hyperlight_host/func/call_ctx.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418
/*
Copyright 2024 The Hyperlight Authors.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*/
use hyperlight_common::flatbuffer_wrappers::function_types::{
ParameterValue, ReturnType, ReturnValue,
};
use tracing::{instrument, Span};
use super::guest_dispatch::call_function_on_guest;
use crate::{MultiUseSandbox, Result, SingleUseSandbox};
/// A context for calling guest functions.
///
/// Takes ownership of an existing `MultiUseSandbox`.
/// Once created, guest function calls may be made through this and only this context
/// until it is converted back to the `MultiUseSandbox` from which it originated.
///
/// Upon this conversion,the memory associated with the `MultiUseSandbox` it owns will be reset to the state it was in before
/// this context was created.
///
/// Calls made through this context will cause state to be retained across calls, until such time as the context
/// is converted back to a `MultiUseSandbox`
///
/// If dropped, the `MultiUseSandbox` from which it came will be also be dropped as it is owned by the
/// `MultiUseGuestCallContext` until it is converted back to a `MultiUseSandbox`
///
#[derive(Debug)]
pub struct MultiUseGuestCallContext {
sbox: MultiUseSandbox,
}
impl MultiUseGuestCallContext {
/// Take ownership of a `MultiUseSandbox` and
/// return a new `MultiUseGuestCallContext` instance.
///
#[instrument(skip_all, parent = Span::current())]
pub fn start(sbox: MultiUseSandbox) -> Self {
Self { sbox }
}
/// Call the guest function called `func_name` with the given arguments
/// `args`, and expect the return value have the same type as
/// `func_ret_type`.
///
/// Every call to a guest function through this method will be made with the same "context"
/// meaning that the guest state resulting from any previous call will be present/osbservable
/// by the guest funcation called.
///
/// If you want to reset state, call `finish()` on this `MultiUseGuestCallContext`
/// and get a new one from the resulting `MultiUseSandbox`
#[instrument(err(Debug),skip(self, args),parent = Span::current())]
pub fn call(
&mut self,
func_name: &str,
func_ret_type: ReturnType,
args: Option<Vec<ParameterValue>>,
) -> Result<ReturnValue> {
// we are guaranteed to be holding a lock now, since `self` can't
// exist without doing so. Since GuestCallContext is effectively
// !Send (and !Sync), we also don't need to worry about
// synchronization
call_function_on_guest(&mut self.sbox, func_name, func_ret_type, args)
}
/// Close out the context and get back the internally-stored
/// `MultiUseSandbox`. Future contexts opened by the returned sandbox
/// will have guest state restored.
#[instrument(err(Debug), skip(self), parent = Span::current())]
pub fn finish(mut self) -> Result<MultiUseSandbox> {
self.sbox.restore_state()?;
Ok(self.sbox)
}
/// Close out the context and get back the internally-stored
/// `MultiUseSandbox`.
///
/// Note that this method is pub(crate) and does not reset the state of the
/// sandbox.
///
/// It is intended to be used when evolving a MutliUseSandbox to a new state
/// and is not intended to be called publicly. It allows the state of the guest to be altered
/// during the eveolution of one sandbox state to another, enabling the new state created
/// to be captured and stored in the Sandboxes state stack.
///
pub(crate) fn finish_no_reset(self) -> MultiUseSandbox {
self.sbox
}
}
/// A context for calling guest functions. Can only be created from an existing
/// `SingleUseSandbox`, and once created, guest functions against that sandbox
/// can be made from this until it is dropped.
#[derive(Debug)]
pub struct SingleUseGuestCallContext {
sbox: SingleUseSandbox,
}
impl SingleUseGuestCallContext {
/// Take ownership of a `SingleUseSandbox` and
/// return a new `SingleUseGuestCallContext` instance.
///
#[instrument(skip_all, parent = Span::current())]
pub(crate) fn start(sbox: SingleUseSandbox) -> Self {
Self { sbox }
}
/// Call the guest function called `func_name` with the given arguments
/// `args`, and expect the return value have the same type as
/// `func_ret_type`.
///
/// Once the call is complete, the 'SingleUseSandbox' will no longer be useable and a new one will need to be created.
///
/// Rather than call this method directly, consider using the `call_guest_function_by_name` method on the `SingleUseSandbox`
#[instrument(err(Debug),skip(self, args),parent = Span::current())]
pub(crate) fn call(
mut self,
func_name: &str,
func_ret_type: ReturnType,
args: Option<Vec<ParameterValue>>,
) -> Result<ReturnValue> {
self.call_internal(func_name, func_ret_type, args)
}
// Internal call function that takes a mutable reference to self
// This function allows a SingleUseMultiGuestCallContext to be used to make multiple calls to guest functions
// before it is no longer usable.
#[instrument(skip_all, parent = Span::current())]
fn call_internal(
&mut self,
func_name: &str,
func_ret_type: ReturnType,
args: Option<Vec<ParameterValue>>,
) -> Result<ReturnValue> {
// We are guaranteed to be holding a lock now, since `self` can't
// exist without doing so. since GuestCallContext is effectively
// !Send (and !Sync), we also don't need to worry about
// synchronization
call_function_on_guest(&mut self.sbox, func_name, func_ret_type, args)
}
/// This function allows for a `SingleUseSandbox` to be used to make multiple calls to guest functions before it is dropped.
///
/// The function is passed a callback function that it then callsd with a reference to a 'SingleUseMultiGuestCallContext'
/// that can be used to make multiple calls to guest functions.
///
pub fn call_from_func<
Fn: FnOnce(&mut SingleUseMultiGuestCallContext) -> Result<ReturnValue>,
>(
self,
f: Fn,
) -> Result<ReturnValue> {
let mut ctx = SingleUseMultiGuestCallContext::new(self);
f(&mut ctx)
}
}
/// A context for making multiple calls to guest functions in a SingleUseSandbox. Can only be created
/// from an existing SingleUseGuestCallContext using the `call_using_closure` method.
/// Once created, calls to guest functions may be made through this context until it is dropped.
/// Once dropped the underlying `SingleUseGuestCallContext` and associated `SingleUseSandbox` will be dropped
pub struct SingleUseMultiGuestCallContext {
call_context: SingleUseGuestCallContext,
}
impl SingleUseMultiGuestCallContext {
fn new(call_context: SingleUseGuestCallContext) -> Self {
Self { call_context }
}
/// Call the guest function called `func_name` with the given arguments
pub fn call(
&mut self,
func_name: &str,
func_ret_type: ReturnType,
args: Option<Vec<ParameterValue>>,
) -> Result<ReturnValue> {
self.call_context
.call_internal(func_name, func_ret_type, args)
}
}
#[cfg(test)]
mod tests {
use std::sync::mpsc::sync_channel;
use std::thread::{self, JoinHandle};
use hyperlight_common::flatbuffer_wrappers::function_types::{
ParameterValue, ReturnType, ReturnValue,
};
use hyperlight_testing::simple_guest_as_string;
use crate::func::call_ctx::SingleUseMultiGuestCallContext;
use crate::sandbox_state::sandbox::EvolvableSandbox;
use crate::sandbox_state::transition::Noop;
use crate::{
GuestBinary, HyperlightError, MultiUseSandbox, Result, SingleUseSandbox,
UninitializedSandbox,
};
fn new_uninit() -> Result<UninitializedSandbox> {
let path = simple_guest_as_string().map_err(|e| {
HyperlightError::Error(format!("failed to get simple guest path ({e:?})"))
})?;
UninitializedSandbox::new(GuestBinary::FilePath(path), None, None, None)
}
/// Test to create a `SingleUseSandbox`, then call several guest
/// functions sequentially.
#[test]
fn singleusesandbox_single_call() {
let calls = [
(
"StackAllocate",
ReturnType::Int,
Some(vec![ParameterValue::Int(1)]),
ReturnValue::Int(1),
),
(
"CallMalloc",
ReturnType::Int,
Some(vec![ParameterValue::Int(200)]),
ReturnValue::Int(200),
),
];
for call in calls.iter() {
let sbox: SingleUseSandbox = new_uninit().unwrap().evolve(Noop::default()).unwrap();
let ctx = sbox.new_call_context();
let res = ctx.call(call.0, call.1, call.2.clone()).unwrap();
assert_eq!(call.3, res);
}
}
#[test]
fn singleusesandbox_multi_call() {
let calls = [
(
"StackAllocate",
ReturnType::Int,
Some(vec![ParameterValue::Int(1)]),
ReturnValue::Int(1),
),
(
"CallMalloc",
ReturnType::Int,
Some(vec![ParameterValue::Int(200)]),
ReturnValue::Int(200),
),
];
let sbox: SingleUseSandbox = new_uninit().unwrap().evolve(Noop::default()).unwrap();
let ctx = sbox.new_call_context();
let callback_closure = |ctx: &mut SingleUseMultiGuestCallContext| {
let mut res: ReturnValue = ReturnValue::Int(0);
for call in calls.iter() {
res = ctx
.call(call.0, call.1, call.2.clone())
.expect("failed to call guest function");
assert_eq!(call.3, res);
}
Ok(res)
};
let res = ctx.call_from_func(callback_closure).unwrap();
assert_eq!(calls.last().unwrap().3, res);
}
/// Test to create a `MultiUseSandbox`, then call several guest functions
/// on it across different threads.
///
/// This test works by passing messages between threads using Rust's
/// [mpsc crate](https://doc.rust-lang.org/std/sync/mpsc). Details of this
/// interaction are as follows.
///
/// One thread acts as the receiver (AKA: consumer) and owns the
/// `MultiUseSandbox`. This receiver fields requests from N senders
/// (AKA: producers) to make batches of calls.
///
/// Upon receipt of a message to execute a batch, a new
/// `MultiUseGuestCallContext` is created in the receiver thread from the
/// existing `MultiUseSandbox`, and the batch is executed.
///
/// After the batch is complete, the `MultiUseGuestCallContext` is done
/// and it is converted back to the underlying `MultiUseSandbox`
#[test]
fn test_multi_call_multi_thread() {
let (snd, recv) = sync_channel::<Vec<TestFuncCall>>(0);
// create new receiver thread and on it, begin listening for
// requests to execute batches of calls
let recv_hdl = thread::spawn(move || {
let mut sbox: MultiUseSandbox = new_uninit().unwrap().evolve(Noop::default()).unwrap();
while let Ok(calls) = recv.recv() {
let mut ctx = sbox.new_call_context();
for call in calls {
let res = ctx
.call(call.func_name.as_str(), call.ret_type, call.params)
.unwrap();
assert_eq!(call.expected_ret, res);
}
sbox = ctx.finish().unwrap();
}
});
// create new sender threads
let send_handles: Vec<JoinHandle<()>> = (0..10)
.map(|i| {
let sender = snd.clone();
thread::spawn(move || {
let calls: Vec<TestFuncCall> = vec![
TestFuncCall {
func_name: "StackAllocate".to_string(),
ret_type: ReturnType::Int,
params: Some(vec![ParameterValue::Int(i + 1)]),
expected_ret: ReturnValue::Int(i + 1),
},
TestFuncCall {
func_name: "CallMalloc".to_string(),
ret_type: ReturnType::Int,
params: Some(vec![ParameterValue::Int(i + 2)]),
expected_ret: ReturnValue::Int(i + 2),
},
];
sender.send(calls).unwrap();
})
})
.collect();
for hdl in send_handles {
hdl.join().unwrap();
}
// after all sender threads are done, drop the sender itself
// so the receiver thread can exit. then, ensure the receiver
// thread has exited.
drop(snd);
recv_hdl.join().unwrap();
}
pub struct TestSandbox {
sandbox: MultiUseSandbox,
}
impl TestSandbox {
pub fn new() -> Self {
let sbox: MultiUseSandbox = new_uninit().unwrap().evolve(Noop::default()).unwrap();
Self { sandbox: sbox }
}
pub fn call_add_to_static_multiple_times(mut self, i: i32) -> Result<TestSandbox> {
let mut ctx = self.sandbox.new_call_context();
let mut sum: i32 = 0;
for n in 0..i {
let result = ctx.call(
"AddToStatic",
ReturnType::Int,
Some(vec![ParameterValue::Int(n)]),
);
sum += n;
println!("{:?}", result);
let result = result.unwrap();
assert_eq!(result, ReturnValue::Int(sum));
}
let result = ctx.finish();
assert!(result.is_ok());
self.sandbox = result.unwrap();
Ok(self)
}
pub fn call_add_to_static(mut self, i: i32) -> Result<()> {
for n in 0..i {
let result = self.sandbox.call_guest_function_by_name(
"AddToStatic",
ReturnType::Int,
Some(vec![ParameterValue::Int(n)]),
);
println!("{:?}", result);
let result = result.unwrap();
assert_eq!(result, ReturnValue::Int(n));
}
Ok(())
}
}
#[test]
fn ensure_multiusesandbox_multi_calls_dont_reset_state() {
let sandbox = TestSandbox::new();
let result = sandbox.call_add_to_static_multiple_times(5);
assert!(result.is_ok());
}
#[test]
fn ensure_multiusesandbox_single_calls_do_reset_state() {
let sandbox = TestSandbox::new();
let result = sandbox.call_add_to_static(5);
assert!(result.is_ok());
}
struct TestFuncCall {
func_name: String,
ret_type: ReturnType,
params: Option<Vec<ParameterValue>>,
expected_ret: ReturnValue,
}
}