1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666
use siphasher::sip::SipHasher13;
use crate::array_default::ArrayIter;
use crate::bias::BIAS_DATA;
use crate::estimated_union_cardinalities::EstimatedUnionCardinalities;
use crate::precisions::{Precision, WordType};
use crate::prelude::*;
use crate::prelude::{linear_counting_threshold, MaxMin};
use crate::primitive::Primitive;
use crate::raw_estimate_data::RAW_ESTIMATE_DATA;
use crate::utils::{ceil, get_alpha};
use core::hash::Hash;
use core::hash::Hasher;
pub trait HyperLogLogTrait<PRECISION: Precision + WordType<BITS>, const BITS: usize>:
Sized
{
/// The threshold value used in the small range correction of the HyperLogLog algorithm.
const INTERMEDIATE_RANGE_CORRECTION_THRESHOLD: f32 =
5.0_f32 * (PRECISION::NUMBER_OF_REGISTERS as f32);
const LINEAR_COUNT_THRESHOLD: f32 = linear_counting_threshold(PRECISION::EXPONENT);
/// The mask used to obtain the lower register bits in the HyperLogLog algorithm.
const LOWER_REGISTER_MASK: u32 = (1 << BITS) - 1;
/// The mask used to obtain the lower precision bits in the HyperLogLog algorithm.
const LOWER_PRECISION_MASK: usize = PRECISION::NUMBER_OF_REGISTERS - 1;
const NOT_LOWER_PRECISION_MASK: u64 = !Self::LOWER_PRECISION_MASK as u64;
/// The mask representing the bits that are never used in the u32 word in the cases
/// where the number of bits is not a divisor of 32, such as 5 or 6.
/// We set the LEADING bits as the padding bits, the unused one, so the leftmost bits.
const PADDING_BITS_MASK: u32 =
!((1_u64 << (BITS * Self::NUMBER_OF_REGISTERS_IN_WORD)) - 1_u64) as u32;
/// The mask used to obtain the upper precision bits in the HyperLogLog algorithm.
const UPPER_PRECISION_MASK: usize = Self::LOWER_PRECISION_MASK << (64 - PRECISION::EXPONENT);
/// The number of registers that can fit in a single 32-bit word in the HyperLogLog algorithm.
const NUMBER_OF_REGISTERS_IN_WORD: usize = 32 / BITS;
fn adjust_estimate(mut raw_estimate: f32) -> f32 {
// Apply the final scaling factor to obtain the estimate of the cardinality
raw_estimate = get_alpha(PRECISION::NUMBER_OF_REGISTERS)
* (PRECISION::NUMBER_OF_REGISTERS * PRECISION::NUMBER_OF_REGISTERS) as f32
/ raw_estimate;
// Apply the small range correction factor if the raw estimate is below the threshold
// and there are zero registers in the counter.
if raw_estimate <= Self::INTERMEDIATE_RANGE_CORRECTION_THRESHOLD {
// Get a reference to raw estimates/biases for precision.
let biases = BIAS_DATA[PRECISION::EXPONENT - 4];
let estimates = RAW_ESTIMATE_DATA[PRECISION::EXPONENT - 4];
// Raw estimate is first/last in estimates. Return the first/last bias.
if raw_estimate <= estimates[0] {
return raw_estimate - biases[0];
}
if estimates[estimates.len() - 1] <= raw_estimate {
return raw_estimate - biases[biases.len() - 1];
}
// Raw estimate is somewhere in between estimates.
// Binary search for the calculated raw estimate.
//
// Here we unwrap because neither the values in `estimates`
// nor `raw` are going to be NaN.
let partition_index = estimates.partition_point(|est| *est <= raw_estimate);
// Return linear interpolation between raw's neighboring points.
let ratio = (raw_estimate - estimates[partition_index - 1])
/ (estimates[partition_index] - estimates[partition_index - 1]);
// Calculate bias.
raw_estimate
- (biases[partition_index - 1]
+ ratio * (biases[partition_index] - biases[partition_index - 1]))
} else {
raw_estimate
}
}
fn adjust_estimate_with_zeros(raw_estimate: f32, number_of_zeros: usize) -> f32 {
if number_of_zeros > 0 {
let low_range_correction = PRECISION::SMALL_CORRECTIONS[number_of_zeros - 1];
if low_range_correction <= Self::LINEAR_COUNT_THRESHOLD {
return low_range_correction;
}
}
Self::adjust_estimate(raw_estimate)
}
/// Returns whether the cardinality of this HLL will be computed using the small-range correction.
///
/// # Implementation details
/// The small-range correction is used when the cardinality of the set is small enough that the
/// linear counting algorithm can be used to estimate the cardinality. The threshold for using
/// the linear counting algorithm is determined by the number of registers in the HLL counter.
fn use_small_range_correction(&self) -> bool {
self.get_number_of_zero_registers() > 0
&& PRECISION::SMALL_CORRECTIONS[self.get_number_of_zero_registers() - 1]
<= Self::LINEAR_COUNT_THRESHOLD
}
#[inline(always)]
/// Estimates the cardinality of the set based on the HLL counter data.
///
/// # Example
///
/// ```
/// # use hyperloglog_rs::prelude::*;
/// let mut hll = HyperLogLog::<Precision9, 5>::default();
/// let elements = vec![1, 2, 3, 4, 5];
/// for element in &elements {
/// hll.insert(element);
/// }
/// let estimated_cardinality = hll.estimate_cardinality();
/// assert!(estimated_cardinality >= elements.len() as f32 * 0.9 &&
/// estimated_cardinality <= elements.len() as f32 * 1.1);
/// ```
///
/// # Returns
/// * `f32` - The estimated cardinality of the set.
fn estimate_cardinality(&self) -> f32 {
if self.get_number_of_zero_registers() > 0 {
let low_range_correction =
PRECISION::SMALL_CORRECTIONS[self.get_number_of_zero_registers() - 1];
if low_range_correction <= Self::LINEAR_COUNT_THRESHOLD {
return low_range_correction;
}
}
let mut raw_estimate = 0.0;
for &word in self.get_words().iter_elements() {
let mut partial: f32 = 0.0;
for i in 0..Self::NUMBER_OF_REGISTERS_IN_WORD {
let register = (word >> (i * BITS)) & Self::LOWER_REGISTER_MASK;
let two_to_minus_register = (127 - register) << 23;
partial += f32::from_le_bytes(two_to_minus_register.to_le_bytes());
}
raw_estimate += partial;
}
raw_estimate -= Self::get_number_of_padding_registers() as f32;
Self::adjust_estimate(raw_estimate)
}
#[inline(always)]
/// Returns an estimate of the cardinality of the union of two HyperLogLog counters.
///
/// This method calculates an estimate of the cardinality of the union of two HyperLogLog counters
/// using the raw estimation values of each counter. It combines the estimation values by iterating
/// over the register words of both counters and performing necessary calculations.
///
/// # Arguments
/// * `other`: A reference to the other HyperLogLog counter.
///
/// # Returns
/// An estimation of the cardinality of the union of the two HyperLogLog counters.
///
/// # Example
///
/// ```
/// use hyperloglog_rs::prelude::*;
///
/// let mut hll1 = HyperLogLog::<Precision12, 6>::default();
/// hll1.insert(&1);
/// hll1.insert(&2);
///
/// let mut hll2 = HyperLogLog::<Precision12, 6>::default();
/// hll2.insert(&2);
/// hll2.insert(&3);
///
/// let union_cardinality = hll1.estimate_union_cardinality(&hll2);
///
/// assert!(union_cardinality >= 3.0 * 0.9 &&
/// union_cardinality <= 3.0 * 1.1);
/// ```
fn estimate_union_cardinality(&self, other: &Self) -> f32 {
self.estimate_union_and_sets_cardinality(other)
.get_union_cardinality()
}
#[inline(always)]
/// Returns an estimate of the cardinality of the two HLL counters union.
fn estimate_union_and_sets_cardinality<F: Primitive<f32> + MaxMin>(
&self,
other: &Self,
) -> EstimatedUnionCardinalities<F> {
let mut raw_union_estimate = 0.0;
let mut raw_left_estimate = 0.0;
let mut raw_right_estimate = 0.0;
let mut union_zeros = 0;
for (left_word, right_word) in self
.get_words()
.iter_elements()
.copied()
.zip(other.get_words().iter_elements().copied())
{
let mut union_partial: f32 = 0.0;
let mut left_partial: f32 = 0.0;
let mut right_partial: f32 = 0.0;
for i in 0..Self::NUMBER_OF_REGISTERS_IN_WORD {
let left_register = (left_word >> (i * BITS)) & Self::LOWER_REGISTER_MASK;
let right_register = (right_word >> (i * BITS)) & Self::LOWER_REGISTER_MASK;
let maximal_register = (left_register).max(right_register);
union_partial += f32::from_le_bytes(((127 - maximal_register) << 23).to_le_bytes());
left_partial += f32::from_le_bytes(((127 - left_register) << 23).to_le_bytes());
right_partial += f32::from_le_bytes(((127 - right_register) << 23).to_le_bytes());
union_zeros += (maximal_register == 0) as usize;
}
raw_union_estimate += union_partial;
raw_left_estimate += left_partial;
raw_right_estimate += right_partial;
}
union_zeros -= Self::get_number_of_padding_registers();
// We need to subtract the padding registers from the raw estimates
// as for each such register we are adding a one.
raw_union_estimate -= Self::get_number_of_padding_registers() as f32;
raw_left_estimate -= Self::get_number_of_padding_registers() as f32;
raw_right_estimate -= Self::get_number_of_padding_registers() as f32;
let mut union_estimate = F::reverse(Self::adjust_estimate_with_zeros(
raw_union_estimate,
union_zeros,
));
let left_estimate = F::reverse(Self::adjust_estimate_with_zeros(
raw_left_estimate,
self.get_number_of_zero_registers(),
));
let right_estimate = F::reverse(Self::adjust_estimate_with_zeros(
raw_right_estimate,
other.get_number_of_zero_registers(),
));
// The union estimate cannot be higher than the sum of the left and right estimates.
union_estimate = union_estimate.get_min(left_estimate + right_estimate);
EstimatedUnionCardinalities::from((left_estimate, right_estimate, union_estimate))
}
#[inline(always)]
/// Returns an estimate of the cardinality of the intersection of two HyperLogLog counters.
///
/// This method calculates an estimate of the cardinality of the intersection of two HyperLogLog
/// counters using the raw estimation values of each counter. It combines the estimation values by
/// iterating over the register words of both counters and performing necessary calculations.
///
/// # Arguments
/// * `other`: A reference to the other HyperLogLog counter.
///
/// # Returns
/// An estimation of the cardinality of the intersection of the two HyperLogLog counters.
///
/// # Example
///
/// ```
/// use hyperloglog_rs::prelude::*;
///
/// let mut hll1 = HyperLogLog::<Precision12, 6>::default();
/// hll1.insert(&1);
/// hll1.insert(&2);
///
/// let mut hll2 = HyperLogLog::<Precision12, 6>::default();
/// hll2.insert(&2);
/// hll2.insert(&3);
///
/// let intersection_cardinality: f32 = hll1.estimate_intersection_cardinality(&hll2);
///
/// assert!(intersection_cardinality >= 1.0 * 0.9 &&
/// intersection_cardinality <= 1.0 * 1.1);
/// ```
fn estimate_intersection_cardinality<F: Primitive<f32>>(&self, other: &Self) -> F {
self.estimate_union_and_sets_cardinality(other)
.get_intersection_cardinality()
}
#[inline(always)]
/// Returns an estimate of the Jaccard index between two HyperLogLog counters.
///
/// The Jaccard index is a measure of similarity between two sets. In the context of HyperLogLog
/// counters, it represents the ratio of the size of the intersection of the sets represented by
/// the counters to the size of their union. This method estimates the Jaccard index by utilizing
/// the cardinality estimation values of the intersection, left set, and right set.
///
/// # Arguments
/// * `other`: A reference to the other HyperLogLog counter.
///
/// # Returns
/// An estimation of the Jaccard index between the two HyperLogLog counters.
///
/// # Example
///
/// ```
/// use hyperloglog_rs::prelude::*;
///
/// let mut hll1 = HyperLogLog::<Precision12, 6>::default();
/// hll1.insert(&1);
/// hll1.insert(&2);
/// hll1.insert(&3);
/// hll1.insert(&4);
///
/// let mut hll2 = HyperLogLog::<Precision12, 6>::default();
/// hll2.insert(&2);
/// hll2.insert(&3);
/// hll2.insert(&5);
/// hll2.insert(&6);
///
/// let jaccard_index = hll1.estimate_jaccard_index(&hll2);
///
/// let expected = 2.0 / 6.0;
///
/// assert!(jaccard_index >= expected * 0.9 &&
/// jaccard_index <= expected * 1.1);
/// ```
fn estimate_jaccard_index(&self, other: &Self) -> f32 {
self.estimate_union_and_sets_cardinality(other)
.get_jaccard_index()
}
#[inline(always)]
/// Returns an estimate of the cardinality of the current HyperLogLog counter minus the provided one.
///
/// # Arguments
/// * `other`: A reference to the other HyperLogLog counter.
///
/// # Example
///
/// ```
/// use hyperloglog_rs::prelude::*;
///
/// let mut hll1 = HyperLogLog::<Precision12, 6>::default();
/// hll1.insert(&1);
/// hll1.insert(&2);
/// hll1.insert(&3);
/// hll1.insert(&4);
///
/// let mut hll2 = HyperLogLog::<Precision12, 6>::default();
/// hll2.insert(&2);
/// hll2.insert(&3);
/// hll2.insert(&5);
/// hll2.insert(&6);
///
/// let difference_cardinality: f32 = hll1.estimate_difference_cardinality(&hll2);
///
/// assert!(difference_cardinality >= 2.0 * 0.9 &&
/// difference_cardinality <= 2.0 * 1.1);
/// ```
fn estimate_difference_cardinality<F: Primitive<f32> + One>(&self, other: &Self) -> F {
self.estimate_union_and_sets_cardinality(other)
.get_left_difference_cardinality()
}
#[inline(always)]
/// Returns the number of registers in the HLL counter.
///
///
/// # Example
///
/// ```
/// # use hyperloglog_rs::prelude::*;
///
/// // Create a new HLL counter with 128 registers
/// let mut hll = HyperLogLog::<Precision12, 4>::default();
/// assert_eq!(hll.len(), 4096);
///
/// // Insert some elements into the HLL counter
/// hll.insert(&1);
/// hll.insert(&2);
/// hll.insert(&3);
/// assert_eq!(hll.len(), 1 << 12);
///
/// // Merge another HLL counter with 128 registers
/// let mut hll2 = HyperLogLog::<Precision12, 4>::default();
/// hll2.insert(&4);
/// hll2.insert(&5);
/// hll |= hll2;
/// assert_eq!(hll.len(), 1 << 12);
/// ```
fn len(&self) -> usize {
PRECISION::NUMBER_OF_REGISTERS
}
#[inline(always)]
/// Returns whether no element was yet added to the HLL counter.
///
///
/// # Examples
///
/// ```
/// use hyperloglog_rs::prelude::*;
///
/// let mut hll: HyperLogLog<Precision8, 4> = HyperLogLog::default();
///
/// assert!(hll.is_empty());
///
/// hll.insert(&1);
///
/// assert!(!hll.is_empty());
/// ```
fn is_empty(&self) -> bool {
self.len() == self.get_number_of_zero_registers()
}
#[inline(always)]
/// Returns the number of extra registers that are not actually used.
///
/// # Examples
/// Since the number of registers is not a multiple of the number of registers in a word,
/// there are padding registers that are not actually used.
///
/// ```
/// # use hyperloglog_rs::prelude::*;
///
/// assert_eq!(HyperLogLog::<Precision10, 6>::get_number_of_padding_registers(), 1);
/// ```
///
/// For instance, in the case using the bare minimum bits per registers (4)
/// and the minimal precision (4), for a total of 16 registers, we expect
/// to not have any padding registers.
///
/// ```
/// # use hyperloglog_rs::prelude::*;
///
/// assert_eq!(HyperLogLog::<Precision4, 4>::get_number_of_padding_registers(), 0);
///
/// ```
///
fn get_number_of_padding_registers() -> usize {
ceil(PRECISION::NUMBER_OF_REGISTERS, 32 / BITS) * Self::NUMBER_OF_REGISTERS_IN_WORD
- PRECISION::NUMBER_OF_REGISTERS
}
/// Returns the number of registers with zero values. This value is used for computing a small
/// correction when estimating the cardinality of a small set.
///
/// # Examples
///
/// ```
/// # use hyperloglog_rs::prelude::*;
///
/// // Create a new HyperLogLog counter with precision 14 and 5 bits per register.
/// let mut hll = HyperLogLog::<Precision14, 5>::default();
///
/// // Add some elements to the counter.
/// hll.insert(&1);
/// hll.insert(&2);
/// hll.insert(&3);
///
/// // Get the number of zero registers.
/// let number_of_zero_registers = hll.get_number_of_zero_registers();
///
/// assert_eq!(number_of_zero_registers, 16381);
/// ```
fn get_number_of_zero_registers(&self) -> usize;
#[inline(always)]
fn get_number_of_non_zero_registers(&self) -> usize {
// Calculates the number of registers that have a non-zero value by
// subtracting the number of registers with a zero value from the total number of registers
self.len() - self.get_number_of_zero_registers()
}
/// Returns an array of registers of the HyperLogLog counter.
///
/// # Examples
///
/// ```rust
/// # use hyperloglog_rs::prelude::*;
///
/// let mut hll = HyperLogLog::<Precision10, 6>::default();
/// hll.insert(&4);
/// hll.insert(&5);
/// hll.insert(&6);
/// let registers = hll.get_registers();
///
/// assert_eq!(registers.len(), 1024);
/// assert!(registers.iter().any(|&x| x > 0));
/// ```
///
/// We can also create an HLL from registers, and then check
/// whether the registers are what we expect:
///
/// ```rust
/// # use hyperloglog_rs::prelude::*;
///
/// let expected = [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 11, 11, 11, 0];
/// let mut hll = HyperLogLog::<Precision4, 6>::from_registers(&expected);
/// assert_eq!(hll.get_registers(), expected, "Expected {:?}, got {:?}", expected, hll.get_registers());
/// ```
fn get_registers(&self) -> PRECISION::Registers {
let mut registers = PRECISION::Registers::default_array();
self.get_words()
.iter_elements()
.flat_map(|word| {
(0..Self::NUMBER_OF_REGISTERS_IN_WORD)
.map(move |i: usize| (word >> (i * BITS)) & Self::LOWER_REGISTER_MASK)
})
.zip(registers.iter_elements_mut())
.for_each(|(value, cell): (u32, &mut u32)| {
*cell = value;
});
registers
}
/// Returns the array of words of the HyperLogLog counter.
fn get_words(&self) -> &PRECISION::Words;
#[inline(always)]
/// Returns `true` if the HyperLogLog counter may contain the given element.
///
/// # Arguments
/// * `rhs` - The element to check.
///
/// # Examples
///
/// ```rust
/// # use hyperloglog_rs::prelude::*;
///
/// let mut hll: HyperLogLog<Precision8, 6> = HyperLogLog::default();
/// assert_eq!(hll.may_contain(&42), false);
///
/// hll.insert(&42);
/// assert_eq!(hll.may_contain(&42), true);
/// ```
fn may_contain<T: Hash>(&self, rhs: &T) -> bool {
let (_hash, index) = self.get_hash_and_index::<T>(rhs);
// Calculate the position of the register in the internal buffer array.
let word_position = index / Self::NUMBER_OF_REGISTERS_IN_WORD;
// Calculate the position of the register within the 32-bit word containing it.
let register_position_in_u32 = index % Self::NUMBER_OF_REGISTERS_IN_WORD;
// Extract the current value of the register at `index`.
let register_value: u32 = (self.get_words()[word_position]
>> (register_position_in_u32 * BITS))
& Self::LOWER_REGISTER_MASK;
register_value > 0
}
#[inline(always)]
/// Returns whether the provided HyperLogLog counter may be fully contained in the current HyperLogLog counter.
///
/// # Arguments
/// * `rhs` - The HyperLogLog counter to check.
///
/// # Implementative details
/// We define a counter that fully contains another counter when all of the registers
/// of the first counter are greater than or equal to the corresponding registers of the second counter.
///
/// # Examples
///
/// ```rust
/// # use hyperloglog_rs::prelude::*;
///
/// let mut hll1: HyperLogLog<Precision8, 6> = HyperLogLog::default();
/// let mut hll2: HyperLogLog<Precision8, 6> = HyperLogLog::default();
///
/// hll1.insert(&42);
/// hll1.insert(&43);
/// hll1.insert(&44);
///
/// hll2.insert(&42);
/// hll2.insert(&43);
///
/// assert_eq!(hll1.may_contain_all(&hll2), true);
/// assert_eq!(hll2.may_contain_all(&hll1), false);
///
/// hll2.insert(&44);
///
/// assert_eq!(hll1.may_contain_all(&hll2), true);
/// assert_eq!(hll2.may_contain_all(&hll1), true);
/// ```
fn may_contain_all(&self, rhs: &Self) -> bool {
for (left_word, right_word) in self
.get_words()
.iter_elements()
.copied()
.zip(rhs.get_words().iter_elements().copied())
{
for i in 0..Self::NUMBER_OF_REGISTERS_IN_WORD {
let left_register = (left_word >> (i * BITS)) & Self::LOWER_REGISTER_MASK;
let right_register = (right_word >> (i * BITS)) & Self::LOWER_REGISTER_MASK;
if left_register < right_register {
return false;
}
}
}
true
}
#[inline(always)]
/// Returns the hash value and the corresponding register's index for a given value.
///
/// # Arguments
/// * `value` - A reference to the value to be hashed.
///
/// # Examples
///
/// ```
/// use hyperloglog_rs::prelude::*;
///
/// let mut hll: HyperLogLog<Precision8, 6> = HyperLogLog::default();
/// let value = 42;
/// let (hash, index) = hll.get_hash_and_index(&value);
///
/// //assert_eq!(hash, 10123147082338939904, "Expected hash {}, got {}.", 10123147082338939904, hash);
/// ```
fn get_hash_and_index<T: Hash>(&self, value: &T) -> (u64, usize) {
let mut hasher = SipHasher13::new();
value.hash(&mut hasher);
let hash: u64 = hasher.finish();
// Calculate the register's index using the highest bits of the hash.
let index: usize =
(hash as usize & Self::UPPER_PRECISION_MASK) >> (64 - PRECISION::EXPONENT);
// And we delete the used bits from the hash.
let hash: u64 = hash << PRECISION::EXPONENT;
debug_assert!(
index < PRECISION::NUMBER_OF_REGISTERS,
"The index {} must be less than the number of registers {}.",
index,
PRECISION::NUMBER_OF_REGISTERS
);
(hash, index)
}
/// Returns the number of registers in the counter.
///
/// # Implementation details
/// This function is overriding the estimate_cardinality function of the HyperLogLogTrait trait
/// as we can compute the cardinality of the counter using the multiplicities instead of the
/// registers. This is much faster as we do not need to compute the harmonic mean of the registers.
fn estimate_cardinality_from_multiplicities(
multiplicities: &PRECISION::RegisterMultiplicities,
) -> f32 {
if multiplicities[0] > PRECISION::NumberOfZeros::ZERO {
let number_of_zeros: usize = multiplicities[0].convert();
let low_range_correction = PRECISION::SMALL_CORRECTIONS[number_of_zeros - 1_usize];
if low_range_correction <= Self::LINEAR_COUNT_THRESHOLD {
return low_range_correction;
}
}
let mut raw_estimate: f32 = 0.0;
for (current_register, multeplicity) in multiplicities.iter_elements().enumerate() {
let two_to_minus_register: i32 = (127 - current_register as i32) << 23;
let register_count: f32 = multeplicity.convert();
raw_estimate +=
register_count * f32::from_le_bytes(two_to_minus_register.to_le_bytes());
}
Self::adjust_estimate(raw_estimate)
}
}