1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
//! # Utils
//!
//! This module provides utility functions used by the HyperLogLog algorithm implementation.
//!
//! The functions provided are:
//!
//! - `ceil(numerator: usize, denominator: usize) -> usize`: Calculates the integer ceil of the division
//! of `numerator` by `denominator`.
//!
//! - `split_registers<const NUMBER_OF_REGISTERS_IN_WORD: usize>(word: u32) -> [u32; NUMBER_OF_REGISTERS_IN_WORD]`:
//! Split the given registers into an array of bytes where each element corresponds to a register of
//! NUMBER_OF_BITS_PER_REGISTER bits. The number of registers in a single 32-bit registers word is
//! specified by NUMBER_OF_REGISTERS_IN_WORD.
//!
//! - `word_from_registers<const NUMBER_OF_BITS_PER_REGISTER: usize>(registers: &[u32]) -> u32`: Converts an array
//! of HLL registers into a single 32-bit word.
//!
//! # Examples
//!
//! ```rust
//! # use hyperloglog_rs::utils::*;
//! assert_eq!(ceil(10, 5), 2);
//! assert_eq!(ceil(25, 5), 5);
//!
//! let word = 0b0110_1001_1010_1111_0110_1001_1010_1111;
//! let registers = split_registers::<4>(word);
//! let expected = [0b1010_1111, 0b0110_1001, 0b1010_1111, 0b0110_1001];
//! assert_eq!(registers, expected, "Example 1, Expected: {:?}, got: {:?}", expected, registers);
//!
//! let registers = [0b1010_1010_0101_0101, 0b1111_0000_1111_0000];
//! let word = word_from_registers::<16>(&registers);
//! assert_eq!(word, 0b1111_0000_1111_0000_1010_1010_0101_0101);
//! ```
//!
use crate::log::log;

#[inline]
/// Calculates the integer ceil of the division of `numerator` by `denominator`.
///
/// # Examples
///
/// Test with evenly divisible values:
/// ```rust
///  # use hyperloglog_rs::utils::ceil;
///  assert_eq!(ceil(10, 5), 2);
///  assert_eq!(ceil(25, 5), 5);
///  assert_eq!(ceil(100, 10), 10);
///  ```
///
/// Test with values that require rounding up:
/// ```
/// # use hyperloglog_rs::utils::ceil;
/// assert_eq!(ceil(3, 2), 2);
/// assert_eq!(ceil(7, 3), 3);
/// assert_eq!(ceil(11, 4), 3);
/// assert_eq!(ceil(100, 7), 15);
/// ```
///
pub const fn ceil(numerator: usize, denominator: usize) -> usize {
    (numerator + denominator - 1) / denominator
}

#[inline]
/// Split the given registers into an array of bytes where each element corresponds
/// to a register of NUMBER_OF_BITS_PER_REGISTER bits. The number of registers in a single
/// 32-bit registers word is specified by NUMBER_OF_REGISTERS_IN_WORD.
///
/// # Arguments
/// * word - A 32-bit word containing the registers to be split.
///
/// # Returns
/// An array of bytes where each element corresponds to a register of NUMBER_OF_BITS_PER_REGISTER
/// bits. The length of the returned array is equal to NUMBER_OF_REGISTERS_IN_WORD.
///
/// # Examples
/// Split a 32-bit word into 4 8-bit registers
/// ```rust
/// # use hyperloglog_rs::utils::split_registers;
///
/// let word = 0b0110_1001_1010_1111_0110_1001_1010_1111;
/// let registers = split_registers::<4>(word);
/// let expected = [0b1010_1111, 0b0110_1001, 0b1010_1111, 0b0110_1001];
/// assert_eq!(registers, expected, "Example 1, Expected: {:?}, got: {:?}", expected, registers);
/// ```
///
/// Split a 32-bit word into 2 16-bit registers
/// ```rust
/// # use hyperloglog_rs::utils::split_registers;
///
/// let word = 0b1111_0000_1111_0000_1010_1010_0101_0101;
/// let registers = split_registers::<2>(word);
/// let expected = [0b1010_1010_0101_0101, 0b1111_0000_1111_0000];
/// assert_eq!(registers, expected, "Example 2, Expected: {:?}, got: {:?}", expected, registers);
/// ```
///
/// Split a 32-bit word into 8 4-bit registers
///
/// ```rust
/// # use hyperloglog_rs::utils::split_registers;
///
/// let word = 0b1010_0101_1111_0000_1111_1111_0101_1010;
/// let registers = split_registers::<8>(word);
/// let expected = [0b1010, 0b0101, 0b1111, 0b1111, 0b0000, 0b1111, 0b0101, 0b1010];
/// assert_eq!(registers, expected, "Example 3, Expected: {:?}, got: {:?}", expected, registers);
/// ```
///
/// Split a 32-bit word into 1 32-bit register
///
/// ```rust
/// # use hyperloglog_rs::utils::split_registers;
///
/// let word = 0b1111_1111_0000_0000_1111_0000_1111_1111;
/// let registers = split_registers::<1>(word);
/// let expected = [0b1111_1111_0000_0000_1111_0000_1111_1111];
/// assert_eq!(registers, expected, "Example 4, Expected: {:?}, got: {:?}", expected, registers);
/// ```
pub fn split_registers<const NUMBER_OF_REGISTERS_IN_WORD: usize>(
    word: u32,
) -> [u32; NUMBER_OF_REGISTERS_IN_WORD] {
    let mask = if NUMBER_OF_REGISTERS_IN_WORD == 1 {
        u32::MAX
    } else {
        (1 << (32 / NUMBER_OF_REGISTERS_IN_WORD)) - 1
    };
    let mut result = [0_u32; NUMBER_OF_REGISTERS_IN_WORD];
    result.iter_mut().enumerate().for_each(|(i, res)| {
        *res = (word >> (i * (32 / NUMBER_OF_REGISTERS_IN_WORD))) & mask;
    });
    result
}

#[inline]
/// Converts an array of HLL registers into a single 32-bit word.
///
/// # Arguments
///
/// * `registers` - A fixed-size array of `u32` registers.
///
/// # Type parameters
/// * `NUMBER_OF_BITS_PER_REGISTER` - The number of bits used to represent each HLL register.
///
/// # Returns
/// A 32-bit word that represents the input `registers` array, with each HLL register occupying
/// `NUMBER_OF_BITS_PER_REGISTER` bits of the word.
///
/// # Examples
///
/// Convert an array of 5 registers with 4 bits per register to a single 32-bit word:
///
/// ```rust
/// # use hyperloglog_rs::utils::word_from_registers;
///
/// let registers = [0b1111, 0b0101, 0b0011, 0b1010, 0b1001];
/// let word = word_from_registers::<4>(&registers);
/// let expected = 0b0000_0000_0000_1001_1010_0011_0101_1111;
/// assert_eq!(word, expected, "Example 1, expected {:b}, got {:b}", expected, word);
/// ```
///
/// Convert an array of 3 registers with 6 bits per register to a single 32-bit word:
///
/// ```rust
/// # use hyperloglog_rs::utils::word_from_registers;
/// let registers = [0b111111, 0b001001, 0b101010];
/// let word = word_from_registers::<6>(&registers);
/// let expected = 0b00_000000_000000_000000_101010_001001_111111;
/// assert_eq!(word, expected, "Example 2, expected {:b}, got {:b}", expected, word);
/// ```
///
/// If the number of registers in the input array is less than NUMBER_OF_REGISTERS_IN_WORD,
/// the remaining bits in the output word will be set to 0. In the following example, we convert
/// an array of 3 registers with 4 bits per register to a single 32-bit word:
///
/// ```rust
/// # use hyperloglog_rs::utils::word_from_registers;
/// let registers = [0b1111, 0b0101, 0b0011];
/// let word = word_from_registers::<5>(&registers);
/// let expected = 0b00_00000_00000_00000_00011_00101_01111;
/// assert_eq!(word, expected, "Example 3, expected {:b}, got {:b}", expected, word);
/// ```
///
/// If the number of registers in the input array is greater than number of registers that fits,
/// in a single 32-bit word, which is NUMBER_OF_REGISTERS_IN_WORD, the extra registers are ignored.
///
/// ```rust
/// # use hyperloglog_rs::utils::word_from_registers;
/// let registers = [0b111, 0b010, 0b001, 0b101, 0b100];
/// let word = word_from_registers::<8>(&registers);
/// let expected = 0b00000101_00000001_00000010_00000111;
/// assert_eq!(word, expected, "Example 4, expected {:b}, got {:b}", expected, word);
/// ```
///
pub fn word_from_registers<const NUMBER_OF_BITS_PER_REGISTER: usize>(registers: &[u32]) -> u32 {
    registers.iter().rev().fold(0, |mut word, &register| {
        word <<= NUMBER_OF_BITS_PER_REGISTER;
        word |= register;
        word
    })
}

/// Precomputes an array of reciprocal powers of two and returns it.
///
/// This function generates an array of reciprocal powers of two, which is used as a lookup table
/// for the HyperLogLog algorithm. The array is of length 2^BITS and contains the reciprocal
/// value of each power of two up to 2^(BITS-1).
///
/// # Example
///
/// ```
/// use hyperloglog_rs::utils::precompute_reciprocals;
///
/// const BITS: usize = 5;
///
/// let reciprocals = precompute_reciprocals::<BITS>();
///
/// assert_eq!(reciprocals[0], 1.0_f32);
/// assert_eq!(reciprocals[1], 0.5_f32);
/// assert_eq!(reciprocals[2], 0.25_f32);
/// assert_eq!(reciprocals[3], 0.125_f32);
/// assert_eq!(reciprocals[4], 0.0625_f32);
/// assert_eq!(reciprocals[5], 0.03125_f32);
/// assert_eq!(reciprocals[6], 0.015625_f32);
/// assert_eq!(reciprocals[7], 0.0078125_f32);
/// assert_eq!(reciprocals[8], 0.00390625_f32);
/// ```
pub const fn precompute_reciprocals<const BITS: usize>() -> [f32; 1 << BITS] {
    let mut reciprocals = [0_f32; 1 << BITS];
    let number_of_possible_registers = 1 << BITS;
    let mut i = 0;
    let mut current_power_of_two: f32 = 1.0_f32;
    while i < number_of_possible_registers {
        reciprocals[i] = 1.0_f32 / current_power_of_two;
        current_power_of_two *= 2.0;
        i += 1;
    }
    reciprocals
}

/// Precomputes small corrections for HyperLogLog algorithm.
///
/// This function calculates a correction factor for each register that helps to improve the
/// accuracy of the HyperLogLog algorithm. The corrections are stored in an array and can be
/// accessed for later use by other methods of the HyperLogLog struct.
///
/// # Arguments
/// * `NUMBER_OF_REGISTERS` - The number of registers used in the HyperLogLog algorithm.
///
/// # Examples
/// ```
/// use hyperloglog_rs::utils::precompute_small_corrections;
/// use hyperloglog_rs::log::log;
///
/// const NUMBER_OF_REGISTERS: usize = 16;
/// let small_corrections = precompute_small_corrections::<NUMBER_OF_REGISTERS>();
/// assert_eq!(small_corrections.len(), NUMBER_OF_REGISTERS);
/// assert_eq!(small_corrections[0], NUMBER_OF_REGISTERS as f32 * log(NUMBER_OF_REGISTERS as f64) as f32);
/// assert_eq!(small_corrections[1], NUMBER_OF_REGISTERS as f32 * log(NUMBER_OF_REGISTERS as f64 / 2.0_f64) as f32);
/// ```
pub const fn precompute_small_corrections<const NUMBER_OF_REGISTERS: usize>(
) -> [f32; NUMBER_OF_REGISTERS] {
    let mut small_corrections = [0_f32; NUMBER_OF_REGISTERS];
    let number_of_possible_registers = NUMBER_OF_REGISTERS;
    let mut i = 0;
    while i < number_of_possible_registers {
        small_corrections[i] =
            NUMBER_OF_REGISTERS as f32 * log(NUMBER_OF_REGISTERS as f64 / (i + 1) as f64) as f32;
        i += 1;
    }
    small_corrections
}

/// Computes the alpha constant for the given number of registers.
///
/// The alpha constant is used to scale the raw HyperLogLog estimate into an
/// estimate of the true cardinality of the set.
///
/// # Arguments
/// * `NUMBER_OF_REGISTERS`: The number of registers in the HyperLogLog
/// data structure.
///
/// # Returns
/// The alpha constant for the given number of registers.
///
/// # Examples
///
/// ```
/// # use hyperloglog_rs::utils::get_alpha;
///
/// let alpha_16 = get_alpha(16);
/// let alpha_32 = get_alpha(32);
/// let alpha_64 = get_alpha(64);
///
/// assert_eq!(alpha_16, 0.673);
/// assert_eq!(alpha_32, 0.697);
/// assert_eq!(alpha_64, 0.709);
///
/// let alpha_4096 = get_alpha(4096);
///
/// assert_eq!(alpha_4096, 0.7213 / (1.0 + 1.079 / 4096.0));
/// ```
#[inline(always)]
pub const fn get_alpha(number_of_registers: usize) -> f32 {
    // Match the number of registers to the known alpha values
    match number_of_registers {
        16 => 0.673,
        32 => 0.697,
        64 => 0.709,
        _ => 0.7213 / (1.0 + 1.079 / number_of_registers as f32),
    }
}