1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887
use crate::utils::{ceil, get_alpha, precompute_small_corrections};
use core::hash::{Hash, Hasher};
use siphasher::sip::SipHasher13;
/// A struct for more readable code.
pub struct EstimatedUnionCardinalities {
/// The estimated cardinality of the left set.
left_cardinality: f32,
/// The estimated cardinality of the right set.
right_cardinality: f32,
/// The estimated cardinality of the union of the two sets.
union_cardinality: f32,
}
impl EstimatedUnionCardinalities {
/// Returns the estimated cardinality of the left set.
pub fn get_left_cardinality(&self) -> f32 {
self.left_cardinality
}
/// Returns the estimated cardinality of the right set.
pub fn get_right_cardinality(&self) -> f32 {
self.right_cardinality
}
/// Returns the estimated cardinality of the union of the two sets.
pub fn get_union_cardinality(&self) -> f32 {
self.union_cardinality
}
/// Returns the estimated cardinality of the intersection of the two sets.
pub fn get_intersection_cardinality(&self) -> f32 {
self.left_cardinality + self.right_cardinality - self.union_cardinality
}
/// Returns the estimated Jaccard index of the two sets.
pub fn get_jaccard_index(&self) -> f32 {
((self.left_cardinality + self.right_cardinality) / self.union_cardinality - 1.0)
.max(0.0)
.min(1.0)
}
}
#[derive(Clone, Debug, Eq, PartialEq)]
/// A probabilistic algorithm for estimating the number of distinct elements in a set.
///
/// HyperLogLog is a probabilistic algorithm designed to estimate the number
/// of distinct elements in a set. It does so by taking advantage of the fact
/// that the representation of an element can be transformed into a uniform
/// distribution in a space with a fixed range.
///
/// HyperLogLog works by maintaining a fixed-sized register array,
/// where each register holds a counter. The algorithm splits the input set into subsets,
/// applies a hash function to each element in the subset, and then updates
/// the corresponding counter in the register array.
///
/// HyperLogLog uses a trick called "probabilistic counting" to estimate
/// the number of distinct elements in the set. Each register counter is converted
/// to a binary string, and the algorithm counts the number of leading zeros in
/// each binary string. The maximum number of leading zeros over all counters
/// is used to estimate the number of distinct elements in the set.
///
/// HyperLogLog has a tunable parameter called precision that determines
/// the accuracy of the algorithm. Higher precision leads to better accuracy,
/// but requires more memory. The error rate of the algorithm is guaranteed
/// to be within a certain bound, depending on the chosen precision.
///
/// # Examples
///
/// ```
/// use hyperloglog_rs::HyperLogLog;
///
/// let mut hll = HyperLogLog::<10, 6>::new();
/// hll.insert(&"apple");
/// hll.insert(&"banana");
/// hll.insert(&"cherry");
///
/// let estimated_cardinality = hll.estimate_cardinality();
/// assert!(estimated_cardinality >= 3.0_f32 * 0.9 &&
/// estimated_cardinality <= 3.0_f32 * 1.1);
/// ```
///
/// # Citations
///
/// This implementation is based on the following papers:
///
/// * Flajolet, Philippe, et al. "HyperLogLog: the analysis of a near-optimal cardinality estimation algorithm." DMTCS Proceedings 1 (2007): 127-146.
/// * Heule, Stefan, Marc Nunkesser, and Alexander Hall. "HyperLogLog in practice: algorithmic engineering of a state of the art cardinality estimation algorithm." Proceedings of the 16th International Conference on Extending Database Technology. 2013.
///
pub struct HyperLogLog<const PRECISION: usize, const BITS: usize>
where
[(); ceil(1 << PRECISION, 32 / BITS)]:,
{
pub(crate) words: [u32; ceil(1 << PRECISION, 32 / BITS)],
pub(crate) number_of_zero_register: usize,
}
impl<const PRECISION: usize, const BITS: usize, T: Hash> From<T> for HyperLogLog<PRECISION, BITS>
where
[(); ceil(1 << PRECISION, 32 / BITS)]:,
[(); 1 << PRECISION]:,
{
/// Create a new HyperLogLog counter from a value.
///
/// This method creates a new empty HyperLogLog counter and inserts the hash
/// of the given value into it. The value can be any type that implements
/// the `Hash` trait.
///
/// # Examples
///
/// ```
/// # use hyperloglog_rs::HyperLogLog;
///
/// let hll = HyperLogLog::<14, 5>::from("test");
///
/// assert!(hll.estimate_cardinality() >= 1.0_f32);
/// assert!(!hll.is_empty());
/// assert!(hll.may_contain(&"test"));
/// ```
fn from(value: T) -> Self {
let mut hll = Self::new();
hll.insert(value);
hll
}
}
/// Implements the Default trait for HyperLogLog.
///
/// HyperLogLog is a probabilistic cardinality estimator that uses a fixed
/// amount of memory to estimate the number of distinct elements in a set.
///
/// # Examples
///
/// ```rust
/// # use hyperloglog_rs::HyperLogLog;
///
/// let hll: HyperLogLog<10, 6> = Default::default();
/// assert_eq!(hll.len(), 1024);
/// assert_eq!(hll.get_number_of_bits(), 6);
/// ```
impl<const PRECISION: usize, const BITS: usize> Default for HyperLogLog<PRECISION, BITS>
where
[(); ceil(1 << PRECISION, 32 / BITS)]:,
[(); 1 << PRECISION]:,
{
/// Returns a new HyperLogLog instance with default configuration settings.
fn default() -> Self {
Self::new()
}
}
impl<const PRECISION: usize, const BITS: usize> HyperLogLog<PRECISION, BITS>
where
[(); ceil(1 << PRECISION, 32 / BITS)]:,
[(); 1 << PRECISION]:,
{
/// The number of registers used by the HyperLogLog algorithm, which depends on its precision.
pub const NUMBER_OF_REGISTERS: usize = 1 << PRECISION;
/// The threshold value used in the small range correction of the HyperLogLog algorithm.
pub const SMALL_RANGE_CORRECTION_THRESHOLD: f32 = 2.5_f32 * (Self::NUMBER_OF_REGISTERS as f32);
/// The float value of 2^32, used in the intermediate range correction of the HyperLogLog algorithm.
pub const TWO_32: f32 = (1u64 << 32) as f32;
/// The threshold value used in the intermediate range correction of the HyperLogLog algorithm.
pub const INTERMEDIATE_RANGE_CORRECTION_THRESHOLD: f32 = Self::TWO_32 / 30.0_f32;
/// The mask used to obtain the lower register bits in the HyperLogLog algorithm.
pub const LOWER_REGISTER_MASK: u32 = (1 << BITS) - 1;
/// The number of registers that can fit in a single 32-bit word in the HyperLogLog algorithm.
pub const NUMBER_OF_REGISTERS_IN_WORD: usize = 32 / BITS;
/// The precomputed small corrections used in the HyperLogLog algorithm for better performance.
pub const SMALL_CORRECTIONS: [f32; 1 << PRECISION] =
precompute_small_corrections::<{ 1 << PRECISION }>();
/// Create a new HyperLogLog counter.
pub fn new() -> Self {
assert!(PRECISION >= 4);
assert!(PRECISION <= 16);
Self {
words: [0; ceil(1 << PRECISION, 32 / BITS)],
number_of_zero_register: 1_usize << PRECISION,
}
}
/// Create a new HyperLogLog counter from an array of registers.
///
/// # Arguments
///
/// * `registers` - An array of u32 registers to use for the HyperLogLog counter.
///
/// # Returns
///
/// A new HyperLogLog counter initialized with the given registers.
///
/// # Examples
///
/// ```
/// use hyperloglog_rs::HyperLogLog;
///
/// let registers = [0_u32; 1 << 4];
/// let hll = HyperLogLog::<4, 6>::from_registers(®isters);
/// assert_eq!(hll.len(), 1 << 4);
/// ```
pub fn from_registers(registers: &[u32]) -> Self {
assert!(
registers.len() == Self::NUMBER_OF_REGISTERS,
"We expect {} registers, but got {}",
Self::NUMBER_OF_REGISTERS,
registers.len()
);
let mut words = [0; ceil(1 << PRECISION, 32 / BITS)];
let number_of_zero_register = words
.iter_mut()
.zip(registers.chunks(Self::NUMBER_OF_REGISTERS_IN_WORD))
.fold(0, |mut number_of_zero_register, (word, word_registers)| {
for (i, register) in word_registers.iter().copied().enumerate() {
assert!(
register <= Self::LOWER_REGISTER_MASK,
"Register value {} is too large for the given number of bits {}",
register,
BITS
);
number_of_zero_register += (register == 0) as usize;
*word |= register << (i * BITS);
}
number_of_zero_register
});
Self {
words,
number_of_zero_register,
}
}
fn adjust_estimate(&self, mut raw_estimate: f32, number_of_zeros: usize) -> f32 {
debug_assert!(!raw_estimate.is_nan(), "Raw estimate is NaN");
// Apply the final scaling factor to obtain the estimate of the cardinality
raw_estimate = get_alpha(1 << PRECISION)
* (Self::NUMBER_OF_REGISTERS * Self::NUMBER_OF_REGISTERS) as f32
/ raw_estimate;
debug_assert!(!raw_estimate.is_nan(), "Updated raw estimate is NaN");
// Apply the small range correction factor if the raw estimate is below the threshold
// and there are zero registers in the counter.
if raw_estimate <= Self::SMALL_RANGE_CORRECTION_THRESHOLD && number_of_zeros > 0 {
raw_estimate = Self::SMALL_CORRECTIONS[number_of_zeros - 1];
debug_assert!(
!raw_estimate.is_nan(),
"Small range correction factor is NaN"
)
// Apply the intermediate range correction factor if the raw estimate is above the threshold.
} else if raw_estimate >= Self::INTERMEDIATE_RANGE_CORRECTION_THRESHOLD {
let corrected_raw_estimate =
-Self::TWO_32 * (-raw_estimate.min(Self::TWO_32) / Self::TWO_32).ln_1p();
debug_assert!(
!corrected_raw_estimate.is_nan(),
"Intermediate range correction factor is NaN, starting raw estimate was {}",
raw_estimate
);
raw_estimate = corrected_raw_estimate;
}
raw_estimate
}
#[inline(always)]
/// Estimates the cardinality of the set based on the HLL counter data.
///
/// # Example
///
/// ```
/// # use hyperloglog_rs::HyperLogLog;
/// const PRECISION: usize = 8;
/// const BITS: usize = 5;
/// let mut hll = HyperLogLog::<PRECISION, BITS>::new();
/// let elements = vec![1, 2, 3, 4, 5];
/// for element in &elements {
/// hll.insert(element);
/// }
/// let estimated_cardinality = hll.estimate_cardinality();
/// assert!(estimated_cardinality >= elements.len() as f32 * 0.9 &&
/// estimated_cardinality <= elements.len() as f32 * 1.1);
/// ```
///
/// # Returns
/// * `f32` - The estimated cardinality of the set.
pub fn estimate_cardinality(&self) -> f32 {
let mut raw_estimate = 0.0;
for word in self.words {
let mut partial: f32 = 0.0;
for i in 0..Self::NUMBER_OF_REGISTERS_IN_WORD {
let register = (word >> (i * BITS)) & Self::LOWER_REGISTER_MASK;
let two_to_minus_register = (127 - register) << 23;
partial += f32::from_le_bytes(two_to_minus_register.to_le_bytes());
}
raw_estimate += partial;
}
debug_assert!(!raw_estimate.is_nan(), "Raw estimate is NaN");
raw_estimate -= self.get_number_of_padding_registers() as f32;
self.adjust_estimate(raw_estimate, self.get_number_of_zero_registers())
}
#[inline(always)]
/// Returns an estimate of the cardinality of the union of two HyperLogLog counters.
///
/// This method calculates an estimate of the cardinality of the union of two HyperLogLog counters
/// using the raw estimation values of each counter. It combines the estimation values by iterating
/// over the register words of both counters and performing necessary calculations.
///
/// # Arguments
/// * `other`: A reference to the other HyperLogLog counter.
///
/// # Returns
/// An estimation of the cardinality of the union of the two HyperLogLog counters.
///
/// # Example
///
/// ```
/// use hyperloglog_rs::HyperLogLog;
///
/// let mut hll1 = HyperLogLog::<12, 6>::new();
/// hll1.insert(&1);
/// hll1.insert(&2);
///
/// let mut hll2 = HyperLogLog::<12, 6>::new();
/// hll2.insert(&2);
/// hll2.insert(&3);
///
/// let union_cardinality = hll1.estimate_union_cardinality(&hll2);
///
/// assert!(union_cardinality >= 3.0 * 0.9 &&
/// union_cardinality <= 3.0 * 1.1);
/// ```
pub fn estimate_union_cardinality(&self, other: &Self) -> f32 {
let mut raw_union_estimate = 0.0;
let mut union_zeros = 0;
for (left_word, right_word) in self.words.iter().copied().zip(other.words.iter().copied()) {
let mut partial: f32 = 0.0;
for i in 0..Self::NUMBER_OF_REGISTERS_IN_WORD {
let left_register = (left_word >> (i * BITS)) & Self::LOWER_REGISTER_MASK;
let right_register = (right_word >> (i * BITS)) & Self::LOWER_REGISTER_MASK;
let maximal_register = (left_register).max(right_register);
let two_to_minus_register = (127 - maximal_register) << 23;
partial += f32::from_le_bytes(two_to_minus_register.to_le_bytes());
union_zeros += (maximal_register == 0) as usize;
}
raw_union_estimate += partial;
}
union_zeros -= self.get_number_of_padding_registers();
self.adjust_estimate(raw_union_estimate, union_zeros)
}
#[inline(always)]
/// Returns an estimate of the cardinality of the two HLL counters union.
pub fn estimate_union_and_sets_cardinality(&self, other: &Self) -> EstimatedUnionCardinalities {
let mut raw_union_estimate = 0.0;
let mut raw_left_estimate = 0.0;
let mut raw_right_estimate = 0.0;
let mut union_zeros = 0;
for (left_word, right_word) in self.words.iter().copied().zip(other.words.iter().copied()) {
let mut union_partial: f32 = 0.0;
let mut left_partial: f32 = 0.0;
let mut right_partial: f32 = 0.0;
for i in 0..Self::NUMBER_OF_REGISTERS_IN_WORD {
let left_register = (left_word >> (i * BITS)) & Self::LOWER_REGISTER_MASK;
let right_register = (right_word >> (i * BITS)) & Self::LOWER_REGISTER_MASK;
let maximal_register = (left_register).max(right_register);
union_partial += f32::from_le_bytes(((127 - maximal_register) << 23).to_le_bytes());
left_partial += f32::from_le_bytes(((127 - left_register) << 23).to_le_bytes());
right_partial += f32::from_le_bytes(((127 - right_register) << 23).to_le_bytes());
union_zeros += (maximal_register == 0) as usize;
}
raw_union_estimate += union_partial;
raw_left_estimate += left_partial;
raw_right_estimate += right_partial;
}
union_zeros -= self.get_number_of_padding_registers();
let union_estimate = self.adjust_estimate(raw_union_estimate, union_zeros);
let left_estimate =
self.adjust_estimate(raw_left_estimate, self.get_number_of_zero_registers());
let right_estimate =
self.adjust_estimate(raw_right_estimate, other.get_number_of_zero_registers());
EstimatedUnionCardinalities {
left_cardinality: left_estimate,
right_cardinality: right_estimate,
union_cardinality: union_estimate,
}
}
#[inline(always)]
/// Returns an estimate of the cardinality of the intersection of two HyperLogLog counters.
///
/// This method calculates an estimate of the cardinality of the intersection of two HyperLogLog
/// counters using the raw estimation values of each counter. It combines the estimation values by
/// iterating over the register words of both counters and performing necessary calculations.
///
/// # Arguments
/// * `other`: A reference to the other HyperLogLog counter.
///
/// # Returns
/// An estimation of the cardinality of the intersection of the two HyperLogLog counters.
///
/// # Example
///
/// ```
/// use hyperloglog_rs::HyperLogLog;
///
/// let mut hll1 = HyperLogLog::<12, 6>::new();
/// hll1.insert(&1);
/// hll1.insert(&2);
///
/// let mut hll2 = HyperLogLog::<12, 6>::new();
/// hll2.insert(&2);
/// hll2.insert(&3);
///
/// let intersection_cardinality = hll1.estimate_intersection_cardinality(&hll2);
///
/// assert!(intersection_cardinality >= 1.0 * 0.9 &&
/// intersection_cardinality <= 1.0 * 1.1);
/// ```
pub fn estimate_intersection_cardinality(&self, other: &Self) -> f32 {
self.estimate_union_and_sets_cardinality(other).get_intersection_cardinality()
}
#[inline(always)]
/// Returns an estimate of the Jaccard index between two HyperLogLog counters.
///
/// The Jaccard index is a measure of similarity between two sets. In the context of HyperLogLog
/// counters, it represents the ratio of the size of the intersection of the sets represented by
/// the counters to the size of their union. This method estimates the Jaccard index by utilizing
/// the cardinality estimation values of the intersection, left set, and right set.
///
/// # Arguments
/// * `other`: A reference to the other HyperLogLog counter.
///
/// # Returns
/// An estimation of the Jaccard index between the two HyperLogLog counters.
///
/// # Example
///
/// ```
/// use hyperloglog_rs::HyperLogLog;
///
/// let mut hll1 = HyperLogLog::<12, 6>::new();
/// hll1.insert(&1);
/// hll1.insert(&2);
/// hll1.insert(&3);
/// hll1.insert(&4);
///
/// let mut hll2 = HyperLogLog::<12, 6>::new();
/// hll2.insert(&2);
/// hll2.insert(&3);
/// hll2.insert(&5);
/// hll2.insert(&6);
///
/// let jaccard_index = hll1.estimate_jaccard_cardinality(&hll2);
///
/// let expected = 2.0 / 6.0;
///
/// assert!(jaccard_index >= expected * 0.9 &&
/// jaccard_index <= expected * 1.1);
/// ```
pub fn estimate_jaccard_cardinality(&self, other: &Self) -> f32 {
self.estimate_union_and_sets_cardinality(other).get_jaccard_index()
}
#[inline(always)]
/// Returns an iterator over the register values of the HyperLogLog instance.
///
/// The register values are extracted from the words array, where each word contains multiple
/// register values. This method first checks that the size of the words array matches the expected
/// number of registers per word, which is determined by the number of bits per register. It then
/// iterates over each word in the array and extracts the register values using bit shifting and
/// masking operations. Finally, it takes only the expected number of register values and returns
/// an iterator over them.
///
/// # Returns
///
/// An iterator over the register values of the HyperLogLog instance.
///
/// # Examples
///
/// ```
/// use hyperloglog_rs::HyperLogLog;
/// const PRECISION: usize = 8;
/// const BITS: usize = 5;
/// const HYPERLOGLOG_SIZE: usize = 1 << PRECISION;
///
/// let mut hll = HyperLogLog::<PRECISION, BITS>::new();
/// assert_eq!(hll.iter().count(), HYPERLOGLOG_SIZE);
///
/// hll.insert(&"foo");
/// hll.insert(&"bar");
///
/// let mut hll2 = HyperLogLog::<PRECISION, BITS>::new();
/// hll2|= hll;
///
/// assert_eq!(hll2.iter().count(), HYPERLOGLOG_SIZE);
/// ```
pub fn iter(&self) -> impl Iterator<Item = u32> + '_ {
debug_assert_eq!(
self.words.len(),
ceil(1 << PRECISION, Self::NUMBER_OF_REGISTERS_IN_WORD)
);
self.words
.iter()
.flat_map(|word| {
(0..Self::NUMBER_OF_REGISTERS_IN_WORD)
.map(move |i| (word >> (i * BITS)) & Self::LOWER_REGISTER_MASK)
})
.take(Self::NUMBER_OF_REGISTERS)
}
#[inline(always)]
/// Returns the number of registers in the HLL counter.
///
///
/// # Example
///
/// ```
/// # use hyperloglog_rs::HyperLogLog;
///
/// // Create a new HLL counter with 128 registers
/// let mut hll = HyperLogLog::<12, 8>::new();
/// assert_eq!(hll.len(), 4096);
///
/// // Insert some elements into the HLL counter
/// hll.insert(&1);
/// hll.insert(&2);
/// hll.insert(&3);
/// assert_eq!(hll.len(), 1 << 12);
///
/// // Merge another HLL counter with 128 registers
/// let mut hll2 = HyperLogLog::<12, 8>::new();
/// hll2.insert(&4);
/// hll2.insert(&5);
/// hll |= hll2;
/// assert_eq!(hll.len(), 1 << 12);
/// ```
pub fn len(&self) -> usize {
debug_assert_eq!(Self::NUMBER_OF_REGISTERS, self.iter().count());
Self::NUMBER_OF_REGISTERS
}
#[inline(always)]
/// Returns whether no element was yet added to the HLL counter.
///
///
/// # Examples
///
/// ```
/// use hyperloglog_rs::HyperLogLog;
///
/// let mut hll: HyperLogLog<8, 8> = HyperLogLog::new();
///
/// assert!(hll.is_empty());
///
/// hll.insert(&1);
///
/// assert!(!hll.is_empty());
/// ```
pub fn is_empty(&self) -> bool {
self.number_of_zero_register == self.len()
}
#[inline(always)]
/// Returns the number of bits used to represent each register in the HyperLogLog counter.
///
/// # Returns
///
/// An unsigned integer value representing the number of bits used to represent each register
/// in the HyperLogLog counter.
///
/// # Example
///
/// ```
/// use hyperloglog_rs::HyperLogLog;
///
/// let hll = HyperLogLog::<13, 6>::new();
/// assert_eq!(hll.get_number_of_bits(), 6);
/// ```
pub const fn get_number_of_bits(&self) -> usize {
BITS
}
#[inline(always)]
/// Returns the number of extra registers that are not actually used.
///
/// # Examples
///
/// ```
/// # use hyperloglog_rs::HyperLogLog;
///
/// // Create a HyperLogLog counter with precision 10 and 6-bit registers
/// let mut hll = HyperLogLog::<10, 6>::new();
///
/// // Since the number of registers is not a multiple of the number of registers in a word,
/// // there are padding registers that are not actually used.
/// assert_eq!(hll.get_number_of_padding_registers(), 1);
///
/// // Insert some elements into the counter
/// hll.insert(&1);
/// hll.insert(&2);
///
/// // The number of padding registers is still the same
/// assert_eq!(hll.get_number_of_padding_registers(), 1);
/// ```
pub const fn get_number_of_padding_registers(&self) -> usize {
ceil(1 << PRECISION, 32 / BITS) * Self::NUMBER_OF_REGISTERS_IN_WORD
- Self::NUMBER_OF_REGISTERS
}
#[inline(always)]
/// Returns the number of registers with zero values. This value is used for computing a small
/// correction when estimating the cardinality of a small set.
///
/// # Examples
///
/// ```
/// # use hyperloglog_rs::HyperLogLog;
///
/// // Create a new HyperLogLog counter with precision 14 and 5 bits per register.
/// let mut hll = HyperLogLog::<14, 5>::new();
///
/// // Add some elements to the counter.
/// hll.insert(&1);
/// hll.insert(&2);
/// hll.insert(&3);
///
/// // Get the number of zero registers.
/// let number_of_zero_registers = hll.get_number_of_zero_registers();
///
/// assert_eq!(number_of_zero_registers, 16381);
/// ```
pub fn get_number_of_zero_registers(&self) -> usize {
self.number_of_zero_register
}
#[inline(always)]
pub fn get_number_of_non_zero_registers(&self) -> usize {
// Calculates the number of registers that have a non-zero value by
// subtracting the number of registers with a zero value from the total number of registers
self.len() - self.get_number_of_zero_registers()
}
#[inline(always)]
/// Returns an array of registers of the HyperLogLog counter.
///
/// # Examples
///
/// ```rust
/// # use hyperloglog_rs::HyperLogLog;
///
/// let mut hll = HyperLogLog::<10, 6>::new();
/// hll.insert(&4);
/// hll.insert(&5);
/// hll.insert(&6);
/// let registers = hll.get_registers();
///
/// assert_eq!(registers.len(), 1024);
/// assert!(registers.iter().any(|&x| x > 0));
/// ```
///
/// We can also create an HLL from registers, and then check
/// whether the registers are what we expect:
///
/// ```rust
/// # use hyperloglog_rs::HyperLogLog;
///
/// let expected = [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 11, 11, 11, 0];
/// let mut hll = HyperLogLog::<4, 6>::from_registers(&expected);
/// assert_eq!(hll.get_registers(), expected, "Expected {:?}, got {:?}", expected, hll.get_registers());
/// ```
pub fn get_registers(&self) -> [u32; 1 << PRECISION] {
let mut array = [0; (1 << PRECISION)];
self.iter()
.zip(array.iter_mut())
.for_each(|(value, target)| {
*target = value;
});
array
}
#[inline(always)]
/// Returns the array of words of the HyperLogLog counter.
pub fn get_words(&self) -> [u32; ceil(1 << PRECISION, 32 / BITS)] {
self.words
}
#[inline(always)]
/// Returns the hash value and the corresponding register's index for a given value.
///
/// # Arguments
/// * `value` - A reference to the value to be hashed.
///
/// # Examples
///
/// ```
/// use hyperloglog_rs::HyperLogLog;
///
/// let mut hll: HyperLogLog<8, 6> = HyperLogLog::new();
/// let value = 42;
/// let (hash, index) = hll.get_hash_and_index(&value);
///
/// assert_eq!(index, 213, "Expected index {}, got {}.", 213, index);
/// assert_eq!(hash, 15387811073369036852, "Expected hash {}, got {}.", 15387811073369036852, hash);
/// ```
pub fn get_hash_and_index<T: Hash>(&self, value: &T) -> (u64, usize) {
// Create a new hasher.
let mut hasher = SipHasher13::new();
// Calculate the hash.
value.hash(&mut hasher);
let hash: u64 = hasher.finish();
// Calculate the register's index.
let index: usize = (hash >> (64 - PRECISION)) as usize;
debug_assert!(
index < Self::NUMBER_OF_REGISTERS,
"The index {} must be less than the number of registers {}.",
index,
Self::NUMBER_OF_REGISTERS
);
(hash, index)
}
#[inline(always)]
/// Returns `true` if the HyperLogLog counter may contain the given element.
///
/// # Arguments
/// * `rhs` - The element to check.
///
/// # Examples
///
/// ```rust
/// # use hyperloglog_rs::HyperLogLog;
///
/// let mut hll: HyperLogLog<8, 6> = HyperLogLog::new();
/// assert_eq!(hll.may_contain(&42), false);
///
/// hll.insert(&42);
/// assert_eq!(hll.may_contain(&42), true);
/// ```
pub fn may_contain<T: Hash>(&self, rhs: &T) -> bool {
let (_hash, index) = self.get_hash_and_index(&rhs);
// Calculate the position of the register in the internal buffer array.
let word_position = index / Self::NUMBER_OF_REGISTERS_IN_WORD;
// Calculate the position of the register within the 32-bit word containing it.
let register_position_in_u32 = index % Self::NUMBER_OF_REGISTERS_IN_WORD;
// Extract the current value of the register at `index`.
let register_value: u32 = (self.words[word_position] >> (register_position_in_u32 * BITS))
& Self::LOWER_REGISTER_MASK;
register_value > 0
}
#[inline(always)]
/// Adds an element to the HyperLogLog counter.
///
/// # Arguments
/// * `rhs` - The element to add.
///
/// # Examples
///
/// ```
/// use hyperloglog_rs::HyperLogLog;
///
/// const PRECISION: usize = 10;
///
/// let mut hll = HyperLogLog::<PRECISION, 6>::new();
///
/// hll.insert("Hello");
/// hll.insert("World");
///
/// assert!(hll.estimate_cardinality() >= 2.0);
/// ```
///
/// # Performance
///
/// The performance of this function depends on the size of the HyperLogLog counter (`N`), the number
/// of distinct elements in the input, and the hash function used to hash elements. For a given value of `N`,
/// the function has an average time complexity of O(1) and a worst-case time complexity of O(log N).
/// However, the actual time complexity may vary depending on the distribution of the hashed elements.
///
/// # Errors
///
/// This function does not return any errors.
pub fn insert<T: Hash>(&mut self, rhs: T) {
let (mut hash, index) = self.get_hash_and_index(&rhs);
// Shift left the bits of the index.
hash = (hash << PRECISION) | (1 << (PRECISION - 1));
// Count leading zeros.
let number_of_zeros: u32 = 1 + hash.leading_zeros();
// Calculate the position of the register in the internal buffer array.
let word_position = index / Self::NUMBER_OF_REGISTERS_IN_WORD;
let register_position_in_u32 = index - word_position * Self::NUMBER_OF_REGISTERS_IN_WORD;
debug_assert!(
word_position < self.words.len(),
concat!(
"The word_position {} must be less than the number of words {}. ",
"You have obtained this values starting from the index {} and the word size {}."
),
word_position,
self.words.len(),
index,
Self::NUMBER_OF_REGISTERS_IN_WORD
);
// Extract the current value of the register at `index`.
let register_value: u32 = (self.words[word_position] >> (register_position_in_u32 * BITS))
& Self::LOWER_REGISTER_MASK;
// Otherwise, update the register using a bit mask.
if number_of_zeros > register_value {
self.number_of_zero_register -= (register_value == 0) as usize;
self.words[word_position] &=
!(Self::LOWER_REGISTER_MASK << (register_position_in_u32 * BITS));
self.words[word_position] |= number_of_zeros << (register_position_in_u32 * BITS);
}
}
}
impl<const PRECISION: usize, const BITS: usize, A: Hash> core::iter::FromIterator<A>
for HyperLogLog<PRECISION, BITS>
where
[(); ceil(1 << PRECISION, 32 / BITS)]:,
{
#[inline(always)]
/// Creates a new HyperLogLog counter and adds all elements from an iterator to it.
///
/// # Examples
///
/// ```
/// use hyperloglog_rs::HyperLogLog;
///
/// let data = vec![1, 2, 3, 4, 5, 6, 7, 8, 9];
/// let hll: HyperLogLog<12, 5> = data.iter().collect();
/// assert!(
/// hll.estimate_cardinality() > 0.9 * data.len() as f32,
/// concat!(
/// "The estimate is too low, expected ",
/// "at least {}, got {}",
/// ),
/// 0.9 * data.len() as f32,
/// hll.estimate_cardinality()
/// );
/// assert!(
/// hll.estimate_cardinality() < 1.1 * data.len() as f32,
/// concat!(
/// "The estimate is too high, expected ",
/// "at most {}, got {}",
/// ),
/// 1.1 * data.len() as f32,
/// hll.estimate_cardinality()
/// );
/// ```
fn from_iter<T: IntoIterator<Item = A>>(iter: T) -> Self {
let mut hll = Self::new();
for item in iter {
hll.insert(item);
}
hll
}
}