buffer);
/// ```
///
/// Another use-case is to import existing image data into Slint, by
/// creating a new Image through cloning of another image type.
///
/// The following example uses the popular [image crate](https://docs.rs/image/) to
/// load a `.png` file from disk, apply brightening filter on it and then import
/// it into an [`Image`]:
/// ```no_run
/// # use i_slint_core::graphics::{SharedPixelBuffer, Image, Rgba8Pixel};
/// let mut cat_image = image::open("cat.png").expect("Error loading cat image").into_rgba8();
///
/// image::imageops::colorops::brighten_in_place(&mut cat_image, 20);
///
/// let buffer = SharedPixelBuffer::<Rgba8Pixel>::clone_from_slice(
/// cat_image.as_raw(),
/// cat_image.width(),
/// cat_image.height(),
/// );
/// let image = Image::from_rgba8(buffer);
/// ```
///
/// A popular software (CPU) rendering library in Rust is tiny-skia. The following example shows
/// how to use tiny-skia to render into a [`SharedPixelBuffer`]:
/// ```
/// # use i_slint_core::graphics::{SharedPixelBuffer, Image, Rgba8Pixel};
/// let mut pixel_buffer = SharedPixelBuffer::<Rgba8Pixel>::new(640, 480);
/// let width = pixel_buffer.width();
/// let height = pixel_buffer.height();
/// let mut pixmap = tiny_skia::PixmapMut::from_bytes(
/// pixel_buffer.make_mut_bytes(), width, height
/// ).unwrap();
/// pixmap.fill(tiny_skia::Color::TRANSPARENT);
///
/// let circle = tiny_skia::PathBuilder::from_circle(320., 240., 150.).unwrap();
///
/// let mut paint = tiny_skia::Paint::default();
/// paint.shader = tiny_skia::LinearGradient::new(
/// tiny_skia::Point::from_xy(100.0, 100.0),
/// tiny_skia::Point::from_xy(400.0, 400.0),
/// vec![
/// tiny_skia::GradientStop::new(0.0, tiny_skia::Color::from_rgba8(50, 127, 150, 200)),
/// tiny_skia::GradientStop::new(1.0, tiny_skia::Color::from_rgba8(220, 140, 75, 180)),
/// ],
/// tiny_skia::SpreadMode::Pad,
/// tiny_skia::Transform::identity(),
/// ).unwrap();
///
/// pixmap.fill_path(&circle, &paint, tiny_skia::FillRule::Winding, Default::default(), None);
///
/// let image = Image::from_rgba8_premultiplied(pixel_buffer);
/// ```
///
/// ### Sending Image to a thread
///
/// `Image` is not [`Send`], because it uses internal cache that are local to the Slint thread.
/// If you want to create image data in a thread and send that to slint, construct the
/// [`SharedPixelBuffer`] in a thread, and send that to Slint's UI thread.
///
/// ```rust,no_run
/// # use i_slint_core::graphics::{SharedPixelBuffer, Image, Rgba8Pixel};
/// std::thread::spawn(move || {
/// let mut pixel_buffer = SharedPixelBuffer::<Rgba8Pixel>::new(640, 480);
/// // ... fill the pixel_buffer with data as shown in the previous example ...
/// slint::invoke_from_event_loop(move || {
/// // this will run in the Slint's UI thread
/// let image = Image::from_rgba8_premultiplied(pixel_buffer);
/// // ... use the image, eg:
/// // my_ui_handle.upgrade().unwrap().set_image(image);
/// });
/// });
/// ```
#[repr(transparent)]
#[derive(Default, Clone, Debug, PartialEq, derive_more::From)]
pub struct Image(ImageInner);
impl Image {
#[cfg(feature = "image-decoders")]
/// Load an Image from a path to a file containing an image
pub fn load_from_path(path: &std::path::Path) -> Result<Self, LoadImageError> {
self::cache::IMAGE_CACHE.with(|global_cache| {
let path: SharedString = path.to_str().ok_or(LoadImageError(()))?.into();
global_cache.borrow_mut().load_image_from_path(&path).ok_or(LoadImageError(()))
})
}
/// Creates a new Image from the specified shared pixel buffer, where each pixel has three color
/// channels (red, green and blue) encoded as u8.
pub fn from_rgb8(buffer: SharedPixelBuffer<Rgb8Pixel>) -> Self {
Image(ImageInner::EmbeddedImage {
cache_key: ImageCacheKey::Invalid,
buffer: SharedImageBuffer::RGB8(buffer),
})
}
/// Creates a new Image from the specified shared pixel buffer, where each pixel has four color
/// channels (red, green, blue and alpha) encoded as u8.
pub fn from_rgba8(buffer: SharedPixelBuffer<Rgba8Pixel>) -> Self {
Image(ImageInner::EmbeddedImage {
cache_key: ImageCacheKey::Invalid,
buffer: SharedImageBuffer::RGBA8(buffer),
})
}
/// Creates a new Image from the specified shared pixel buffer, where each pixel has four color
/// channels (red, green, blue and alpha) encoded as u8 and, in contrast to [`Self::from_rgba8`],
/// the alpha channel is also assumed to be multiplied to the red, green and blue channels.
///
/// Only construct an Image with this function if you know that your pixels are encoded this way.
pub fn from_rgba8_premultiplied(buffer: SharedPixelBuffer<Rgba8Pixel>) -> Self {
Image(ImageInner::EmbeddedImage {
cache_key: ImageCacheKey::Invalid,
buffer: SharedImageBuffer::RGBA8Premultiplied(buffer),
})
}
/// Returns the size of the Image in pixels.
pub fn size(&self) -> IntSize {
match &self.0 {
ImageInner::None => Default::default(),
ImageInner::EmbeddedImage { buffer, .. } => buffer.size(),
ImageInner::StaticTextures(StaticTextures { original_size, .. }) => *original_size,
#[cfg(feature = "svg")]
ImageInner::Svg(svg) => svg.size(),
#[cfg(target_arch = "wasm32")]
ImageInner::HTMLImage(htmlimage) => htmlimage.size().unwrap_or_default(),
ImageInner::BackendStorage(x) => vtable::VRc::borrow(x).size(),
}
}
#[cfg(feature = "std")]
/// Returns the path of the image on disk, if it was constructed via [`Self::load_from_path`].
///
/// For example:
/// ```
/// # use std::path::Path;
/// # use i_slint_core::graphics::*;
/// let path_buf = Path::new(env!("CARGO_MANIFEST_DIR"))
/// .join("../../examples/printerdemo/ui/images/cat.jpg");
/// let image = Image::load_from_path(&path_buf).unwrap();
/// assert_eq!(image.path(), Some(path_buf.as_path()));
/// ```
pub fn path(&self) -> Option<&std::path::Path> {
match &self.0 {
ImageInner::EmbeddedImage { cache_key, .. } => match cache_key {
ImageCacheKey::Path(path) => Some(std::path::Path::new(path.as_str())),
_ => None,
},
_ => None,
}
}
}
/// Load an image from an image embedded in the binary.
/// This is called by the generated code.
#[cfg(feature = "image-decoders")]
pub fn load_image_from_embedded_data(
data: Slice<'static, u8>,
format: Slice<'static, u8>,
) -> Image {
self::cache::IMAGE_CACHE.with(|global_cache| {
global_cache.borrow_mut().load_image_from_embedded_data(data, format).unwrap_or_else(|| {
panic!("internal error: embedded image data is not supported by run-time library",)
})
})
}
#[test]
fn test_image_size_from_buffer_without_backend() {
{
assert_eq!(Image::default().size(), Default::default());
}
{
let buffer = SharedPixelBuffer::<Rgb8Pixel>::new(320, 200);
let image = Image::from_rgb8(buffer);
assert_eq!(image.size(), [320, 200].into())
}
}
/// Return an size that can be used to render an image in a buffer that matches a given ImageFit
pub fn fit_size(
image_fit: ImageFit,
target: euclid::Size2D<f32, PhysicalPx>,
origin: IntSize,
) -> euclid::Size2D<f32, PhysicalPx> {
let o = origin.cast::<f32>();
let ratio = match image_fit {
ImageFit::Fill => return target,
ImageFit::Contain => f32::min(target.width / o.width, target.height / o.height),
ImageFit::Cover => f32::max(target.width / o.width, target.height / o.height),
};
euclid::Size2D::from_untyped(o * ratio)
}
#[cfg(feature = "ffi")]
pub(crate) mod ffi {
#![allow(unsafe_code)]
use super::super::IntSize;
use super::*;
// Expand Rgb8Pixel so that cbindgen can see it. (is in fact rgb::RGB<u8>)
/// Represents an RGB pixel.
#[cfg(cbindgen)]
#[repr(C)]
struct Rgb8Pixel {
/// red value (between 0 and 255)
r: u8,
/// green value (between 0 and 255)
g: u8,
/// blue value (between 0 and 255)
b: u8,
}
// Expand Rgba8Pixel so that cbindgen can see it. (is in fact rgb::RGBA<u8>)
/// Represents an RGBA pixel.
#[cfg(cbindgen)]
#[repr(C)]
struct Rgba8Pixel {
/// red value (between 0 and 255)
r: u8,
/// green value (between 0 and 255)
g: u8,
/// blue value (between 0 and 255)
b: u8,
/// alpha value (between 0 and 255)
a: u8,
}
#[no_mangle]
pub unsafe extern "C" fn slint_image_load_from_path(path: &SharedString, image: *mut Image) {
std::ptr::write(
image,
Image::load_from_path(std::path::Path::new(path.as_str())).unwrap_or(Image::default()),
)
}
#[no_mangle]
pub unsafe extern "C" fn slint_image_load_from_embedded_data(
data: Slice<'static, u8>,
format: Slice<'static, u8>,
image: *mut Image,
) {
std::ptr::write(image, super::load_image_from_embedded_data(data, format));
}
#[no_mangle]
pub unsafe extern "C" fn slint_image_size(image: &Image) -> IntSize {
image.size()
}
#[no_mangle]
pub unsafe extern "C" fn slint_image_path(image: &Image) -> Option<&SharedString> {
match &image.0 {
ImageInner::EmbeddedImage { cache_key, .. } => match cache_key {
ImageCacheKey::Path(path) => Some(path),
_ => None,
},
_ => None,
}
}
#[no_mangle]
pub unsafe extern "C" fn slint_image_from_embedded_textures(
textures: &'static StaticTextures,
image: *mut Image,
) {
core::ptr::write(image, Image::from(ImageInner::StaticTextures(textures)));
}
}