1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
use crate::utils::{ceil, get_alpha, precompute_small_corrections};
use core::hash::{Hash, Hasher};
use siphasher::sip::SipHasher13;

#[derive(Clone, Copy, Debug, PartialEq, Default)]
/// A struct for more readable code.
pub struct EstimatedUnionCardinalities {
    /// The estimated cardinality of the left set.
    left_cardinality: f32,
    /// The estimated cardinality of the right set.
    right_cardinality: f32,
    /// The estimated cardinality of the union of the two sets.
    union_cardinality: f32,
}

impl From<(f32, f32, f32)> for EstimatedUnionCardinalities {
    fn from(value: (f32, f32, f32)) -> Self {
        Self {
            left_cardinality: value.0,
            right_cardinality: value.1,
            union_cardinality: value.2,
        }
    }
}

impl EstimatedUnionCardinalities {
    #[inline(always)]
    /// Returns the estimated cardinality of the left set.
    ///
    /// # Examples
    ///
    /// ```
    /// use hyperloglog_rs::EstimatedUnionCardinalities;
    ///
    /// let estimated_union_cardinalities = EstimatedUnionCardinalities::from((2.0, 3.0, 4.0));
    ///
    /// let left_cardinality = estimated_union_cardinalities.get_left_cardinality();
    ///
    /// assert_eq!(left_cardinality, 2.0);
    ///
    /// ```
    pub fn get_left_cardinality(&self) -> f32 {
        self.left_cardinality
    }

    #[inline(always)]
    /// Returns the estimated cardinality of the right set.
    ///
    /// # Examples
    ///
    /// ```
    /// use hyperloglog_rs::EstimatedUnionCardinalities;
    ///
    /// let estimated_union_cardinalities = EstimatedUnionCardinalities::from((2.0, 3.0, 4.0));
    ///
    /// let right_cardinality = estimated_union_cardinalities.get_right_cardinality();
    ///
    /// assert_eq!(right_cardinality, 3.0);
    ///
    /// ```
    pub fn get_right_cardinality(&self) -> f32 {
        self.right_cardinality
    }

    #[inline(always)]
    /// Returns the estimated cardinality of the union of the two sets.
    ///
    /// # Examples
    ///
    /// ```
    /// use hyperloglog_rs::EstimatedUnionCardinalities;
    ///
    /// let estimated_union_cardinalities = EstimatedUnionCardinalities::from((2.0, 3.0, 4.0));
    ///
    /// let union_cardinality = estimated_union_cardinalities.get_union_cardinality();
    ///
    /// assert_eq!(union_cardinality, 4.0);
    ///
    /// ```
    pub fn get_union_cardinality(&self) -> f32 {
        self.union_cardinality
    }

    #[inline(always)]
    /// Returns the estimated cardinality of the intersection of the two sets.
    ///
    /// # Examples
    ///
    /// ```
    /// use hyperloglog_rs::EstimatedUnionCardinalities;
    ///
    /// let estimated_union_cardinalities = EstimatedUnionCardinalities::from((2.0, 3.0, 4.0));
    ///
    /// let intersection_cardinality = estimated_union_cardinalities.get_intersection_cardinality();
    ///
    /// assert_eq!(intersection_cardinality, 1.0);
    ///
    /// ```
    pub fn get_intersection_cardinality(&self) -> f32 {
        (self.left_cardinality + self.right_cardinality - self.union_cardinality).max(0.0)
    }

    #[inline(always)]
    /// Returns the estimated cardinality of the left set minus the right set.
    ///
    /// # Examples
    ///
    /// ```
    /// use hyperloglog_rs::EstimatedUnionCardinalities;
    ///
    /// let estimated_union_cardinalities = EstimatedUnionCardinalities::from((2.0, 3.0, 4.0));
    ///
    /// let left_minus_right_cardinality = estimated_union_cardinalities.get_left_difference_cardinality();
    ///
    /// assert_eq!(left_minus_right_cardinality, 1.0);
    ///
    /// ```
    pub fn get_left_difference_cardinality(&self) -> f32 {
        (self.left_cardinality - self.get_intersection_cardinality()).max(0.0)
    }

    #[inline(always)]
    /// Returns the estimated cardinality of the right set minus the left set.
    ///
    /// # Examples
    ///
    /// ```
    /// use hyperloglog_rs::EstimatedUnionCardinalities;
    ///
    /// let estimated_union_cardinalities = EstimatedUnionCardinalities::from((2.0, 3.0, 4.0));
    ///
    /// let right_minus_left_cardinality = estimated_union_cardinalities.get_right_difference_cardinality();
    ///
    /// assert_eq!(right_minus_left_cardinality, 2.0);
    ///
    /// ```
    pub fn get_right_difference_cardinality(&self) -> f32 {
        (self.right_cardinality - self.get_intersection_cardinality()).max(0.0)
    }

    #[inline(always)]
    /// Returns the estimated cardinality of the symmetric difference of the two sets.
    ///
    /// # Examples
    ///
    /// ```
    /// use hyperloglog_rs::EstimatedUnionCardinalities;
    ///
    /// let estimated_union_cardinalities = EstimatedUnionCardinalities::from((2.0, 3.0, 4.0));
    ///
    /// let symmetric_difference_cardinality = estimated_union_cardinalities.get_symmetric_difference_cardinality();
    ///
    /// assert_eq!(symmetric_difference_cardinality, 3.0);
    ///
    /// ```
    pub fn get_symmetric_difference_cardinality(&self) -> f32 {
        (self.left_cardinality + self.right_cardinality - 2.0 * self.get_intersection_cardinality())
            .max(0.0)
    }

    #[inline(always)]
    /// Returns the estimated Jaccard index of the two sets.
    ///
    /// # Examples
    ///
    /// ```
    /// use hyperloglog_rs::EstimatedUnionCardinalities;
    ///
    /// let estimated_union_cardinalities = EstimatedUnionCardinalities::from((2.0, 3.0, 4.0));
    ///
    /// let jaccard_index = estimated_union_cardinalities.get_jaccard_index();
    ///
    /// assert_eq!(jaccard_index, 1.0 / 4.0, "Example 1: Expected 1.0 / 4.0, got {}", jaccard_index);
    ///
    /// ```
    ///
    pub fn get_jaccard_index(&self) -> f32 {
        (self.get_intersection_cardinality() / (self.union_cardinality).max(f32::EPSILON))
            .max(0.0)
            .min(1.0)
    }
}

#[derive(Clone, Debug, Eq, PartialEq, Copy)]
/// A probabilistic algorithm for estimating the number of distinct elements in a set.
///
/// HyperLogLog is a probabilistic algorithm designed to estimate the number
/// of distinct elements in a set. It does so by taking advantage of the fact
/// that the representation of an element can be transformed into a uniform
/// distribution in a space with a fixed range.
///
/// HyperLogLog works by maintaining a fixed-sized register array,
/// where each register holds a counter. The algorithm splits the input set into subsets,
/// applies a hash function to each element in the subset, and then updates
/// the corresponding counter in the register array.
///
/// HyperLogLog uses a trick called "probabilistic counting" to estimate
/// the number of distinct elements in the set. Each register counter is converted
/// to a binary string, and the algorithm counts the number of leading zeros in
/// each binary string. The maximum number of leading zeros over all counters
/// is used to estimate the number of distinct elements in the set.
///
/// HyperLogLog has a tunable parameter called precision that determines
/// the accuracy of the algorithm. Higher precision leads to better accuracy,
/// but requires more memory. The error rate of the algorithm is guaranteed
/// to be within a certain bound, depending on the chosen precision.
///
/// # Examples
///
/// ```
/// use hyperloglog_rs::HyperLogLog;
///
/// let mut hll = HyperLogLog::<10, 6>::new();
/// hll.insert(&"apple");
/// hll.insert(&"banana");
/// hll.insert(&"cherry");
///
/// let estimated_cardinality = hll.estimate_cardinality();
/// assert!(estimated_cardinality >= 3.0_f32 * 0.9 &&
///         estimated_cardinality <= 3.0_f32 * 1.1);
/// ```
///
/// # Citations
///
/// This implementation is based on the following papers:
///
/// * Flajolet, Philippe, et al. "HyperLogLog: the analysis of a near-optimal cardinality estimation algorithm." DMTCS Proceedings 1 (2007): 127-146.
/// * Heule, Stefan, Marc Nunkesser, and Alexander Hall. "HyperLogLog in practice: algorithmic engineering of a state of the art cardinality estimation algorithm." Proceedings of the 16th International Conference on Extending Database Technology. 2013.
///
pub struct HyperLogLog<const PRECISION: usize, const BITS: usize>
where
    [(); ceil(1 << PRECISION, 32 / BITS)]:,
{
    pub(crate) words: [u32; ceil(1 << PRECISION, 32 / BITS)],
    pub(crate) number_of_zero_register: usize,
}

impl<const PRECISION: usize, const BITS: usize, T: Hash> From<T> for HyperLogLog<PRECISION, BITS>
where
    [(); ceil(1 << PRECISION, 32 / BITS)]:,
    [(); 1 << PRECISION]:,
{
    /// Create a new HyperLogLog counter from a value.
    ///
    /// This method creates a new empty HyperLogLog counter and inserts the hash
    /// of the given value into it. The value can be any type that implements
    /// the `Hash` trait.
    ///
    /// # Examples
    ///
    /// ```
    /// # use hyperloglog_rs::HyperLogLog;
    ///
    /// let hll = HyperLogLog::<14, 5>::from("test");
    ///
    /// assert!(hll.estimate_cardinality() >=  1.0_f32);
    /// assert!(!hll.is_empty());
    /// assert!(hll.may_contain(&"test"));
    /// ```
    fn from(value: T) -> Self {
        let mut hll = Self::new();
        hll.insert(value);
        hll
    }
}

/// Implements the Default trait for HyperLogLog.
///
/// HyperLogLog is a probabilistic cardinality estimator that uses a fixed
/// amount of memory to estimate the number of distinct elements in a set.
///
/// # Examples
///
/// ```rust
/// # use hyperloglog_rs::HyperLogLog;
///
/// let hll: HyperLogLog<10, 6> = Default::default();
/// assert_eq!(hll.len(), 1024);
/// assert_eq!(hll.get_number_of_bits(), 6);
/// ```
impl<const PRECISION: usize, const BITS: usize> Default for HyperLogLog<PRECISION, BITS>
where
    [(); ceil(1 << PRECISION, 32 / BITS)]:,
    [(); 1 << PRECISION]:,
{
    /// Returns a new HyperLogLog instance with default configuration settings.
    fn default() -> Self {
        Self::new()
    }
}

impl<const PRECISION: usize, const BITS: usize> HyperLogLog<PRECISION, BITS>
where
    [(); ceil(1 << PRECISION, 32 / BITS)]:,
    [(); 1 << PRECISION]:,
{
    /// The number of registers used by the HyperLogLog algorithm, which depends on its precision.
    pub const NUMBER_OF_REGISTERS: usize = 1 << PRECISION;

    /// The threshold value used in the small range correction of the HyperLogLog algorithm.
    pub const SMALL_RANGE_CORRECTION_THRESHOLD: f32 = 2.5_f32 * (Self::NUMBER_OF_REGISTERS as f32);

    /// The float value of 2^32, used in the intermediate range correction of the HyperLogLog algorithm.
    pub const TWO_32: f32 = (1u64 << 32) as f32;

    /// The threshold value used in the intermediate range correction of the HyperLogLog algorithm.
    pub const INTERMEDIATE_RANGE_CORRECTION_THRESHOLD: f32 = Self::TWO_32 / 30.0_f32;

    /// The mask used to obtain the lower register bits in the HyperLogLog algorithm.
    pub const LOWER_REGISTER_MASK: u32 = (1 << BITS) - 1;

    /// The number of registers that can fit in a single 32-bit word in the HyperLogLog algorithm.
    pub const NUMBER_OF_REGISTERS_IN_WORD: usize = 32 / BITS;

    /// The precomputed small corrections used in the HyperLogLog algorithm for better performance.
    pub const SMALL_CORRECTIONS: [f32; 1 << PRECISION] =
        precompute_small_corrections::<{ 1 << PRECISION }>();

    /// Create a new HyperLogLog counter.
    pub fn new() -> Self {
        assert!(PRECISION >= 4);
        assert!(PRECISION <= 16);
        Self {
            words: [0; ceil(1 << PRECISION, 32 / BITS)],
            number_of_zero_register: 1_usize << PRECISION,
        }
    }

    /// Create a new HyperLogLog counter from an array of registers.
    ///
    /// # Arguments
    ///
    /// * `registers` - An array of u32 registers to use for the HyperLogLog counter.
    ///
    /// # Returns
    ///
    /// A new HyperLogLog counter initialized with the given registers.
    ///
    /// # Examples
    ///
    /// ```
    /// use hyperloglog_rs::HyperLogLog;
    ///
    /// let registers = [0_u32; 1 << 4];
    /// let hll = HyperLogLog::<4, 6>::from_registers(&registers);
    /// assert_eq!(hll.len(), 1 << 4);
    /// ```
    pub fn from_registers(registers: &[u32]) -> Self {
        assert!(
            registers.len() == Self::NUMBER_OF_REGISTERS,
            "We expect {} registers, but got {}",
            Self::NUMBER_OF_REGISTERS,
            registers.len()
        );
        let mut words = [0; ceil(1 << PRECISION, 32 / BITS)];
        let number_of_zero_register = words
            .iter_mut()
            .zip(registers.chunks(Self::NUMBER_OF_REGISTERS_IN_WORD))
            .fold(0, |mut number_of_zero_register, (word, word_registers)| {
                for (i, register) in word_registers.iter().copied().enumerate() {
                    assert!(
                        register <= Self::LOWER_REGISTER_MASK,
                        "Register value {} is too large for the given number of bits {}",
                        register,
                        BITS
                    );
                    number_of_zero_register += (register == 0) as usize;
                    *word |= register << (i * BITS);
                }
                number_of_zero_register
            });
        Self {
            words,
            number_of_zero_register,
        }
    }

    fn adjust_estimate(&self, mut raw_estimate: f32, number_of_zeros: usize) -> f32 {
        debug_assert!(!raw_estimate.is_nan(), "Raw estimate is NaN");
        // Apply the final scaling factor to obtain the estimate of the cardinality
        raw_estimate = get_alpha(1 << PRECISION)
            * (Self::NUMBER_OF_REGISTERS * Self::NUMBER_OF_REGISTERS) as f32
            / raw_estimate;

        debug_assert!(!raw_estimate.is_nan(), "Updated raw estimate is NaN");

        // Apply the small range correction factor if the raw estimate is below the threshold
        // and there are zero registers in the counter.
        if raw_estimate <= Self::SMALL_RANGE_CORRECTION_THRESHOLD && number_of_zeros > 0 {
            raw_estimate = Self::SMALL_CORRECTIONS[number_of_zeros - 1];
            debug_assert!(
                !raw_estimate.is_nan(),
                "Small range correction factor is NaN"
            )
        // Apply the intermediate range correction factor if the raw estimate is above the threshold.
        } else if raw_estimate >= Self::INTERMEDIATE_RANGE_CORRECTION_THRESHOLD {
            let corrected_raw_estimate =
                -Self::TWO_32 * (-raw_estimate.min(Self::TWO_32) / Self::TWO_32).ln_1p();
            debug_assert!(
                !corrected_raw_estimate.is_nan(),
                "Intermediate range correction factor is NaN, starting raw estimate was {}",
                raw_estimate
            );
            raw_estimate = corrected_raw_estimate;
        }
        raw_estimate
    }

    #[inline(always)]
    /// Estimates the cardinality of the set based on the HLL counter data.
    ///
    /// # Example
    ///
    /// ```
    /// # use hyperloglog_rs::HyperLogLog;
    /// const PRECISION: usize = 8;
    /// const BITS: usize = 5;
    /// let mut hll = HyperLogLog::<PRECISION, BITS>::new();
    /// let elements = vec![1, 2, 3, 4, 5];
    /// for element in &elements {
    ///     hll.insert(element);
    /// }
    /// let estimated_cardinality = hll.estimate_cardinality();
    /// assert!(estimated_cardinality >= elements.len() as f32 * 0.9 &&
    ///         estimated_cardinality <= elements.len() as f32 * 1.1);
    /// ```
    ///
    /// # Returns
    /// * `f32` - The estimated cardinality of the set.
    pub fn estimate_cardinality(&self) -> f32 {
        let mut raw_estimate = 0.0;

        for word in self.words {
            let mut partial: f32 = 0.0;
            for i in 0..Self::NUMBER_OF_REGISTERS_IN_WORD {
                let register = (word >> (i * BITS)) & Self::LOWER_REGISTER_MASK;
                let two_to_minus_register = (127 - register) << 23;
                partial += f32::from_le_bytes(two_to_minus_register.to_le_bytes());
            }
            raw_estimate += partial;
        }

        debug_assert!(!raw_estimate.is_nan(), "Raw estimate is NaN");

        raw_estimate -= self.get_number_of_padding_registers() as f32;

        self.adjust_estimate(raw_estimate, self.get_number_of_zero_registers())
    }

    #[inline(always)]
    /// Returns an estimate of the cardinality of the union of two HyperLogLog counters.
    ///
    /// This method calculates an estimate of the cardinality of the union of two HyperLogLog counters
    /// using the raw estimation values of each counter. It combines the estimation values by iterating
    /// over the register words of both counters and performing necessary calculations.
    ///
    /// # Arguments
    /// * `other`: A reference to the other HyperLogLog counter.
    ///
    /// # Returns
    /// An estimation of the cardinality of the union of the two HyperLogLog counters.
    ///
    /// # Example
    ///
    /// ```
    /// use hyperloglog_rs::HyperLogLog;
    ///
    /// let mut hll1 = HyperLogLog::<12, 6>::new();
    /// hll1.insert(&1);
    /// hll1.insert(&2);
    ///
    /// let mut hll2 = HyperLogLog::<12, 6>::new();
    /// hll2.insert(&2);
    /// hll2.insert(&3);
    ///
    /// let union_cardinality = hll1.estimate_union_cardinality(&hll2);
    ///
    /// assert!(union_cardinality >= 3.0 * 0.9 &&
    ///         union_cardinality <= 3.0 * 1.1);
    /// ```
    pub fn estimate_union_cardinality(&self, other: &Self) -> f32 {
        let mut raw_union_estimate = 0.0;

        let mut union_zeros = 0;
        for (left_word, right_word) in self.words.iter().copied().zip(other.words.iter().copied()) {
            let mut partial: f32 = 0.0;
            for i in 0..Self::NUMBER_OF_REGISTERS_IN_WORD {
                let left_register = (left_word >> (i * BITS)) & Self::LOWER_REGISTER_MASK;
                let right_register = (right_word >> (i * BITS)) & Self::LOWER_REGISTER_MASK;
                let maximal_register = (left_register).max(right_register);
                let two_to_minus_register = (127 - maximal_register) << 23;
                partial += f32::from_le_bytes(two_to_minus_register.to_le_bytes());
                union_zeros += (maximal_register == 0) as usize;
            }
            raw_union_estimate += partial;
        }

        union_zeros -= self.get_number_of_padding_registers();

        self.adjust_estimate(raw_union_estimate, union_zeros)
    }

    #[inline(always)]
    /// Returns an estimate of the cardinality of the two HLL counters union.
    pub fn estimate_union_and_sets_cardinality(&self, other: &Self) -> EstimatedUnionCardinalities {
        let mut raw_union_estimate = 0.0;
        let mut raw_left_estimate = 0.0;
        let mut raw_right_estimate = 0.0;

        let mut union_zeros = 0;
        for (left_word, right_word) in self.words.iter().copied().zip(other.words.iter().copied()) {
            let mut union_partial: f32 = 0.0;
            let mut left_partial: f32 = 0.0;
            let mut right_partial: f32 = 0.0;
            for i in 0..Self::NUMBER_OF_REGISTERS_IN_WORD {
                let left_register = (left_word >> (i * BITS)) & Self::LOWER_REGISTER_MASK;
                let right_register = (right_word >> (i * BITS)) & Self::LOWER_REGISTER_MASK;
                let maximal_register = (left_register).max(right_register);
                union_partial += f32::from_le_bytes(((127 - maximal_register) << 23).to_le_bytes());
                left_partial += f32::from_le_bytes(((127 - left_register) << 23).to_le_bytes());
                right_partial += f32::from_le_bytes(((127 - right_register) << 23).to_le_bytes());
                union_zeros += (maximal_register == 0) as usize;
            }
            raw_union_estimate += union_partial;
            raw_left_estimate += left_partial;
            raw_right_estimate += right_partial;
        }

        union_zeros -= self.get_number_of_padding_registers();

        let union_estimate = self.adjust_estimate(raw_union_estimate, union_zeros);
        let left_estimate =
            self.adjust_estimate(raw_left_estimate, self.get_number_of_zero_registers());
        let right_estimate =
            self.adjust_estimate(raw_right_estimate, other.get_number_of_zero_registers());

        EstimatedUnionCardinalities {
            left_cardinality: left_estimate,
            right_cardinality: right_estimate,
            union_cardinality: union_estimate,
        }
    }

    #[inline(always)]
    /// Returns an estimate of the cardinality of the intersection of two HyperLogLog counters.
    ///
    /// This method calculates an estimate of the cardinality of the intersection of two HyperLogLog
    /// counters using the raw estimation values of each counter. It combines the estimation values by
    /// iterating over the register words of both counters and performing necessary calculations.
    ///
    /// # Arguments
    /// * `other`: A reference to the other HyperLogLog counter.
    ///
    /// # Returns
    /// An estimation of the cardinality of the intersection of the two HyperLogLog counters.
    ///
    /// # Example
    ///
    /// ```
    /// use hyperloglog_rs::HyperLogLog;
    ///
    /// let mut hll1 = HyperLogLog::<12, 6>::new();
    /// hll1.insert(&1);
    /// hll1.insert(&2);
    ///
    /// let mut hll2 = HyperLogLog::<12, 6>::new();
    /// hll2.insert(&2);
    /// hll2.insert(&3);
    ///
    /// let intersection_cardinality = hll1.estimate_intersection_cardinality(&hll2);
    ///
    /// assert!(intersection_cardinality >= 1.0 * 0.9 &&
    ///         intersection_cardinality <= 1.0 * 1.1);
    /// ```
    pub fn estimate_intersection_cardinality(&self, other: &Self) -> f32 {
        self.estimate_union_and_sets_cardinality(other)
            .get_intersection_cardinality()
    }

    #[inline(always)]
    /// Returns an estimate of the Jaccard index between two HyperLogLog counters.
    ///
    /// The Jaccard index is a measure of similarity between two sets. In the context of HyperLogLog
    /// counters, it represents the ratio of the size of the intersection of the sets represented by
    /// the counters to the size of their union. This method estimates the Jaccard index by utilizing
    /// the cardinality estimation values of the intersection, left set, and right set.
    ///
    /// # Arguments
    /// * `other`: A reference to the other HyperLogLog counter.
    ///
    /// # Returns
    /// An estimation of the Jaccard index between the two HyperLogLog counters.
    ///
    /// # Example
    ///
    /// ```
    /// use hyperloglog_rs::HyperLogLog;
    ///
    /// let mut hll1 = HyperLogLog::<12, 6>::new();
    /// hll1.insert(&1);
    /// hll1.insert(&2);
    /// hll1.insert(&3);
    /// hll1.insert(&4);
    ///
    /// let mut hll2 = HyperLogLog::<12, 6>::new();
    /// hll2.insert(&2);
    /// hll2.insert(&3);
    /// hll2.insert(&5);
    /// hll2.insert(&6);
    ///
    /// let jaccard_index = hll1.estimate_jaccard_cardinality(&hll2);
    ///
    /// let expected = 2.0 / 6.0;
    ///
    /// assert!(jaccard_index >= expected * 0.9 &&
    ///         jaccard_index <= expected * 1.1);
    /// ```
    pub fn estimate_jaccard_cardinality(&self, other: &Self) -> f32 {
        self.estimate_union_and_sets_cardinality(other)
            .get_jaccard_index()
    }

    #[inline(always)]
    /// Returns an estimate of the cardinality of the current HyperLogLog counter minus the provided one.
    ///
    /// # Arguments
    /// * `other`: A reference to the other HyperLogLog counter.
    ///
    /// # Example
    ///
    /// ```
    /// use hyperloglog_rs::HyperLogLog;
    ///
    /// let mut hll1 = HyperLogLog::<12, 6>::new();
    /// hll1.insert(&1);
    /// hll1.insert(&2);
    /// hll1.insert(&3);
    /// hll1.insert(&4);
    ///     
    /// let mut hll2 = HyperLogLog::<12, 6>::new();
    /// hll2.insert(&2);
    /// hll2.insert(&3);
    /// hll2.insert(&5);
    /// hll2.insert(&6);
    ///
    /// let difference_cardinality = hll1.estimate_difference_cardinality(&hll2);
    ///
    /// assert!(difference_cardinality >= 2.0 * 0.9 &&
    ///        difference_cardinality <= 2.0 * 1.1);
    /// ```
    pub fn estimate_difference_cardinality(&self, other: &Self) -> f32 {
        self.estimate_union_and_sets_cardinality(other)
            .get_left_difference_cardinality()
    }

    #[inline(always)]
    /// Returns an iterator over the register values of the HyperLogLog instance.
    ///
    /// The register values are extracted from the words array, where each word contains multiple
    /// register values. This method first checks that the size of the words array matches the expected
    /// number of registers per word, which is determined by the number of bits per register. It then
    /// iterates over each word in the array and extracts the register values using bit shifting and
    /// masking operations. Finally, it takes only the expected number of register values and returns
    /// an iterator over them.
    ///
    /// # Returns
    ///
    /// An iterator over the register values of the HyperLogLog instance.
    ///
    /// # Examples
    ///
    /// ```
    /// use hyperloglog_rs::HyperLogLog;
    /// const PRECISION: usize = 8;
    /// const BITS: usize = 5;
    /// const HYPERLOGLOG_SIZE: usize = 1 << PRECISION;
    ///
    /// let mut hll = HyperLogLog::<PRECISION, BITS>::new();
    /// assert_eq!(hll.iter().count(), HYPERLOGLOG_SIZE);
    ///
    /// hll.insert(&"foo");
    /// hll.insert(&"bar");
    ///
    /// let mut hll2 = HyperLogLog::<PRECISION, BITS>::new();
    /// hll2|= hll;
    ///
    /// assert_eq!(hll2.iter().count(), HYPERLOGLOG_SIZE);
    /// ```
    pub fn iter(&self) -> impl Iterator<Item = u32> + '_ {
        debug_assert_eq!(
            self.words.len(),
            ceil(1 << PRECISION, Self::NUMBER_OF_REGISTERS_IN_WORD)
        );

        self.words
            .iter()
            .flat_map(|word| {
                (0..Self::NUMBER_OF_REGISTERS_IN_WORD)
                    .map(move |i| (word >> (i * BITS)) & Self::LOWER_REGISTER_MASK)
            })
            .take(Self::NUMBER_OF_REGISTERS)
    }

    #[inline(always)]
    /// Returns the number of registers in the HLL counter.
    ///
    ///
    /// # Example
    ///
    /// ```
    /// # use hyperloglog_rs::HyperLogLog;
    ///
    /// // Create a new HLL counter with 128 registers
    /// let mut hll = HyperLogLog::<12, 8>::new();
    /// assert_eq!(hll.len(), 4096);
    ///
    /// // Insert some elements into the HLL counter
    /// hll.insert(&1);
    /// hll.insert(&2);
    /// hll.insert(&3);
    /// assert_eq!(hll.len(), 1 << 12);
    ///
    /// // Merge another HLL counter with 128 registers
    /// let mut hll2 = HyperLogLog::<12, 8>::new();
    /// hll2.insert(&4);
    /// hll2.insert(&5);
    /// hll |= hll2;
    /// assert_eq!(hll.len(), 1 << 12);
    /// ```
    pub fn len(&self) -> usize {
        debug_assert_eq!(Self::NUMBER_OF_REGISTERS, self.iter().count());
        Self::NUMBER_OF_REGISTERS
    }

    #[inline(always)]
    /// Returns whether no element was yet added to the HLL counter.
    ///
    ///
    /// # Examples
    ///
    /// ```
    /// use hyperloglog_rs::HyperLogLog;
    ///
    /// let mut hll: HyperLogLog<8, 8> = HyperLogLog::new();
    ///
    /// assert!(hll.is_empty());
    ///
    /// hll.insert(&1);
    ///
    /// assert!(!hll.is_empty());
    /// ```
    pub fn is_empty(&self) -> bool {
        self.number_of_zero_register == self.len()
    }

    #[inline(always)]
    /// Returns the number of bits used to represent each register in the HyperLogLog counter.
    ///
    /// # Returns
    ///
    /// An unsigned integer value representing the number of bits used to represent each register
    /// in the HyperLogLog counter.
    ///
    /// # Example
    ///
    /// ```
    /// use hyperloglog_rs::HyperLogLog;
    ///
    /// let hll = HyperLogLog::<13, 6>::new();
    /// assert_eq!(hll.get_number_of_bits(), 6);
    /// ```
    pub const fn get_number_of_bits(&self) -> usize {
        BITS
    }

    #[inline(always)]
    /// Returns the number of extra registers that are not actually used.
    ///
    /// # Examples
    ///
    /// ```
    /// # use hyperloglog_rs::HyperLogLog;
    ///
    /// // Create a HyperLogLog counter with precision 10 and 6-bit registers
    /// let mut hll = HyperLogLog::<10, 6>::new();
    ///
    /// // Since the number of registers is not a multiple of the number of registers in a word,
    /// // there are padding registers that are not actually used.
    /// assert_eq!(hll.get_number_of_padding_registers(), 1);
    ///
    /// // Insert some elements into the counter
    /// hll.insert(&1);
    /// hll.insert(&2);
    ///
    /// // The number of padding registers is still the same
    /// assert_eq!(hll.get_number_of_padding_registers(), 1);
    /// ```
    pub const fn get_number_of_padding_registers(&self) -> usize {
        ceil(1 << PRECISION, 32 / BITS) * Self::NUMBER_OF_REGISTERS_IN_WORD
            - Self::NUMBER_OF_REGISTERS
    }

    #[inline(always)]
    /// Returns the number of registers with zero values. This value is used for computing a small
    /// correction when estimating the cardinality of a small set.
    ///
    /// # Examples
    ///
    /// ```
    /// # use hyperloglog_rs::HyperLogLog;
    ///
    /// // Create a new HyperLogLog counter with precision 14 and 5 bits per register.
    /// let mut hll = HyperLogLog::<14, 5>::new();
    ///
    /// // Add some elements to the counter.
    /// hll.insert(&1);
    /// hll.insert(&2);
    /// hll.insert(&3);
    ///
    /// // Get the number of zero registers.
    /// let number_of_zero_registers = hll.get_number_of_zero_registers();
    ///
    /// assert_eq!(number_of_zero_registers, 16381);
    /// ```
    pub fn get_number_of_zero_registers(&self) -> usize {
        self.number_of_zero_register
    }

    #[inline(always)]
    pub fn get_number_of_non_zero_registers(&self) -> usize {
        // Calculates the number of registers that have a non-zero value by
        // subtracting the number of registers with a zero value from the total number of registers
        self.len() - self.get_number_of_zero_registers()
    }

    #[inline(always)]
    /// Returns an array of registers of the HyperLogLog counter.
    ///
    /// # Examples
    ///
    /// ```rust
    /// # use hyperloglog_rs::HyperLogLog;
    ///
    /// let mut hll = HyperLogLog::<10, 6>::new();
    /// hll.insert(&4);
    /// hll.insert(&5);
    /// hll.insert(&6);
    /// let registers = hll.get_registers();
    ///
    /// assert_eq!(registers.len(), 1024);
    /// assert!(registers.iter().any(|&x| x > 0));
    /// ```
    ///
    /// We can also create an HLL from registers, and then check
    /// whether the registers are what we expect:
    ///
    /// ```rust
    /// # use hyperloglog_rs::HyperLogLog;
    ///
    /// let expected = [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 11, 11, 11, 0];
    /// let mut hll = HyperLogLog::<4, 6>::from_registers(&expected);
    /// assert_eq!(hll.get_registers(), expected, "Expected {:?}, got {:?}", expected, hll.get_registers());
    /// ```
    pub fn get_registers(&self) -> [u32; 1 << PRECISION] {
        let mut array = [0; (1 << PRECISION)];
        self.iter()
            .zip(array.iter_mut())
            .for_each(|(value, target)| {
                *target = value;
            });
        array
    }

    #[inline(always)]
    /// Returns the array of words of the HyperLogLog counter.
    pub fn get_words(&self) -> [u32; ceil(1 << PRECISION, 32 / BITS)] {
        self.words
    }

    #[inline(always)]
    /// Returns the hash value and the corresponding register's index for a given value.
    ///
    /// # Arguments
    /// * `value` - A reference to the value to be hashed.
    ///
    /// # Examples
    ///
    /// ```
    /// use hyperloglog_rs::HyperLogLog;
    ///
    /// let mut hll: HyperLogLog<8, 6> = HyperLogLog::new();
    /// let value = 42;
    /// let (hash, index) = hll.get_hash_and_index(&value);
    ///
    /// assert_eq!(index, 213, "Expected index {}, got {}.", 213, index);
    /// assert_eq!(hash, 15387811073369036852, "Expected hash {}, got {}.", 15387811073369036852, hash);
    /// ```
    pub fn get_hash_and_index<T: Hash>(&self, value: &T) -> (u64, usize) {
        // Create a new hasher.
        let mut hasher = SipHasher13::new();
        // Calculate the hash.
        value.hash(&mut hasher);
        let hash: u64 = hasher.finish();

        // Calculate the register's index.
        let index: usize = (hash >> (64 - PRECISION)) as usize;
        debug_assert!(
            index < Self::NUMBER_OF_REGISTERS,
            "The index {} must be less than the number of registers {}.",
            index,
            Self::NUMBER_OF_REGISTERS
        );

        (hash, index)
    }

    #[inline(always)]
    /// Returns `true` if the HyperLogLog counter may contain the given element.
    ///
    /// # Arguments
    /// * `rhs` - The element to check.
    ///
    /// # Examples
    ///
    /// ```rust
    /// # use hyperloglog_rs::HyperLogLog;
    ///
    /// let mut hll: HyperLogLog<8, 6> = HyperLogLog::new();
    /// assert_eq!(hll.may_contain(&42), false);
    ///
    /// hll.insert(&42);
    /// assert_eq!(hll.may_contain(&42), true);
    /// ```
    pub fn may_contain<T: Hash>(&self, rhs: &T) -> bool {
        let (_hash, index) = self.get_hash_and_index(&rhs);

        // Calculate the position of the register in the internal buffer array.
        let word_position = index / Self::NUMBER_OF_REGISTERS_IN_WORD;

        // Calculate the position of the register within the 32-bit word containing it.
        let register_position_in_u32 = index % Self::NUMBER_OF_REGISTERS_IN_WORD;

        // Extract the current value of the register at `index`.
        let register_value: u32 = (self.words[word_position] >> (register_position_in_u32 * BITS))
            & Self::LOWER_REGISTER_MASK;

        register_value > 0
    }

    #[inline(always)]
    /// Returns whether the provided HyperLogLog counter may be fully contained in the current HyperLogLog counter.
    ///
    /// # Arguments
    /// * `rhs` - The HyperLogLog counter to check.
    ///
    /// # Implementative details
    /// We define a counter that fully contains another counter when all of the registers
    /// of the first counter are greater than or equal to the corresponding registers of the second counter.
    ///
    /// # Examples
    ///
    /// ```rust
    /// # use hyperloglog_rs::HyperLogLog;
    ///
    /// let mut hll1: HyperLogLog<8, 6> = HyperLogLog::new();
    /// let mut hll2: HyperLogLog<8, 6> = HyperLogLog::new();
    ///
    /// hll1.insert(&42);
    /// hll1.insert(&43);
    /// hll1.insert(&44);
    ///
    /// hll2.insert(&42);
    /// hll2.insert(&43);
    ///
    /// assert_eq!(hll1.may_contain_all(&hll2), true);
    /// assert_eq!(hll2.may_contain_all(&hll1), false);
    ///
    /// hll2.insert(&44);
    ///
    /// assert_eq!(hll1.may_contain_all(&hll2), true);
    /// assert_eq!(hll2.may_contain_all(&hll1), true);
    /// ```
    pub fn may_contain_all(&self, rhs: &Self) -> bool {
        for (left_word, right_word) in self.words.iter().copied().zip(rhs.words.iter().copied()) {
            for i in 0..Self::NUMBER_OF_REGISTERS_IN_WORD {
                let left_register = (left_word >> (i * BITS)) & Self::LOWER_REGISTER_MASK;
                let right_register = (right_word >> (i * BITS)) & Self::LOWER_REGISTER_MASK;
                if left_register < right_register {
                    return false;
                }
            }
        }
        true
    }

    /// Returns estimated overlapping and differences cardinality matrices of the provided HyperLogLog counters.
    ///
    /// # Arguments
    /// * `left` - Array of `L` HyperLogLog counters describing increasingly large surroundings of a first element.
    /// * `right` - Array of `R` HyperLogLog counters describing increasingly large surroundings of a second element.
    ///
    /// # Returns
    /// * `overlap_cardinality_matrix` - Matrix of estimated overlapping cardinalities between the elements of the left and right arrays.
    /// * `left_difference_cardinality_vector` - Vector of estimated difference cardinalities between the elements of the left array and the last element of the right array.
    /// * `right_difference_cardinality_vector` - Vector of estimated difference cardinalities between the elements of the right array and the last element of the left array.
    ///
    /// # Implementative details
    /// We expect the elements of the left and right arrays to be increasingly contained in the next one.
    ///
    /// # Examples
    /// In the following illustration, we show that for two vectors left and right of three elements,
    /// we expect to compute the exclusively overlap matrix $A_{ij}$ and the exclusively differences vectors $B_i$.    
    ///
    /// ![Illustration of overlaps](https://github.com/LucaCappelletti94/hyperloglog-rs/blob/main/triple_overlap.drawio.png?raw=true)
    ///
    /// Very similarly, for the case of vectors of two elements:
    ///
    /// ![Illustration of overlaps](https://github.com/LucaCappelletti94/hyperloglog-rs/blob/main/tuple_overlap.drawio.png?raw=true)
    ///
    /// In this crate, we make available the singular method to compute the estimated overlapping
    /// and differences cardinality matrices and vectors. In some instances, it is necessary to
    /// compute both of these matrices and vectors at once, and as they have a lot of common
    /// computations, it is more efficient to compute them at once. We expect that the two methods
    /// provide the same results, and we test this in the following example.
    ///
    /// In this example, we populate randomly two arrays of two HLL each, and we compute the
    /// estimated overlapping and differences cardinality matrices and vectors using the method
    /// computing the values at once, and we compare them to the values computed using the methods
    /// which compute the values separately.
    ///
    /// ```rust
    /// # use hyperloglog_rs::HyperLogLog;
    ///
    /// for k in 0..1000 {
    ///     let mut left = [HyperLogLog::<12, 6>::new(), HyperLogLog::<12, 6>::new()];
    ///     let mut right = [HyperLogLog::<12, 6>::new(), HyperLogLog::<12, 6>::new()];
    ///
    ///     for i in 0..2 {
    ///          for j in 0..100 {
    ///             left[i].insert((k + 1) * (i + 1) * (j + 1) % 50);
    ///             right[i].insert((k + 1) * (i + 1) * (j + 1) % 30);
    ///         }
    ///     }
    ///
    ///     let left_tmp = left[0] | left[1];
    ///     left[1] = left_tmp;
    ///     let right_tmp = right[0] | right[1];
    ///     right[1] = right_tmp;
    ///
    ///     let (overlap_cardinality_matrix, left_difference_cardinality_vector, right_difference_cardinality_vector) =
    ///         HyperLogLog::<12, 6>::estimated_overlap_and_differences_cardinality_matrices(&left, &right);
    ///     let overlap_cardinality_matrix_singular = HyperLogLog::estimated_overlap_cardinality_matrix(&left, &right);
    ///     let left_difference_cardinality_vector_singular = HyperLogLog::estimated_difference_cardinality_vector(&left, &right[1]);
    ///     let right_difference_cardinality_vector_singular = HyperLogLog::estimated_difference_cardinality_vector(&right, &left[1]);
    ///
    ///    for i in 0..2 {
    ///        for j in 0..2 {
    ///             assert!(
    ///                 overlap_cardinality_matrix[i][j] >= overlap_cardinality_matrix_singular[i][j] * 0.9 &&
    ///                 overlap_cardinality_matrix[i][j] <= overlap_cardinality_matrix_singular[i][j] * 1.1,
    ///                 "The value of the overlap cardinality matrix at position ({}, {}) is not the same when computed at once and separately.",
    ///                 i,
    ///                 j
    ///             );
    ///         }
    ///     }
    ///
    /// for i in 0..2 {
    ///     assert!(
    ///         left_difference_cardinality_vector[i] >= left_difference_cardinality_vector_singular[i] * 0.9 - 0.1 &&
    ///         left_difference_cardinality_vector[i] <= left_difference_cardinality_vector_singular[i] * 1.1 + 0.1,
    ///         "The value of the left difference cardinality vector at position {} is not the same when computed at once and separately.",
    ///         i
    ///     );
    ///
    ///     assert!(
    ///         right_difference_cardinality_vector[i] >= right_difference_cardinality_vector_singular[i] * 0.9 - 0.1 &&
    ///         right_difference_cardinality_vector[i] <= right_difference_cardinality_vector_singular[i] * 1.1 + 0.1,
    ///         concat!(
    ///             "The value of the right difference cardinality vector at position {} ",
    ///             "is not the same when computed at once and separately.",
    ///             "We expected {} but got {}."
    ///         ),
    ///         i,
    ///         right_difference_cardinality_vector_singular[i],
    ///         right_difference_cardinality_vector[i]
    ///     );
    /// }
    ///
    /// }
    ///
    /// ```
    ///
    pub fn estimated_overlap_and_differences_cardinality_matrices<
        const L: usize,
        const R: usize,
    >(
        left: &[Self; L],
        right: &[Self; R],
    ) -> ([[f32; R]; L], [f32; L], [f32; R]) {
        // When we are not in release mode, we check that the HLL are increasing in size.
        #[cfg(debug_assertions)]
        for i in 1..L {
            assert!(
                left[i].may_contain_all(&left[i - 1]),
                concat!(
                    "We expected for all the elements of the left array to be contained in the next one, ",
                    "but this is not the case for the element at position {}."
                ),
                i
            );
        }

        // When we are not in release mode, we check that the HLL are increasing in size.
        #[cfg(debug_assertions)]
        for i in 1..R {
            assert!(
                right[i].may_contain_all(&right[i - 1]),
                concat!(
                    "We expected for all the elements of the right array to be contained in the next one, ",
                    "but this is not the case for the element at position {}."
                ),
                i
            );
        }

        let mut overlap_cardinality_matrix = [[0.0; R]; L];
        let mut left_difference_cardinality_vector = [0.0; L];
        let mut right_difference_cardinality_vector = [0.0; R];
        let mut left_comulative_estimated_cardinality = 0.0;
        let mut right_comulative_estimated_cardinality = 0.0;

        for i in 0..(L - 1) {
            for j in 0..(R - 1) {
                overlap_cardinality_matrix[i][j] = (left[i]
                    .estimate_intersection_cardinality(&right[j])
                    // Since we need to compute the exclusive overlap cardinality, i.e. we exclude the elements
                    // contained in the smaller HLLs, we need to subtract all of the partial cardinality of elements
                    // with a smaller index than the current one.
                    - overlap_cardinality_matrix[0..(i+1)]
                        .iter()
                        .map(|row| row[0..(j+1)].iter().sum::<f32>())
                        .sum::<f32>())
                .max(0.0);
            }

            // We handle separately the case for j = R - 1, since we need to also compute
            // the difference cardinality of the left HLL.
            let estimate = left[i].estimate_union_and_sets_cardinality(&right[R - 1]);
            left_difference_cardinality_vector[i] = (estimate.get_left_difference_cardinality()
                - left_comulative_estimated_cardinality)
                .max(0.0);
            left_comulative_estimated_cardinality += left_difference_cardinality_vector[i];
            overlap_cardinality_matrix[i][R - 1] = (estimate.get_intersection_cardinality()
                // Since we need to compute the exclusive overlap cardinality, i.e. we exclude the elements
                // contained in the smaller HLLs, we need to subtract all of the partial cardinality of elements
                // with a smaller index than the current one.
                - overlap_cardinality_matrix[0..(i+1)]
                    .iter()
                    .map(|row| row[0..R].iter().sum::<f32>())
                    .sum::<f32>())
            .max(0.0);
        }

        // We handle separately the case for i = L - 1, since we need to also compute
        // the difference cardinality of the left and right HLL. We still have to compute
        // all difference cardinalities between the last element of left (the L-1 one) and
        // all the elements of right.

        for j in 0..(R - 1) {
            let estimate = left[L - 1].estimate_union_and_sets_cardinality(&right[j]);
            right_difference_cardinality_vector[j] = (estimate.get_right_difference_cardinality()
                - right_comulative_estimated_cardinality)
                .max(0.0);
            right_comulative_estimated_cardinality += right_difference_cardinality_vector[j];
            overlap_cardinality_matrix[L - 1][j] = (estimate.get_intersection_cardinality()
                // Since we need to compute the exclusive overlap cardinality, i.e. we exclude the elements
                // contained in the smaller HLLs, we need to subtract all of the partial cardinality of elements
                // with a smaller index than the current one.
                - overlap_cardinality_matrix[0..L]
                    .iter()
                    .map(|row| row[0..(j+1)].iter().sum::<f32>())
                    .sum::<f32>())
            .max(0.0);
        }

        // We handle separately the case for i = L - 1 and j = R - 1, since we need to also compute
        // the difference cardinality of the left and right HLL.
        let estimate = left[L - 1].estimate_union_and_sets_cardinality(&right[R - 1]);
        left_difference_cardinality_vector[L - 1] = (estimate.get_left_difference_cardinality()
            - left_comulative_estimated_cardinality)
            .max(0.0);
        right_difference_cardinality_vector[R - 1] = (estimate.get_right_difference_cardinality()
            - right_comulative_estimated_cardinality)
            .max(0.0);

        (
            overlap_cardinality_matrix,
            left_difference_cardinality_vector,
            right_difference_cardinality_vector,
        )
    }

    /// Returns estimated overlapping cardinality matrices of the provided HyperLogLog counters.
    ///
    /// # Arguments
    /// * `left` - Array of `L` HyperLogLog counters describing increasingly large surroundings of a first element.
    /// * `right` - Array of `R` HyperLogLog counters describing increasingly large surroundings of a second element.
    ///
    /// # Implementation details
    /// Both arrays are expected to contain HyperLogLog counters increasing in size, i.e. the first element of `left`
    /// should be contained in the second element of `left`, which should be contained in the third element of `left`,
    /// and so on. The same applies to `right`.
    ///
    /// # Examples
    ///
    /// We start with a trivial example with solely two counters.
    /// In this case, the result will have to contain a single element
    /// which is the estimated intersection cardinality of the two counters.
    ///
    /// ```rust
    /// # use hyperloglog_rs::HyperLogLog;
    ///
    /// let mut hll1: HyperLogLog<8, 6> = HyperLogLog::new();
    /// let mut hll2: HyperLogLog<8, 6> = HyperLogLog::new();
    ///
    /// hll1.insert(&42);
    /// hll1.insert(&43);
    /// hll1.insert(&44);
    ///
    /// hll2.insert(&42);
    /// hll2.insert(&43);
    ///
    /// let result = HyperLogLog::estimated_overlap_cardinality_matrix(&[hll1,], &[hll2,]);
    ///
    /// assert!(
    ///     result[0][0] < 2.0 * 1.1 &&
    ///     result[0][0] > 2.0 * 0.9,
    ///     "The estimated intersection cardinality should be around 2, but it is {}.",
    ///     result[0][0]
    /// );
    /// ```
    ///
    /// Now we consider a more complex example with two arrays of counters.
    /// We start with two arrays of two elements each. This means that in the end we will have a 2x2 matrix.
    /// The value in position (0,0) of the matrix will be the estimated intersection cardinality of the first element
    /// of the first array and the first element of the second array. The value of the subsequent positions
    /// are less trivial, as we will have to take into account the difference of the elements present in the
    /// smaller sets which we do not want to count multiple times.
    ///
    /// It follows that, for the value in position (0, 1), we will need to subtract the value in position (0,0).
    /// For the value in position (1, 0), we will need to subtract the value in position (0,0). And finally, for
    /// the value in position (1, 1), we will need to subtract the values in positions (0,0), (0,1) and (1,0).
    ///
    /// ```rust
    /// # use hyperloglog_rs::HyperLogLog;
    ///
    /// let mut hll1: HyperLogLog<8, 6> = HyperLogLog::new();
    /// let mut hll2: HyperLogLog<8, 6> = HyperLogLog::new();
    ///
    /// hll1.insert(&42);
    /// hll1.insert(&43);
    /// hll1.insert(&44);
    ///    
    /// hll2.insert(&42);
    /// hll2.insert(&43);
    ///
    /// let mut hll3: HyperLogLog<8, 6> = HyperLogLog::new();
    /// let mut hll4: HyperLogLog<8, 6> = HyperLogLog::new();
    ///
    /// hll3.insert(&42);
    /// hll3.insert(&43);
    /// hll3.insert(&44);
    /// hll3.insert(&45);
    ///
    /// hll4.insert(&42);
    /// hll4.insert(&43);
    /// hll4.insert(&44);
    ///
    /// let result = HyperLogLog::estimated_overlap_cardinality_matrix(&[hll1, hll3], &[hll2, hll4]);
    ///
    /// assert!(
    ///     result[0][0] < 2.0 * 1.1 &&
    ///     result[0][0] > 2.0 * 0.9,
    ///     "Test 1a: The estimated intersection cardinality should be around 2, but it is {}.",
    ///     result[0][0]
    /// );
    ///
    /// assert!(
    ///     result[0][1] < 1.0 * 1.1 &&
    ///     result[0][1] > 1.0 * 0.9,
    ///     "Test 2a: The estimated intersection cardinality should be around 1, but it is {}.",
    ///     result[0][1]
    /// );
    ///
    /// assert!(
    ///     result[1][0] < 0.1 &&
    ///     result[1][0] > -0.1,
    ///     "Test 3a: The estimated intersection cardinality should be around 0, but it is {}.",
    ///     result[1][0]
    /// );
    ///
    /// assert!(
    ///     result[1][1] < 0.1 &&
    ///     result[1][1] > -0.1,
    ///     "Test 4a: The estimated intersection cardinality should be around 0, but it is {}.",
    ///     result[1][1]
    /// );
    ///
    /// ```
    ///
    /// We now consider a more complex example, with two arrays of three elements each.
    ///
    /// ```rust
    /// # use hyperloglog_rs::HyperLogLog;
    ///
    /// let mut hll1: HyperLogLog<8, 6> = HyperLogLog::new();
    /// let mut hll2: HyperLogLog<8, 6> = HyperLogLog::new();
    /// let mut hll3: HyperLogLog<8, 6> = HyperLogLog::new();
    ///
    /// let mut hll4: HyperLogLog<8, 6> = HyperLogLog::new();
    /// let mut hll5: HyperLogLog<8, 6> = HyperLogLog::new();
    /// let mut hll6: HyperLogLog<8, 6> = HyperLogLog::new();
    ///
    /// hll1.insert(&42);
    /// hll1.insert(&43);
    /// hll1.insert(&44);
    ///
    /// hll2.insert(&42);
    /// hll2.insert(&43);
    /// hll2.insert(&44);
    ///
    /// hll3.insert(&42);
    /// hll3.insert(&43);
    /// hll3.insert(&44);
    /// hll3.insert(&45);
    ///
    /// hll4.insert(&42);
    /// hll4.insert(&43);
    /// hll4.insert(&44);
    ///
    /// hll5.insert(&42);
    /// hll5.insert(&43);
    /// hll5.insert(&44);
    /// hll5.insert(&45);
    ///
    /// hll6.insert(&42);
    /// hll6.insert(&43);
    /// hll6.insert(&44);
    /// hll6.insert(&45);
    /// hll6.insert(&46);
    ///
    /// let result = HyperLogLog::estimated_overlap_cardinality_matrix(&[hll1, hll3, hll6], &[hll2, hll4, hll5]);
    ///
    /// assert!(
    ///     result[0][0] < 3.0 * 1.1 &&
    ///     result[0][0] > 3.0 * 0.9,
    ///     concat!(
    ///         "Test 1b: The estimated intersection cardinality should be around 3, but it is {}. ",
    ///         "This is because the value in cell {:?} is dependent on no previous intersection.",
    ///     ),
    ///     result[0][0],
    ///     (0, 0),
    /// );
    ///
    /// assert!(
    ///     result[0][1] < 0.1 &&
    ///     result[0][1] > -0.1,
    ///     concat!(
    ///         "Test 2b: The estimated intersection cardinality should be around 0, but it is {}. ",
    ///         "This is because the value in cell {:?} is dependent on the previous intersection ",
    ///         "values {:?}, and is not equal to the simple intersection of the HLL counters in ",
    ///         "positions {} and {}, which would have been an estimated cardinality of {}."
    ///     ),
    ///     result[0][1],
    ///     (0, 1),
    ///     vec![result[0][0]],
    ///     0,
    ///     1,
    ///     hll1.estimate_intersection_cardinality(&hll4),
    /// );
    ///
    /// assert!(
    ///     result[1][0] < 0.1 &&
    ///     result[1][0] > -0.1,
    ///     concat!(
    ///         "Test 3b: The estimated intersection cardinality should be around 1, but it is {}. ",
    ///         "This is because the value in cell {:?} is dependent on the previous intersection ",
    ///         "values {:?}, and is not equal to the simple intersection of the HLL counters in ",
    ///         "positions {} and {}, which would have been an estimated cardinality of {}."
    ///     ),
    ///     result[1][0],
    ///     (1, 0),
    ///     vec![result[0][0]],
    ///     1,
    ///     0,
    ///     hll3.estimate_intersection_cardinality(&hll2),
    /// );
    ///
    /// assert!(
    ///     result[1][1] < 0.1 &&
    ///     result[1][1] > -0.1,
    ///     concat!(
    ///         "Test 4b: The estimated intersection cardinality should be around 2, but it is {}. ",
    ///         "This is because the value in cell {:?} is dependent on the previous intersection ",
    ///         "values {:?}, and is not equal to the simple intersection of the HLL counters in ",
    ///         "positions {} and {}, which would have been an estimated cardinality of {}."
    ///     ),
    ///     result[1][1],
    ///     (1, 1),
    ///     vec![result[0][0], result[1][0], result[0][1]],
    ///     1,
    ///     1,
    ///     hll3.estimate_intersection_cardinality(&hll4),
    /// );
    ///
    /// assert!(
    ///     result[1][2] < 1.0 * 1.1 &&
    ///     result[1][2] > 1.0 * 0.9,
    ///     concat!(
    ///         "Test 5b: The estimated intersection cardinality should be around 1, but it is {}. ",
    ///         "This is because the value in cell {:?} is dependent on the previous intersection ",
    ///         "values {:?}, and is not equal to the simple intersection of the HLL counters in ",
    ///         "positions {} and {}, which would have been an estimated cardinality of {}."
    ///     ),
    ///     result[1][2],
    ///     (1, 2),
    ///     vec![result[0][0], result[1][0], result[0][1], result[1][1]],
    ///     1,
    ///     2,
    ///     hll3.estimate_intersection_cardinality(&hll5),
    /// );
    ///
    /// assert!(
    ///     result[2][0] < 0.1 &&
    ///     result[2][0] > -0.1,
    ///     concat!(
    ///         "Test 6b: The estimated intersection cardinality should be around 0, but it is {}. ",
    ///         "This is because the value in cell {:?} is dependent on the previous intersection ",
    ///         "values {:?}, and is not equal to the simple intersection of the HLL counters in ",
    ///         "positions {} and {}, which would have been an estimated cardinality of {}."
    ///     ),
    ///     result[2][0],
    ///     (2, 0),
    ///     vec![result[0][0], result[1][0],],
    ///     2,
    ///     0,
    ///     hll6.estimate_intersection_cardinality(&hll2),
    /// );
    ///
    /// assert!(
    ///     result[2][1] < 0.1 &&
    ///     result[2][1] > -0.1,
    ///     concat!(
    ///         "Test 7b: The estimated intersection cardinality should be around 0, but it is {}." ,
    ///         "This is because the value in cell {:?} is dependent on the previous intersection ",
    ///         "values {:?}, and is not equal to the simple intersection of the HLL counters in ",
    ///         "positions {} and {}, which would have been an estimated cardinality of {}."
    ///     ),
    ///     result[2][1],
    ///     (2, 1),
    ///     vec![result[0][0], result[1][0], result[2][0]],
    ///     2,
    ///     1,
    ///     hll6.estimate_intersection_cardinality(&hll4),
    /// );
    ///
    /// assert!(
    ///     result[2][2] < 0.1 &&
    ///     result[2][2] > -0.1,
    ///     concat!(
    ///         "Test 8b: The estimated intersection cardinality should be around 0, but it is {}. ",
    ///         "This is because the value in cell {:?} is dependent on the previous intersection ",
    ///         "values {:?}, and is not equal to the simple intersection of the HLL counters in ",
    ///         "positions {} and {}, which would have been an estimated cardinality of {}."
    ///     ),
    ///     result[2][2],
    ///     (2, 2),
    ///     vec![result[0][0], result[1][0], result[0][1], result[2][0], result[0][2], result[2][1], result[1][2]],
    ///     2,
    ///     2,
    ///     hll6.estimate_intersection_cardinality(&hll5),
    /// );
    ///
    /// ```
    ///
    pub fn estimated_overlap_cardinality_matrix<const L: usize, const R: usize>(
        left: &[Self; L],
        right: &[Self; R],
    ) -> [[f32; R]; L] {
        // When we are not in release mode, we check that the HLL are increasing in size.
        #[cfg(debug_assertions)]
        for i in 1..L {
            assert!(
                left[i].may_contain_all(&left[i - 1]),
                concat!(
                    "We expected for all the elements of the left array to be contained in the next one, ",
                    "but this is not the case for the element at position {}."
                ),
                i
            );
        }

        // When we are not in release mode, we check that the HLL are increasing in size.
        #[cfg(debug_assertions)]
        for i in 1..R {
            assert!(
                right[i].may_contain_all(&right[i - 1]),
                concat!(
                    "We expected for all the elements of the right array to be contained in the next one, ",
                    "but this is not the case for the element at position {}."
                ),
                i
            );
        }

        let mut overlap_cardinality_matrix = [[0.0; R]; L];

        for i in 0..L {
            for j in 0..R {
                overlap_cardinality_matrix[i][j] = (left[i]
                    .estimate_intersection_cardinality(&right[j])
                    // Since we need to compute the exclusive overlap cardinality, i.e. we exclude the elements
                    // contained in the smaller HLLs, we need to subtract all of the partial cardinality of elements
                    // with a smaller index than the current one.
                    - overlap_cardinality_matrix[0..(i+1)]
                        .iter()
                        .map(|row| row[0..(j+1)].iter().sum::<f32>())
                        .sum::<f32>())
                .max(0.0);
            }
        }

        overlap_cardinality_matrix
    }

    #[inline(always)]
    /// Returns estimated overlapping cardinality vectors of the provided HyperLogLog counters.
    ///
    /// # Arguments
    /// * `left` - Array of `N` HyperLogLog counters describing increasingly large surroundings of a first element.
    /// * `right` - A single HyperLogLog counter describing, usually, the largest surroundings of a second element.
    ///
    /// # Implementation details
    /// The array of HyperLogLog counters is expected to contain HyperLogLog counters increasing in size, i.e. the first element of `left`
    /// should be contained in the second element of `left`, which should be contained in the third element of `left`,
    /// and so on.
    ///
    /// # Examples
    ///
    /// We start with a trivial example with solely two counters.
    /// In this case, the result will have to contain a single element
    /// which is the estimated left-difference cardinality of the two counters.
    ///
    /// ```rust
    /// # use hyperloglog_rs::HyperLogLog;
    ///
    /// let mut hll1: HyperLogLog<8, 6> = HyperLogLog::new();
    /// let mut hll2: HyperLogLog<8, 6> = HyperLogLog::new();
    ///
    /// hll1.insert(&42);
    /// hll1.insert(&43);
    /// hll1.insert(&44);
    ///
    /// hll2.insert(&42);
    /// hll2.insert(&43);
    ///
    /// let result = HyperLogLog::estimated_difference_cardinality_vector(&[hll1,], &hll2);
    ///
    /// assert!(
    ///    result[0] < 1.0 * 1.1 &&
    ///   result[0] > 1.0 * 0.9,
    ///  "The estimated left-difference cardinality should be around 1, but it is {}.",
    /// result[0]
    /// );
    ///
    /// ```
    ///
    /// Now we consider a more complex example with two arrays of counters.
    /// We start with two arrays of two elements each. This means that in the end we will have a 2x1 vector.
    /// The value in position (0) of the vector will be the estimated left-difference cardinality of the first element
    /// of the first array and the first element of the second array. The value of the subsequent positions
    /// are less trivial, as we will have to take into account the difference of the elements present in the
    /// smaller sets which we do not want to count multiple times.
    ///
    /// It follows that, for the value in position (1), we will need to subtract the value in position (0).
    ///
    /// ```rust
    /// # use hyperloglog_rs::HyperLogLog;
    ///
    /// let mut hll1: HyperLogLog<8, 6> = HyperLogLog::new();
    /// let mut hll2: HyperLogLog<8, 6> = HyperLogLog::new();
    ///
    /// hll1.insert(&42);
    /// hll1.insert(&43);
    /// hll1.insert(&44);
    ///
    /// hll2.insert(&42);
    /// hll2.insert(&43);
    ///
    /// let mut hll3: HyperLogLog<8, 6> = HyperLogLog::new();
    ///
    /// hll3.insert(&42);
    /// hll3.insert(&43);
    /// hll3.insert(&44);
    /// hll3.insert(&45);
    ///
    /// let result = HyperLogLog::estimated_difference_cardinality_vector(&[hll1, hll3], &hll2);
    ///
    /// assert!(
    ///     result[0] < 1.0 * 1.1 &&
    ///     result[0] > 1.0 * 0.9,
    ///     "Test 1a: The estimated left-difference cardinality should be around 1, but it is {}.",
    ///     result[0]
    /// );
    ///
    /// assert!(
    ///     result[1] < 1.1 &&
    ///     result[1] > 0.9,
    ///     "Test 2a: The estimated left-difference cardinality should be around 1, but it is {}.",
    ///     result[1]
    /// );
    ///
    /// ```
    ///
    pub fn estimated_difference_cardinality_vector<const N: usize>(
        array: &[Self; N],
        other: &Self,
    ) -> [f32; N] {
        // When we are not in release mode, we check that the HLL are increasing in size.
        #[cfg(debug_assertions)]
        for i in 1..N {
            assert!(
                array[i].may_contain_all(&array[i - 1]),
                concat!(
                    "We expected for all the elements of the array to be contained in the next one, ",
                    "but this is not the case for the element at position {}."
                ),
                i
            );
        }

        let mut difference_cardinality_vector = [0.0; N];
        let mut comulative_estimated_cardinality = 0.0;

        for i in 0..N {
            difference_cardinality_vector[i] = (array[i]
                .estimate_difference_cardinality(other)
                // Since we need to compute the exclusive overlap cardinality, i.e. we exclude the elements
                // contained in the smaller HLLs, we need to subtract all of the partial cardinality of elements
                // with a smaller index than the current one.
                - comulative_estimated_cardinality)
                .max(0.0);

            comulative_estimated_cardinality += difference_cardinality_vector[i];
        }

        difference_cardinality_vector
    }

    #[inline(always)]
    /// Adds an element to the HyperLogLog counter.
    ///
    /// # Arguments
    /// * `rhs` - The element to add.
    ///
    /// # Examples
    ///
    /// ```
    /// use hyperloglog_rs::HyperLogLog;
    ///
    /// const PRECISION: usize = 10;
    ///
    /// let mut hll = HyperLogLog::<PRECISION, 6>::new();
    ///
    /// hll.insert("Hello");
    /// hll.insert("World");
    ///
    /// assert!(hll.estimate_cardinality() >= 2.0);
    /// ```
    ///
    /// # Performance
    ///
    /// The performance of this function depends on the size of the HyperLogLog counter (`N`), the number
    /// of distinct elements in the input, and the hash function used to hash elements. For a given value of `N`,
    /// the function has an average time complexity of O(1) and a worst-case time complexity of O(log N).
    /// However, the actual time complexity may vary depending on the distribution of the hashed elements.
    ///
    /// # Errors
    ///
    /// This function does not return any errors.
    pub fn insert<T: Hash>(&mut self, rhs: T) {
        let (mut hash, index) = self.get_hash_and_index(&rhs);

        // Shift left the bits of the index.
        hash = (hash << PRECISION) | (1 << (PRECISION - 1));

        // Count leading zeros.
        let number_of_zeros: u32 = 1 + hash.leading_zeros();

        // Calculate the position of the register in the internal buffer array.
        let word_position = index / Self::NUMBER_OF_REGISTERS_IN_WORD;
        let register_position_in_u32 = index - word_position * Self::NUMBER_OF_REGISTERS_IN_WORD;

        debug_assert!(
            word_position < self.words.len(),
            concat!(
                "The word_position {} must be less than the number of words {}. ",
                "You have obtained this values starting from the index {} and the word size {}."
            ),
            word_position,
            self.words.len(),
            index,
            Self::NUMBER_OF_REGISTERS_IN_WORD
        );

        // Extract the current value of the register at `index`.
        let register_value: u32 = (self.words[word_position] >> (register_position_in_u32 * BITS))
            & Self::LOWER_REGISTER_MASK;

        // Otherwise, update the register using a bit mask.
        if number_of_zeros > register_value {
            self.number_of_zero_register -= (register_value == 0) as usize;
            self.words[word_position] &=
                !(Self::LOWER_REGISTER_MASK << (register_position_in_u32 * BITS));
            self.words[word_position] |= number_of_zeros << (register_position_in_u32 * BITS);
        }
    }
}

impl<const PRECISION: usize, const BITS: usize, A: Hash> core::iter::FromIterator<A>
    for HyperLogLog<PRECISION, BITS>
where
    [(); ceil(1 << PRECISION, 32 / BITS)]:,
{
    #[inline(always)]
    /// Creates a new HyperLogLog counter and adds all elements from an iterator to it.
    ///
    /// # Examples
    ///
    /// ```
    /// use hyperloglog_rs::HyperLogLog;
    ///
    /// let data = vec![1, 2, 3, 4, 5, 6, 7, 8, 9];
    /// let hll: HyperLogLog<12, 5> = data.iter().collect();
    /// assert!(
    ///     hll.estimate_cardinality() > 0.9 * data.len() as f32,
    ///     concat!(
    ///         "The estimate is too low, expected ",
    ///         "at least {}, got {}",
    ///     ),
    ///     0.9 * data.len() as f32,
    ///     hll.estimate_cardinality()
    /// );
    /// assert!(
    ///     hll.estimate_cardinality() < 1.1 * data.len() as f32,
    ///     concat!(
    ///     "The estimate is too high, expected ",
    ///     "at most {}, got {}",
    ///    ),
    ///     1.1 * data.len() as f32,
    ///     hll.estimate_cardinality()
    /// );
    /// ```
    fn from_iter<T: IntoIterator<Item = A>>(iter: T) -> Self {
        let mut hll = Self::new();
        for item in iter {
            hll.insert(item);
        }
        hll
    }
}