1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342
// Copyright © SixtyFPS GmbH <info@slint-ui.com>
// SPDX-License-Identifier: GPL-3.0-only OR LicenseRef-Slint-commercial
#![warn(missing_docs)]
//! The animation system
use alloc::boxed::Box;
use core::cell::Cell;
mod cubic_bezier {
//! This is a copy from lyon_algorithms::geom::cubic_bezier implementation
//! (from lyon_algorithms 0.17)
type S = f32;
use euclid::default::Point2D as Point;
#[cfg(not(feature = "std"))]
use num_traits::Float;
trait Scalar {
const ONE: f32 = 1.;
const THREE: f32 = 3.;
const HALF: f32 = 0.5;
const SIX: f32 = 6.;
const NINE: f32 = 9.;
fn value(v: f32) -> f32 {
v
}
}
impl Scalar for f32 {}
pub struct CubicBezierSegment {
pub from: Point<S>,
pub ctrl1: Point<S>,
pub ctrl2: Point<S>,
pub to: Point<S>,
}
impl CubicBezierSegment {
/// Sample the x coordinate of the curve at t (expecting t between 0 and 1).
pub fn x(&self, t: S) -> S {
let t2 = t * t;
let t3 = t2 * t;
let one_t = S::ONE - t;
let one_t2 = one_t * one_t;
let one_t3 = one_t2 * one_t;
self.from.x * one_t3
+ self.ctrl1.x * S::THREE * one_t2 * t
+ self.ctrl2.x * S::THREE * one_t * t2
+ self.to.x * t3
}
/// Sample the y coordinate of the curve at t (expecting t between 0 and 1).
pub fn y(&self, t: S) -> S {
let t2 = t * t;
let t3 = t2 * t;
let one_t = S::ONE - t;
let one_t2 = one_t * one_t;
let one_t3 = one_t2 * one_t;
self.from.y * one_t3
+ self.ctrl1.y * S::THREE * one_t2 * t
+ self.ctrl2.y * S::THREE * one_t * t2
+ self.to.y * t3
}
#[inline]
fn derivative_coefficients(&self, t: S) -> (S, S, S, S) {
let t2 = t * t;
(
-S::THREE * t2 + S::SIX * t - S::THREE,
S::NINE * t2 - S::value(12.0) * t + S::THREE,
-S::NINE * t2 + S::SIX * t,
S::THREE * t2,
)
}
/// Sample the x coordinate of the curve's derivative at t (expecting t between 0 and 1).
pub fn dx(&self, t: S) -> S {
let (c0, c1, c2, c3) = self.derivative_coefficients(t);
self.from.x * c0 + self.ctrl1.x * c1 + self.ctrl2.x * c2 + self.to.x * c3
}
}
impl CubicBezierSegment {
// This is actually in the Monotonic<CubicBezierSegment<S>> impl
pub fn solve_t_for_x(&self, x: S, t_range: core::ops::Range<S>, tolerance: S) -> S {
debug_assert!(t_range.start <= t_range.end);
let from = self.x(t_range.start);
let to = self.x(t_range.end);
if x <= from {
return t_range.start;
}
if x >= to {
return t_range.end;
}
// Newton's method.
let mut t = x - from / (to - from);
for _ in 0..8 {
let x2 = self.x(t);
if S::abs(x2 - x) <= tolerance {
return t;
}
let dx = self.dx(t);
if dx <= S::EPSILON {
break;
}
t -= (x2 - x) / dx;
}
// Fall back to binary search.
let mut min = t_range.start;
let mut max = t_range.end;
let mut t = S::HALF;
while min < max {
let x2 = self.x(t);
if S::abs(x2 - x) < tolerance {
return t;
}
if x > x2 {
min = t;
} else {
max = t;
}
t = (max - min) * S::HALF + min;
}
t
}
}
}
/// The representation of an easing curve, for animations
#[repr(C, u32)]
#[derive(Debug, Clone, Copy, PartialEq, Default)]
pub enum EasingCurve {
/// The linear curve
#[default]
Linear,
/// A Cubic bezier curve, with its 4 parameter
CubicBezier([f32; 4]),
//Custom(Box<dyn Fn(f32) -> f32>),
}
/// Represent an instant, in milliseconds since the AnimationDriver's initial_instant
#[repr(transparent)]
#[derive(Copy, Clone, Debug, Default, PartialEq, Ord, PartialOrd, Eq)]
pub struct Instant(pub u64);
impl core::ops::Sub<Instant> for Instant {
type Output = core::time::Duration;
fn sub(self, other: Self) -> core::time::Duration {
core::time::Duration::from_millis(self.0 - other.0)
}
}
impl core::ops::Sub<core::time::Duration> for Instant {
type Output = Instant;
fn sub(self, other: core::time::Duration) -> Instant {
Self(self.0 - other.as_millis() as u64)
}
}
impl core::ops::Add<core::time::Duration> for Instant {
type Output = Instant;
fn add(self, other: core::time::Duration) -> Instant {
Self(self.0 + other.as_millis() as u64)
}
}
impl core::ops::AddAssign<core::time::Duration> for Instant {
fn add_assign(&mut self, other: core::time::Duration) {
self.0 += other.as_millis() as u64;
}
}
impl core::ops::SubAssign<core::time::Duration> for Instant {
fn sub_assign(&mut self, other: core::time::Duration) {
self.0 -= other.as_millis() as u64;
}
}
impl Instant {
/// Returns the amount of time elapsed since an other instant.
///
/// Equivalent to `self - earlier`
pub fn duration_since(self, earlier: Instant) -> core::time::Duration {
self - earlier
}
/// Wrapper around [`std::time::Instant::now()`] that delegates to the backend
/// and allows working in no_std environments.
pub fn now() -> Self {
Self(Self::duration_since_start().as_millis() as u64)
}
fn duration_since_start() -> core::time::Duration {
crate::platform::PLATFORM_INSTANCE
.with(|p| p.get().map(|p| p.duration_since_start()))
.unwrap_or_default()
}
}
/// The AnimationDriver
pub struct AnimationDriver {
/// Indicate whether there are any active animations that require a future call to update_animations.
active_animations: Cell<bool>,
global_instant: core::pin::Pin<Box<crate::Property<Instant>>>,
}
impl Default for AnimationDriver {
fn default() -> Self {
AnimationDriver {
active_animations: Cell::default(),
global_instant: Box::pin(crate::Property::new_named(
Instant::default(),
"i_slint_core::AnimationDriver::global_instant",
)),
}
}
}
impl AnimationDriver {
/// Iterates through all animations based on the new time tick and updates their state. This should be called by
/// the windowing system driver for every frame.
pub fn update_animations(&self, new_tick: Instant) {
if self.global_instant.as_ref().get_untracked() != new_tick {
self.active_animations.set(false);
self.global_instant.as_ref().set(new_tick);
}
}
/// Returns true if there are any active or ready animations. This is used by the windowing system to determine
/// if a new animation frame is required or not. Returns false otherwise.
pub fn has_active_animations(&self) -> bool {
self.active_animations.get()
}
/// Tell the driver that there are active animations
pub fn set_has_active_animations(&self) {
self.active_animations.set(true);
}
/// The current instant that is to be used for animation
/// using this function register the current binding as a dependency
pub fn current_tick(&self) -> Instant {
self.global_instant.as_ref().get()
}
}
#[cfg(all(not(feature = "std"), feature = "unsafe-single-threaded"))]
use crate::unsafe_single_threaded::thread_local;
thread_local!(
/// This is the default instance of the animation driver that's used to advance all property animations
/// at the same time.
pub static CURRENT_ANIMATION_DRIVER : AnimationDriver = AnimationDriver::default()
);
/// The current instant that is to be used for animation
/// using this function register the current binding as a dependency
pub fn current_tick() -> Instant {
CURRENT_ANIMATION_DRIVER.with(|driver| driver.current_tick())
}
/// Same as [`current_tick`], but also register that one should be running animation
/// on next frame
pub fn animation_tick() -> u64 {
CURRENT_ANIMATION_DRIVER.with(|driver| {
driver.set_has_active_animations();
driver.current_tick().0
})
}
/// map a value between 0 and 1 to another value between 0 and 1 according to the curve
pub fn easing_curve(curve: &EasingCurve, value: f32) -> f32 {
match curve {
EasingCurve::Linear => value,
EasingCurve::CubicBezier([a, b, c, d]) => {
if !(0.0..=1.0).contains(a) && !(0.0..=1.0).contains(c) {
return value;
};
let curve = cubic_bezier::CubicBezierSegment {
from: (0., 0.).into(),
ctrl1: (*a, *b).into(),
ctrl2: (*c, *d).into(),
to: (1., 1.).into(),
};
curve.y(curve.solve_t_for_x(value, 0.0..1.0, 0.01))
}
}
}
/*
#[test]
fn easing_test() {
fn test_curve(name: &str, curve: &EasingCurve) {
let mut img = image::ImageBuffer::new(500, 500);
let white = image::Rgba([255 as u8, 255 as u8, 255 as u8, 255 as u8]);
for x in 0..img.width() {
let t = (x as f32) / (img.width() as f32);
let y = easing_curve(curve, t);
let y = (y * (img.height() as f32)) as u32;
let y = y.min(img.height() - 1);
*img.get_pixel_mut(x, img.height() - 1 - y) = white;
}
img.save(
std::path::PathBuf::from(std::env::var_os("HOME").unwrap())
.join(format!("{}.png", name)),
)
.unwrap();
}
test_curve("linear", &EasingCurve::Linear);
test_curve("linear2", &EasingCurve::CubicBezier([0.0, 0.0, 1.0, 1.0]));
test_curve("ease", &EasingCurve::CubicBezier([0.25, 0.1, 0.25, 1.0]));
test_curve("ease_in", &EasingCurve::CubicBezier([0.42, 0.0, 1.0, 1.0]));
test_curve("ease_in_out", &EasingCurve::CubicBezier([0.42, 0.0, 0.58, 1.0]));
test_curve("ease_out", &EasingCurve::CubicBezier([0.0, 0.0, 0.58, 1.0]));
}
*/
/// Update the global animation time to the current time
pub fn update_animations() {
CURRENT_ANIMATION_DRIVER.with(|driver| {
#[allow(unused_mut)]
let mut duration = Instant::duration_since_start().as_millis() as u64;
#[cfg(feature = "std")]
if let Ok(val) = std::env::var("SLINT_SLOW_ANIMATIONS") {
let factor = val.parse().unwrap_or(2);
duration /= factor;
};
driver.update_animations(Instant(duration))
});
}