1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
use crate::array_default::{ArrayDefault, ArrayIter};
use crate::precisions::{Precision, WordType};
use crate::prelude::*;
use core::hash::Hash;

/// A HyperLogLog counter with multiplicities.
///
/// # Implementation details
/// This struct differs from the traditional HyperLogLog counter in that it stores the multiplicities
/// of the registers. This allows us to speed up significantly the computation of the cardinality of
/// the counter, as we do not need to compute the harmonic mean of the registers but we can instead
/// use the multiplities instead, reducing by a large amount the sums we need to compute.
///
/// For instance, for a counter with 2^14 registers, we need to compute the harmonic mean of 2^14
/// registers, i.e. 16384 registers. With the multiplicities, we only need to compute the sum of the
/// multiplicities, which is much smaller, and at most equal to 52 when you use 6 bits per register.
///
/// That being said, when memory is an extreme concern, you may want to use the traditional HyperLogLog
/// as this struct contains the multiplicities vector, which in the example case we considered above
/// would be adding u16 * 52 = 104 bytes to the size of the counter.
///
/// Additionally, note that while one may expect to obtain better accuracy by executing less sums,
/// we do not observe any statistically significant difference in the accuracy of the counter when
/// using the multiplicities instead of the registers in our tests.
///
/// Note that this struct DOES NOT provide any other faster operation other than the estimation of the
/// cardinality of the counter. All other operations, such as the union of two counters, are fast as
/// they are implemented using the traditional HyperLogLog counter.
///
pub struct HyperLogLogWithMultiplicities<PRECISION: Precision + WordType<BITS>, const BITS: usize> {
    pub(crate) words: PRECISION::Words,
    pub(crate) multiplicities: PRECISION::RegisterMultiplicities,
}

impl<PRECISION: Precision + WordType<BITS>, const BITS: usize>
    HyperLogLogWithMultiplicities<PRECISION, BITS>
{
    fn new() -> Self {
        let mut multiplicities = PRECISION::RegisterMultiplicities::default_array();

        multiplicities[0] = PRECISION::NumberOfZeros::reverse(PRECISION::NUMBER_OF_REGISTERS);

        Self {
            words: PRECISION::Words::default_array(),
            multiplicities,
        }
    }

    /// Create a new HyperLogLog counter from an array of words.
    ///
    /// # Arguments
    /// * `words` - An array of u64 words to use for the HyperLogLog counter.
    ///
    /// # Returns
    /// A new HyperLogLog counter initialized with the given words.
    ///
    /// # Examples
    ///
    /// ```rust
    /// use hyperloglog_rs::prelude::*;
    ///
    /// let words = [0_u32; 4];
    /// let hll = HyperLogLogWithMultiplicities::<Precision4, 6>::from_words(&words);
    /// assert_eq!(hll.len(), 16);
    /// ```
    pub fn from_words(words: &PRECISION::Words) -> Self {
        let mut multiplicities = PRECISION::RegisterMultiplicities::default_array();

        words.iter_elements().for_each(|word| {
            (0..Self::NUMBER_OF_REGISTERS_IN_WORD).for_each(|i| {
                let register = (word >> (i * BITS)) & Self::LOWER_REGISTER_MASK;
                multiplicities[register as usize] += PRECISION::NumberOfZeros::ONE;
            });
        });

        multiplicities[0] -=
            PRECISION::NumberOfZeros::reverse(Self::get_number_of_padding_registers());

        Self {
            words: *words,
            multiplicities,
        }
    }

    /// Create a new HyperLogLog counter from an array of registers.
    ///
    /// # Arguments
    ///
    /// * `registers` - An array of u32 registers to use for the HyperLogLog counter.
    ///
    /// # Returns
    ///
    /// A new HyperLogLog counter initialized with the given registers.
    ///
    /// # Examples
    ///
    /// ```
    /// use hyperloglog_rs::prelude::*;
    ///
    /// let registers = [0_u32; 1 << 4];
    /// let hll = HyperLogLogWithMultiplicities::<Precision4, 6>::from_registers(&registers);
    /// assert_eq!(hll.len(), 1 << 4);
    /// ```
    pub fn from_registers(registers: &[u32]) -> Self {
        debug_assert!(
            registers.len() == PRECISION::NUMBER_OF_REGISTERS,
            "We expect {} registers, but got {}",
            PRECISION::NUMBER_OF_REGISTERS,
            registers.len()
        );
        let mut words = PRECISION::Words::default_array();
        let mut multiplicities = PRECISION::RegisterMultiplicities::default_array();
        words
            .iter_elements_mut()
            .zip(registers.chunks(Self::NUMBER_OF_REGISTERS_IN_WORD))
            .for_each(|(word, word_registers)| {
                for (i, register) in word_registers.iter().copied().enumerate() {
                    debug_assert!(
                        register <= Self::LOWER_REGISTER_MASK,
                        "Register value {} is too large for the given number of bits {}",
                        register,
                        BITS
                    );
                    multiplicities[register as usize] += PRECISION::NumberOfZeros::ONE;
                    *word |= register << (i * BITS);
                }
            });

        Self {
            words,
            multiplicities,
        }
    }

    #[inline(always)]
    /// Adds an element to the HyperLogLog counter.
    ///
    /// # Arguments
    /// * `rhs` - The element to add.
    ///
    /// # Examples
    ///
    /// ```
    /// use hyperloglog_rs::prelude::*;
    ///
    /// let mut hll = HyperLogLogWithMultiplicities::<Precision10, 6>::default();
    ///
    /// hll.insert("Hello");
    /// hll.insert("World");
    ///
    /// assert!(hll.estimate_cardinality() >= 2.0);
    /// ```
    ///
    /// # Performance
    ///
    /// The performance of this function depends on the size of the HyperLogLog counter (`N`), the number
    /// of distinct elements in the input, and the hash function used to hash elements. For a given value of `N`,
    /// the function has an average time complexity of O(1) and a worst-case time complexity of O(log N).
    /// However, the actual time complexity may vary depending on the distribution of the hashed elements.
    ///
    /// # Errors
    ///
    /// This function does not return any errors.
    pub fn insert<T: Hash>(&mut self, rhs: T) {
        let (mut hash, index) = self.get_hash_and_index::<T>(&rhs);

        // We need to add ones to the hash to make sure that the
        // the number of zeros we obtain afterwards is never higher
        // than the maximal value that may be represented in a register
        // with BITS bits.
        if BITS < 6 {
            hash |= 1 << (64 - ((1 << BITS) - 1));
        } else {
            hash |= 1 << (PRECISION::EXPONENT - 1);
        }

        // Count leading zeros.
        let number_of_zeros: u32 = 1 + hash.leading_zeros();

        debug_assert!(
            number_of_zeros < (1 << BITS),
            concat!(
                "The number of leading zeros {} must be less than the number of bits {}. ",
                "You have obtained this values starting from the hash {:064b} and the precision {}."
            ),
            number_of_zeros,
            1 << BITS,
            hash,
            PRECISION::EXPONENT
        );

        // Calculate the position of the register in the internal buffer array.
        let word_position = index / Self::NUMBER_OF_REGISTERS_IN_WORD;
        let register_position_in_u32 = index - word_position * Self::NUMBER_OF_REGISTERS_IN_WORD;

        debug_assert!(
            word_position < self.words.len(),
            concat!(
                "The word_position {} must be less than the number of words {}. ",
                "You have obtained this values starting from the index {} and the number of registers in word {}. ",
                "We currently have {} registers. Currently using precision {} and number of bits {}."
            ),
            word_position,
            self.words.len(),
            index,
            Self::NUMBER_OF_REGISTERS_IN_WORD,
            PRECISION::NUMBER_OF_REGISTERS,
            PRECISION::EXPONENT,
            BITS
        );

        // Extract the current value of the register at `index`.
        let register_value: u32 = (self.words[word_position] >> (register_position_in_u32 * BITS))
            & Self::LOWER_REGISTER_MASK;

        // Otherwise, update the register using a bit mask.
        if number_of_zeros > register_value {
            debug_assert!(
                self.multiplicities[register_value as usize] > PRECISION::NumberOfZeros::ZERO,
            );

            self.multiplicities[register_value as usize] -= PRECISION::NumberOfZeros::ONE;
            self.multiplicities[number_of_zeros as usize] += PRECISION::NumberOfZeros::ONE;

            self.words[word_position] &=
                !(Self::LOWER_REGISTER_MASK << (register_position_in_u32 * BITS));
            self.words[word_position] |= number_of_zeros << (register_position_in_u32 * BITS);

            // We check that the word we have edited maintains that the padding bits are all zeros
            // and have not been manipulated in any way. If these bits were manipulated, it would mean
            // that we have a bug in the code.
            debug_assert!(
                self.words[word_position] & Self::PADDING_BITS_MASK == 0,
                concat!(
                    "The padding bits of the word {} must be all zeros. ",
                    "We have obtained {} instead."
                ),
                self.words[word_position],
                self.words[word_position] & Self::PADDING_BITS_MASK
            );
        }
    }
}

impl<PRECISION: Precision + WordType<BITS>, const BITS: usize> Default
    for HyperLogLogWithMultiplicities<PRECISION, BITS>
{
    fn default() -> Self {
        Self::new()
    }
}

impl<PRECISION: Precision + WordType<BITS>, const BITS: usize>
    From<HyperLogLogWithMultiplicities<PRECISION, BITS>> for HyperLogLog<PRECISION, BITS>
{
    fn from(hll: HyperLogLogWithMultiplicities<PRECISION, BITS>) -> Self {
        Self::from_words(hll.get_words())
    }
}

impl<PRECISION: Precision + WordType<BITS>, const BITS: usize> From<HyperLogLog<PRECISION, BITS>>
    for HyperLogLogWithMultiplicities<PRECISION, BITS>
{
    fn from(hll: HyperLogLog<PRECISION, BITS>) -> Self {
        Self::from_words(hll.get_words())
    }
}

impl<PRECISION: Precision + WordType<BITS>, const BITS: usize> HyperLogLogTrait<PRECISION, BITS>
    for HyperLogLogWithMultiplicities<PRECISION, BITS>
{
    

    #[inline(always)]
    /// Returns the number of registers in the counter.
    ///
    /// # Implementation details
    /// This function is overriding the estimate_cardinality function of the HyperLogLogTrait trait
    /// as we can compute the cardinality of the counter using the multiplicities instead of the
    /// registers. This is much faster as we do not need to compute the harmonic mean of the registers.
    fn estimate_cardinality(&self) -> f32 {
        Self::estimate_cardinality_from_multiplicities(&self.multiplicities)
    }

    /// Returns a reference to the words vector.
    fn get_words(&self) -> &PRECISION::Words {
        &self.words
    }

    #[inline(always)]
    /// Returns the number of registers with zero values. This value is used for computing a small
    /// correction when estimating the cardinality of a small set.
    ///
    /// # Examples
    ///
    /// ```
    /// # use hyperloglog_rs::prelude::*;
    ///
    /// // Create a new HyperLogLog counter with precision 14 and 5 bits per register.
    /// let mut hll = HyperLogLogWithMultiplicities::<Precision14, 5>::default();
    ///
    /// // Add some elements to the counter.
    /// hll.insert(&1);
    /// hll.insert(&2);
    /// hll.insert(&3);
    ///
    /// // Get the number of zero registers.
    /// let number_of_zero_registers = hll.get_number_of_zero_registers();
    ///
    /// assert_eq!(number_of_zero_registers, 16381);
    /// ```
    fn get_number_of_zero_registers(&self) -> usize {
        self.multiplicities[0].convert()
    }
}

impl<PRECISION: Precision + WordType<BITS>, const BITS: usize, A: Hash> core::iter::FromIterator<A>
    for HyperLogLogWithMultiplicities<PRECISION, BITS>
{
    #[inline(always)]
    /// Creates a new HyperLogLogWithMultiplicities counter and adds all elements from an iterator to it.
    ///
    /// # Examples
    ///
    /// ```
    /// use hyperloglog_rs::prelude::*;
    ///
    /// let data = vec![1, 2, 3, 4, 5, 6, 7, 8, 9];
    /// let hll: HyperLogLogWithMultiplicities<Precision12, 5> = data.iter().collect();
    /// assert!(
    ///     hll.estimate_cardinality() > 0.9 * data.len() as f32,
    ///     concat!(
    ///         "The estimate is too low, expected ",
    ///         "at least {}, got {}",
    ///     ),
    ///     0.9 * data.len() as f32,
    ///     hll.estimate_cardinality()
    /// );
    /// assert!(
    ///     hll.estimate_cardinality() < 1.1 * data.len() as f32,
    ///     concat!(
    ///     "The estimate is too high, expected ",
    ///     "at most {}, got {}",
    ///    ),
    ///     1.1 * data.len() as f32,
    ///     hll.estimate_cardinality()
    /// );
    /// ```
    fn from_iter<T: IntoIterator<Item = A>>(iter: T) -> Self {
        let mut hll = Self::default();
        for item in iter {
            hll.insert(item);
        }
        hll
    }
}